Part Number Hot Search : 
BU606 GAANU 1620C 18472 YN190 GW30NC 2N329B 14202
Product Description
Full Text Search
 

To Download APT150GN60LDQ4G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7633 rev a 10-2008 maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. static electrical characteristics characteristic / test conditions collector-emitter breakdown voltage (v ge = 0v, i c = 4ma) gate threshold voltage (v ce = v ge , i c = 2400 a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 150a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 150a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 3 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 3 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts a na symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt150gn60ldq4(g) 600 30 220123 450 450a @ 600v 536 -55 to 175 300 parameter collector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c 1 continuous collector current @ t c = 110c pulsed collector current 2 switching safe operating area @ t j = 175c total power dissipation operating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. unit volts amps watts c caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef ? cient. a built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. low gate charge simpli ? es gate drive design and minimizes losses. 600v field stop trench gate: low v ce(on) easy paralleling intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 600 5.0 5.8 6.5 1.05 1.45 1.85 1.65 75 2000 600 2 600v apt150gn60ldq4(g) microsemi website - http://www.microsemi.com apt150gn60ldq4(g) downloaded from: http:///
050-7633 rev a 10-2008 1 continuous current limited by case temperature. 2 repetitive rating: pulse width limited by maximum junction temperature. 3 for combi devices, i ces includes both igbt and fred leakages 4 see mil-std-750 method 3471. 5 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ? gure 21, but with a silicon carbide diode. 6 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 7 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 8 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) microsemi reserves the right to change, without notice, the speci? cations and information contained herein. symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 150a t j = 175c, r g = 4.3 8 , v ge = 15v, l = 100 h,v ce = 600v inductive switching (25c) v cc = 400v v ge = 15v i c = 150a r g = 1.0 8 t j = +25c inductive switching (125c) v cc = 400v v ge = 15v i c = 150a r g = 1.0 8 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 4 gate-emitter charge gate-collector ("miller ") charge switching safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 5 turn-on switching energy (diode) 6 turn-off switching energy 7 turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 5 4 turn-on switching energy (diode) 6 5 turn-off switching energy 6 7 min typ max 9200 350 300 9.5 970 65 510 450 44 110 430 60 8810 8615 4295 44 110 480 95 8880 9735 5460 unit pf v nc a ns j ns j thermal and mechanical characteristics symbol characteristic / test conditions min typ max unit r jc junction to case (igbt) - - 0.28 c/w r jc junction to case (diode) - - .30 v isolatio n rms voltage (50-60hz sinsoidal waveform from terminals to mounting base for 1 min.) 2500 w t package weight - 6.1 - gm apt150gn60ldq4(g) typical performance curves downloaded from: http:///
050-7633 rev a 10-2008 v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 250 s pulse test<0.5 % duty cycle 350300 250 200 150 100 50 0 350300 250 200 150 100 50 0 4.03.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 0 200 400 600 800 1000 1200 8 10 12 14 16 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175 400350 300 250 200 150 100 50 0 1614 12 10 86 4 2 0 3.02.5 2.0 1.5 1.0 0.5 0 300250 200 150 100 50 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temperature 12, 13 &15v 9v 8v 7v 11v t j = 125c t j = 25c t j = -55c v ge = 15v. 250 s pulse test <0.5 % duty cycle t j = 125c t j = 25c t j = -55c t j = 175c v ge = 15v 10v v ce = 300v v ce = 120v i c = 150a t j = 25c v ce = 480v t j = 25c. 250 s pulse test <0.5 % duty cycle i c = 300a i c = 150a i c = 75a i c = 300a i c = 150a i c = 75a t j = 175c apt150gn60ldq4(g) typical performance curves downloaded from: http:///
