![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
product structure : silicon monolithic integrated circuit this product has no designed protection against radioactive rays . 1 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 2 0 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 tsz22111 ? 14 ? 001 www.rohm.com nano energy tm ultra low iq buck converter f or low power applications b d70522gul general description t he BD70522GUL is a b uck c onverter featuring 180na quiescent current and supports output current up to 500ma. the constant on - time (cot) c ontrol with ulp (ultra low power) mode provides superior transient response and extends battery life by providing excellent light l oad efficiency below 10 a load range . the output voltage can be s elect ed from 9 pre - set voltages by vsel pins. when t he input voltag e gets close to the out p ut voltage , the ic enters 100%on mode where t he switching operation stops . features ? nano energ y tm ? 1 80na (typ) quiescent current ? up to 90% efficiency a t 10a output current ? up to 500ma output current ? 9 selectable output voltages (1.2v, 1.5v, 1.8v, 2.0v, 2.5v, 2.8v, 3.0v, 3.2v, 3.3 v) ? power good output ? 100%on m ode for low i nput v oltage ? discharge function on vout applications ? smoke detector ? t hermostat ? portable devices ? wearable devices ? l ow - iq a pplications without standby sw i t cher ? energy harvesting key specification s ? i nput voltage range: 2.5 v to 5.5v ? o utput voltage range: 1. 2 v to 3.3 v ? maximum outp ut current: 500ma ? operating quiescent current: 180na (typ) ? s tandby current: 50n a ( typ ) ? operating t emperature r ange : - 40 c to +85 c package w(typ) x d(typ) x h(max) vcsp50l1c 1.76 mm x 1.56 mm x 0. 57 mm typical application circuit figure 1. typical application circuit nano energy tm i s a trademark of rohm co., ltd. datashee t vin en vsel1 vsel2 lx vout pgnd vin vout cin l1 pg vpg cout 10 f 22 f 2.2 h 1.2v-3.3v 2.5v-5.5v ven vsel1 vsel2 r pullup agnd
2 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul contents general description ................................ ................................ ................................ ................................ ................................ ........ 1 features ................................ ................................ ................................ ................................ ................................ .......................... 1 applications ................................ ................................ ................................ ................................ ................................ .................... 1 key specifications ................................ ................................ ................................ ................................ ................................ .......... 1 package ................................ ................................ ................................ ................................ ................................ .......................... 1 typical application circuit ................................ ................................ ................................ ................................ ............................... 1 contents ................................ ................................ ................................ ................................ ................................ ......................... 2 pin configuration ................................ ................................ ................................ ................................ ................................ ............ 3 pin descriptions ................................ ................................ ................................ ................................ ................................ .............. 3 block diagram ................................ ................................ ................................ ................................ ................................ ................ 3 absolute maximum ratings ................................ ................................ ................................ ................................ ............................ 4 thermal resistance ................................ ................................ ................................ ................................ ................................ ........ 4 recommended operating conditions ................................ ................................ ................................ ................................ ............. 4 electrical characteristics ................................ ................................ ................................ ................................ ................................ . 4 electrical characteristics - continued ................................ ................................ ................................ ................................ .............. 5 detailed descriptions ................................ ................................ ................................ ................................ ................................ ...... 6 typical performance curves ................................ ................................ ................................ ................................ ........................... 8 figure 7 - 10 . efficiency vs o utput current ................................ ................................ ................................ ................................ ... 8 figure 11 - 14 . output voltage vs output current ................................ ................................ ................................ ......................... 9 figure 15 - 18 . switching frequency vs output current ................................ ................................ ................................ ............. 10 figure 19 - 22 . output ripple voltage vs output current ................................ ................................ ................................ ............ 11 figure 23 - 26 . load transient response ................................ ................................ ................................ ................................ ... 12 figure 27 - 30 . line transient response ................................ ................................ ................................ ................................ .... 13 figure 31 - 34 . line transient response ................................ ................................ ................................ ................................ .... 14 figure 35 - 36 . start u p ................................ ................................ ................................ ................................ ................................ . 15 figure 37 - 38 . shut d own ................................ ................................ ................................ ................................ ............................ 15 figure 39 - 42 . input voltage ramp up/down ................................ ................................ ................................ ............................. 16 timing chart ................................ ................................ ................................ ................................ ................................ ................. 17 application examples ................................ ................................ ................................ ................................ ................................ ... 18 i/o equivalence circuits ................................ ................................ ................................ ................................ ................................ 19 operational notes ................................ ................................ ................................ ................................ ................................ ......... 20 ordering information ................................ ................................ ................................ ................................ ................................ ..... 22 marking diagram ................................ ................................ ................................ ................................ ................................ .......... 22 physical dimension and packing information ................................ ................................ ................................ ............................... 23 revision history ................................ ................................ ................................ ................................ ................................ ............ 24 3 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul pin con f iguration figure 2. pin configuration pin descriptio n s pin no. pin n ame descr iption a1 pgnd power ground pin a2 lx switching p in. connect an inductor to this pin. a3 vin power s upply i nput p in. connect an input capacitor close to this pin. b1 vout feedback pin for internal feedback divider network and regulation loop. t his pin is also used for vout discharge while en pin is set to low. b2 agnd analog ground pin b3 en enable pin . this pin must be terminated. high : enable low : shutdown do not pull up en terminal higher than vin voltage . c1 pg power g ood o pen d r ain output p in. pg remains low while the vout pin voltage is lower than the threshold voltage. if not used, this pin can be left open. do not pull up pg terminal to a voltage which is higher than vin voltage . c2 vsel2 output voltage sel ection pins . these pin s ha ve three state s : high = vin ( conn e ct these pins to v in directly without pull up resistor s ) low = gnd ( connect these pins to gnd directly without pull down resistor s ) open = no connection (pcb:c<50pf, r>1mohm) the setting of these pins cannot be changed while the ic is operati n g . c3 vsel1 block diagra m figure 3. block diagram t o p v i e w a b c 1 2 3 p g v s e l 1 v o u t l x e n v i n p g n d v s e l 2 a g n d u l t r a l o w p o w e r r e f e r e n c e v f b m a i n r e f u l p r e f u v l o e n c o n t r o l l o g i c l i m i t l o w s i d e c u r r e n t l i m i t c o m p z e r o c r o s s c o m p c u r r e n t l i m i t c o m p l i m i t h i g h s i d e s o f t s t a r t v t h _ u v l o v i n u v l o c o m p v t h _ p g v 1 0 0 t h _ r e f v i n v o u t d i s c h a r g e u v l o e n v o u t v i n l x p g n d m a i n c o m p u l p c o m p i n t e r n a l f e e d b a c k n e t w o r k p g c o m p 1 0 0 % o n m o d e c o m p e n v s e l 1 v s e l 2 p g a g n d 4 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul absolute maximum rating s (t a = 25c) parameter symbol rating unit supply voltage v in - 0.3 to + 6 v lx voltage v lx - 0.3 to v in +0.3v v en voltage v en - 0.3 to v in +0.3v v pg voltage v pg - 0.3 to v in +0.3v v vsel1, 2 voltage v sel - 0.3 to v in +0.3v v pg sink current i pg 10 ma power dissi pation p d 0. 59 2 ( note 1 ) w m aximum j unction t emperature tjmax 150 c storage temperature range tstg - 55 to + 150 c caution 1 : operating the ic over the absolute maximum ratings may damage the ic. the damage can either be a short circuit betwe en pins or an open circuit between pins and the internal circuitry. therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the ic is operated over the absolute maximum ratings. caution 2 : should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in de terioration of the properties of the chip. in case of exceeding this absolute maximum rating, design a pcb boards with power dissipation taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating. ( note 1) the d erating is 4 . 74 mw / c while the device is operating above ta 25 c (mount ed on 4 - layer 50 . 0 m m x 58 . 0 mm x 1.6mm fr - 4 board) thermal resistance parameter symbol thermal resistance (typ) unit vcsp50l1c junction to ambient j a 168.8 c /w layer number of measurement board material board size 4 layers fr - 4 50.0 mm x 58 . 0 mm x 1.6mmt recommended operating condit ion s parameter symbol min typ max unit supply voltage ( note 2) v in 2.5 3.6 5.5 v output current i out - - 500 m a inductance ( note 3) l - 2.2 - h output capacitance ( note 4) c out 10 22 100 f operating temperature t opr - 40 + 25 + 85 c (note 2) in itial startup voltage is over 2.6v (max) ( note 3) t he effective inductance should be kept in the specified range from 1.5 h to 3.5 h, including the variety of tolerance, temperature, current derating. ( note 4) t he effective capacitance should be kept this specified range including variety of tolerance, temperature, bias voltage derating. electrical characteristic s ( unless otherwise specified v in = 3.6 v t a =25 c ) parameter symbol min typ max unit conditions circuit current shutdown current i st - 50 10 00 na operating quiescent cur r ent i q - 180 1000 na n o switching, v en = v in v sel =v in include vsel, en pin current under voltage lockout uvlo detect ion th reshold v uvlo 2. 3 0 2.4 0 2. 5 0 v v in falling uvlo release threshold v uvlorls 2.4 0 2.5 0 2. 6 0 v v in rising 5 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul electrical characteristics - continued ( unless otherwise specified v in = 3.6 v t a =25 c ) parameter symbol min typ max unit conditions control en high level v enh 1.1 - - v en low level v enl - - 0.3 v en input current i en - 0 1 a vsel high level v selh v in - 0.3 - v in +0.3 v vsel low level v sell - 0.3 - +0.3 v vsel input current i vsel - 0 1 a power swit ch hi gh - side fet on - resistance r onh - 0.30 0.45 i lx =50m a lo w - side fet on - resistance r onl - 0.15 0.23 i lx = - 50ma hi gh - side fet switch current limit 1 i limit h1 1225 1750 2275 m a peak current of i nductor lo w - side fet switch current limit i limitl 680 970 12 60 ma bottom current of i nductor hi gh - side fet switch current limit 2 i limit h2 680 970 1260 ma 100%on mode v out discharge fet on - resistance r d i sch 50 100 200 i out = - 10ma power good output power good detection t hreshold v pgth - 95 - % v out rising power good hysteresis v pghys - - 5 - % pg low level output v ol t a ge v olpg - 0.3 - 0.3 v i pg = - 1ma pg output off leak current i offpg - 0 1 a 100% on mode transition 100% on mod e detection threshold v 100 th m 100 200 300 mv v in falling, v in = v out + v 100thm 100% on mode release threshold v 100thp 150 250 350 mv v in rising, v in = v out + v 100thp output output voltage range v out rg 1. 2 - 3.3 v refer to table 1 output voltage accuracy 1 v o acc1 - 2. 0 0.0 2. 0 % i out =10ma output voltage accuracy 2 v oacc 2 - 2. 5 0.0 2 . 