050-7633 rev a 10-2008 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 30 70 110 150 190 230 270 310 0 5 10 15 20 0 25 50 75 100 125 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 1.0 l = 100 h switching energy losses ( j) e on2 , turn on energy loss ( j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses ( j) e off , turn off energy loss ( j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature v ce = 400v t j = 25c , or 125c r g = 1.0 l = 100 h 6050 40 30 20 10 0 400350 300 250 200 150 100 50 0 40,00035,000 30,000 25,000 20,000 15,000 10,000 5,000 0 70,00060,000 50,000 40,000 30,000 20,000 10,000 0 600500 400 300 200 100 0 180160 140 120 100 8060 40 20 0 18,00016,000 14,000 12,000 10,000 8,0006,000 4,000 2,000 0 40,00035,000 30,000 25,000 20,000 15,000 10,000 5,000 0 v ge = 15v t j = 125c, v ge = 15v t j = 25c, v ge = 15v v ce = 400v v ge = +15v r g = 1.0 r g = 1.0 , l = 100 h, v ce = 400v r g = 1.0 , l = 100 h, v ce = 400v t j = 25 or 125c,v ge = 15v v ce = 400v v ge = +15v r g = 1.0 t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 1.0 t j = 125c t j = 25c e on2, 300a e off, 300a e on2, 150a e off, 150a e on2, 75a e off, 75a v ce = 400v v ge = +15v t j = 125c e on2, 300a e off, 300a e on2, 150a e off, 150a e on2, 75a e off, 75a apt150gn60ldq4(g) typical performance curves downloaded from: http:///
050-7633 rev a 10-2008 0.300.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 20,00010,000 500100 5010 500400 300 200 100 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operating area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 figure 19b, transient thermal impedance model 30 50 70 90 110 130 150 170 190 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 1.0 5010 51 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: c res c oes c ies 0.09640.184 0.007700.300 power (watts) rc model junctiontemp. ( c) case temperature. ( c) typical performance curves apt150gn60ldq4(g) downloaded from: http:///
050-7633 rev a 10-2008 figure 22, turn-on switching waveforms and de? nitions figure 23, turn-off switching waveforms and de? nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt100dq60 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc apt150gn60ldq4(g) downloaded from: http:///
050-7633 rev a 10-2008 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 z jc , thermal impedance (c/w) 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 characteristic / test conditions maximum average forward current (t c = 103c, duty cycle = 0.5) rms forward current (square wave, 50% duty) non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 120a forward voltage i f = 240a i f = 120a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.00 2.44 1.70 apt150gn60ldq4(g) 120188 600 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci? ed. ultrafast soft recovery anti-parallel diode min typ max - 34 - 47.3 - 113 - 4 - - 143 - 923 - 11 - - 99 - 2631 - 45 unit ns nc amps ns nc amps ns nc amps characteristic reverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 120a, di f /dt = -200a/ s v r = 400v, t c = 25 c i f = 120a, di f /dt = -200a/ s v r = 400v, t c = 125 c i f = 120a, di f /dt = -1000a/ s v r = 400v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration figure 24b, transient thermal impedance model dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink,sink to ambient, etc. set to zero when modeling only the case to junction. z ext .1174 .1924 .01168 .13207 downloaded from: http:///
050-7633 rev a 10-2008 t j =125 c v r =400v 50a 100a 200a duty cycle = 0.5 t j =175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 180160 140 120 100 8060 40 20 0 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) 0 0.5 1.0 1.5 2.0 2.5 3.0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = -55 c t j = 25 c t j = 125 c t j = 175 c t j =125 c v r =400v 100a 50a 200a 300250 200 150 100 50 0 40003500 3000 2500 2000 1500 1000 500 0 t j =125 c v r =400v 200a 100a 50a 300250 200 150 100 50 0 6050 40 30 20 10 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) q rr t rr q rr i rrm 1.21.0 0.8 0.6 0.4 0.2 0.0 14001200 1000 800600 400 200 0 t rr v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery current vs. current rate of change t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage dynamic characteristics apt150gn60ldq4(g) downloaded from: http:///
050-7633 rev a 10-2008 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122)3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) collector emitter gate dimensions in millimeters and (inches) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. collector to-264 (l) package outline apt150gn60ldq4(g) cathode / cathode / anode downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT150GN60LDQ4G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X