5 % i out =100ma start u p delay time t s delay 2.5 5.0 10.0 ms soft - start time t ss 1.5 3.0 6.0 ms table 1. output vol t a ge setting s ( note 5 ) v se t vse l1 vsel2 1.2v gnd open 1.5 v open gnd 1.8 v gnd gnd 2.0 v v in gnd 2.5 v open v in 2.8 v v in open 3.0 v open open 3. 2 v gnd v in 3.3v v in v in ( note 5 ) t he o utput voltage is only determined by the state s of vsel1 and vsel2 during the start up delay . in order to reduce the current consumption, the output voltage cannot be change d by changing the s ta t e s of vsel1 and vsel2 a fter the startup delay . 6 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul d etailed d escription s 1. co nstant on - time (cot) control the cot control topology supports ccm (continuous current mode) for medium and high load conditions and dcm (discontinuous current mode) for light load conditions . the on - t ime is set in proportion to the output voltage (v out ) , and in inverse proportion to power supply voltage (v in ) . therefore, when in ccm , even if v in or v out settings change s , the ic always operates in a constant frequency 1 mhz (t yp) approximately . if the load current decreases, the ic enters dcm seamlessly to maintain high efficiency down to v ery light loads , and the switching frequency varies approximate ly linearly with the load current. 2. 100% on mode when v in gets close to v out , the ic stop s switching and start s 100% duty cycle operation. it connects the out put to the input via the inductor and the internal high side mosfet switch, when v in falls below the 100% on m ode e nter t hreshold ( v 100thm ) . and w hen v in increases and exceeds the 100% on m ode r elease t hreshold ( v 100thp ) , the ic starts to switch again. figure 4 . 100% on mode transition 3. ultra low power (ulp) mode 2 comparators are used in this ic for monitoring v out. one is main comparator (main comp) and the other is ulp comparator (ulp comp) . the t ransition from n ormal mode to ulp mode is judged pulse by pulse. while t he main comp or the ulp comp detect s the decrea se in v out , the lx node switches for one p ulse , then become s high impedance. if t h e high impedance state last s over 8 s , the ic transit s from normal mode to u lp mode. in ulp mode, the main comp and the p ower g ood c omparator ( pg comp ) are disabled to reduc e the current consumption . and wh en t he ulp comp detects the decrea se in v out , the main comp and the pg comp are enabled , and the ic transit s from ulp mode to normal mode . fig ure 5 . transition between normal mode and ulp mode n o r m a l m o d e u l p m o d e n o r m a l m o d e u l p m o d e n o r m a l m o d e 8 u s 8 u s 8 u s m a i n c o m p : o n p g c o m p : o n m a i n c o m p : o f f p g c o m p : o f f m a i n c o m p : o n p g c o m p : o n m a i n c o m p : o f f p g c o m p : o f f m a i n c o m p : o n p g c o m p : o n v 1 0 0 t h p v 1 0 0 t h m v p g t h v u v l o r l s v u v l o v p g h y s 2 0 0 m v ( t y p ) 2 5 0 m v ( t y p ) 1 0 0 % m o d e 1 0 0 % m o d e s o f t s t a r t 2 . 5 v ( t y p ) 2 . 4 v ( t y p ) 9 5 % ( t y p ) 5 % ( t y p ) l o w l o w h i g h v i n v o u t p g t t : s o f t s t a r t e n d : v i n v 1 0 0 t h p v i n v 1 0 0 t h m 7 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul 4. on - time extension the o n - t ime is extended automatically to get the best transient response in the case of high duty cycle operation. if the main comp o utput does not return to high leve l with in constant on - time, the on - time is extended until the main comp output returns to high , and t he m aximum o n - t ime is limited to 16 s . figure 6. on - time extension 5. discharge for vout vout pin has a mosfet for discharge which connect s vout pin to gn d when the ic is in standby state. (en=low or uvlo state or tsd state ) 6. power good (pg) output pg pin is an open - d rain output. the pg comp is active when en pin is set to high and v in is above the threshold v uvlorls . pg pin remains low wh en the v out is l ower than the pg d etection threshold (v pgth ) or during the s oft - s tart time . pg pin go es to high impedance when v out exceeds v pgth . a nd it is pulled to low level once v out falls below the pg release threshold (v pgth - v pghys ) . 7. under voltage lock out (uvlo) uvlo function prevent s the malfunction of the internal circuit when v in is too low . if v in falls lower than 2. 4 v (typ) , the ic turn s off . in order to prevent from the misdetection of uvlo , it is necessary to set v in higher than 2. 5 v (typ) . 8. over current limit (oc l ) BD70522GUL employs a bottom inductor current limit function which is achieved by us ing the low side mosfet . t urning on the high side mosfet is prohibited while the inductor current is higher than the low side ocl ( i limitl ) . this function keeps the inductor peak current lower than the sum of i limitl and the inductor ripple current . however, t he low side ocl function does not work if the vout pin is directly shorted to gnd. thus, a high side ocl is implemented for such case . t he high side mosfet turn s off when the inductor current exceeds the high side ocl ( i limith1 ) . furthermore, the peak current is limited to i limith1 0.67 under the on - time extension state. the inductor current is also limited to i limith2 under 100% on mode , and t he high side mos fet is used to sense the current in this case. 9. thermal shutdown (tsd) BD70522GUL stop s the switching operation when the device temperature exceeds the tsd detection threshold 130 c ( t yp) for protecting the ic from overheat . a f ter the device temperature f alls below the tsd rele ase threshold 115 c ( t yp) , the ic starts the s of t - s tart operation and recovers to the normal operation . f b + r a m p c o m p e n s a t o r v r e f m a i n c o m p o u t p u t l x o n - t i m e e x t e n s i o n w i t h d e l a y s h o t i l c o n s t a n t o n - t i m e 8 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curve s ( unless otherwise specified t a =25 c ) figure 7 . effi ci ency vs output current (v out =1.2v) figure 8 . efficiency vs output curren t (v out =1.8v) figure 9 . efficiency vs output current (v out =2.5v) f igure 10 . efficiency vs output current (v out =3.3v) 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 0.001 0.01 0.1 1 10 100 1000 e fficiency: [% ] output current: i out [ma] vin=2.6v vin=3.6v vin=4.2v vin=5.0v vin=5.5v 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 0.001 0.01 0.1 1 10 100 1000 e fficiency: [% ] output current: i out [ma] vin=2.8v vin=3.6v vin=4.2v vin=5.0v vin=5.5v 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 0.001 0.01 0.1 1 10 100 1000 e fficiency: [% ] output current: i out [ma] vin=3.6v vin=4.2v vin=5.0v vin=5.5v 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 0.001 0.01 0.1 1 10 100 1000 e fficiency: [% ] output current: i out [ma] vin=2.6v vin=3.6v vin=4.2v vin=5.0v vin=5.5v 9 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curve s - continued ( unless otherwise specified t a =25 c ) figure 11 . output voltage vs output current ( load regulation , v out =1.2v ) figure 12 . output voltage vs output current ( load regulation, v out =1.8v ) figure 1 3 . output voltage vs output current ( load regulation, v out = 2 . 5 v ) figure 1 4 . output voltage vs output current ( load regulation, v out =3.3v ) 3.201 3.234 3.267 3.300 3.333 3.366 3.399 0.001 0.01 0.1 1 10 100 1000 output voltage: v out [v] output current: i out [ma] vin=3.6v vin=4.2v vin=5.0v vin=5.5v 1.164 1.176 1.188 1.200 1.212 1.224 1.236 0.001 0.01 0.1 1 10 100 1000 output voltage: v out [v] output current: i out [ma] vin=2.6v vin=3.6v vin=4.2v vin=5.0v vin=5.5v 1.746 1.764 1.782 1.800 1.818 1.836 1.854 0.001 0.01 0.1 1 10 100 1000 output voltag e: v out [v] output current: i out [ma] vin=2.6v vin=3.6v vin=4.2v vin=5.0v vin=5.5v 2.425 2.450 2.475 2.500 2.525 2.550 2.575 0.001 0.01 0.1 1 10 100 1000 output voltage: v out [v] output current: i out [ma] vin=2.8v vin=3.6v vin=4.2v vin=5.0v vin=5.5v 10 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specified t a =25 c ) figure 1 5 . switching frequency vs output current (v out =1.2v) figure 1 6 . switching frequency vs output current (v out =1.8v) figure 1 7 . switching frequency vs output current (v out =2.5v ) figure 1 8 . switching frequency vs output current (v out =3.3v) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 0 100 200 300 400 500 switching frequency: f sw [khz] output current: i out [ma] vin=2.6v vin=3.6v vin=5.5v 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 0 100 200 300 400 500 switching frequency: f sw [khz] output current: i out [ma] vin=2.6v vin=3.6v vin=5.5v 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 0 100 200 300 400 500 switching frequency : f osw [khz] output current: i out [ma] vin=2.8v vin=3.6v vin=5.5v 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 0 100 200 300 400 500 switching frequency : f sw [khz] output current: i out [ma] vin=3.6v vin=5.5v 11 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specified t a =25 c ) figure 1 9 . output ripple voltage vs output current ( peak to peak output ri pple voltage , v o ut =1.2v ) figure 20 . output ripple voltage vs output current ( p eak to peak output ripple voltage, v o ut =1.8v) figure 21 . output ripple voltage vs output current (peak to peak output ripple voltage, v o ut =2.5v) figure 22 . output ripple voltage vs output current (peak to peak output ripple voltage, v o ut =3.3 v) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 0 100 200 300 400 500 output r ipple voltage: v r ip [mvpp] output current: i out [ma] vin=2.6v vin=3.6v vin=5.5v 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 0 100 200 300 400 500 output ripple voltage: v rip [m vpp] output current: i out [ma] vin=2.6v vin=3.6v vin=5.5v 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 0 100 200 300 400 500 output ripple voltage: v rip [m vpp] output current: i out [ma] vin=2.8v vin=3.6v vin=5.5v 0 5 10 15 20 25 30 35 40 45 50 0 100 200 300 400 500 output ripple voltage: v rip [m vpp] output current: i out [ma] vin=3.6v vin=5.5v 12 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specified t a =25 c ) figure 2 3 . load transient response ( v in =3.6v, v out = 1.2v, i out =1ua o 500ma, t r = t f =1 s ) figure 2 4 . load transient response ( v in =3.6v, v out =1.8v, i out =1ua o 500ma, t r =t f =1 s ) figure 2 5 . load transient response ( v in =3.6v, v out =2.5v, i out =1ua o 500ma, t r =t f =1 s ) figure 2 6 . load transient response ( v in =3.6v, v out =3.3v, i out =1ua o 500ma, t r =t f =1 s ) droop=174.9mv overshoot=85.6mv v out i out droop=260.2mv overshoot=88.1mv v out i out droop=113.9mv overshoot=65.1mv v out i out droop=137.5mv overshoot=66.9mv v out i out 13 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specifi ed t a =25 c ) figure 2 7 . line transient response ( v in =2.6v o 5.5v , t r =t f =48 s , v out =1.2v, i out =1ma ) figure 2 8 . line transient response ( v in =2.6v o 5.5v , t r =t f =48 s , v out =1.2v, i out = 500 ma ) figure 2 9 . line transient response ( v in =2.6v o 5.5v , t r =t f =48 s , v out =1.8v, i out =1ma ) figure 30 . line transient response ( v in =2.6v o 5.5v , t r =t f =48 s , v out =1.8v, i out =500ma ) droop=30.4mv overshoot=29.6mv v out v in droop=18.8mv overshoot=20.0mv v out v in droop=32.8mv overshoot=30.4mv v out v in droop=22.0mv overshoot=22.8mv v out v in 14 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specified t a =25 c ) figure 31 . line transient response ( v in =2.8v o 5. 5v , t r =t f =45 s , v out =2.5v, i out =1ma ) figure 32 . line transient response ( v in =2.8v o 5.5v , t r =t f =45 s , v out =2.5v, i out =500ma ) figure 3 3 . line transient response ( v in =3.7v o 5.5v , t r =t f =30 s , v out =3.3v, i out =1ma ) figure 3 4 . line transient r esponse ( v in =3.7v o 5.5v , t r =t f =30 s , v out =3.3v, i out =500ma ) v out v in droop=20.0mv overshoot=28.0mv droop=54.0mv overshoot=48.4mv v out v in v out v in droop=24.4mv overshoot=30.4mv droop=50.8mv overshoot=48.4mv v out v in 15 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specified t a =25 c ) figure 3 5 . start u p ( v in =3.6v, v out =2.5v, i out = 0ma , en=0 v in ) figure 3 6 . start u p ( v in =3.6v, v out =2.5v, i ou t = 50 0ma , en=0 v in ) figure 3 7 . shut d own ( v in =3.6v, v out =2.5v, i out =0ma , en=v in 0 ) figure 3 8 . shut d own ( v in =3.6v, v out =2.5v, i out =500ma , en=v in 0 ) t sdelay =4.50ms t ss =2.54ms v en v lx v pg v out t sdelay =4.51ms t ss =2.57ms v en v lx v pg v out v out t sd =134.2us ( 50%en 20%v out ) v en v out t sd =2.45ms (50%en 20%v out ) v en 16 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul t ypical performance curves - continued ( unless otherwise specified t a =25 c ) figure 3 9 . input voltage ramp up/d own ( v in =0v o 5. 0 v , v out = 1 . 2 v , i out = 50 0ma , pg=vout ) figure 40 . input voltage ramp up/down ( v in =0v o 5. 0 v, v out = 1 . 8 v , i out =500ma , pg=vout ) figure 41 . input voltage ramp up/down ( v in =0v o 5. 0 v, v out =2.5v, i out =500ma , pg=vout ) figure 42 . input voltage ramp up/down ( v in =0v o 5.0v, v out =3.3v , i out =500ma , pg=vout ) v in v lx v pg v out v in v lx v pg v out v in v lx v pg v out 100%on mode operation v in v lx v pg v out 100%on mode operation 17 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul timing chart after bd 70522gul is enabled, the internal reference voltage is boot ed up . w hen the startup delay time t sdelay has expi red, the switching is start ed by the s oft - s tart operation , and the output voltage is ramp ed up to the set voltage (v outset ) which is determined by the states of vsel1 and vsel2 during the startup delay in normal operation . figure 4 3 . timing chart v e n v o u t t s d e l a y v o u t s e t v l x t s s 18 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul application example s figure 4 4 . application example (v out =1.2v) figure 4 5 . application example (v out =1.8v) figure 4 6 . application example (v out = 2 . 5 v) figure 4 7 . application example (v out =3.3v) v i n e n v s e l 1 v s e l 2 l x v o u t p g n d v i n v o u t c i n l 1 p g c o u t 1 0 f 2 2 f 2 . 2 h v e n r p u l l u p 1 . 2 m v p g a g n d v i n e n v s e l 1 v s e l 2 l x v o u t v i n v o u t c i n l 1 p g c o u t 1 0 f 2 2 f 2 . 2 h v e n r p u l l u p 1 . 8 m v p g p g n d a g n d v p g v i n e n v s e l 1 v s e l 2 l x v o u t v i n v o u t c i n l 1 p g c o u t 1 0 f 2 2 f 2 . 2 h v e n r p u l l u p 2 . 4 m p g n d a g n d v p g v i n e n v s e l 1 v s e l 2 l x v o u t v i n v o u t c i n l 1 p g c o u t 1 0 f 2 2 f 2 . 2 h v e n r p u l l u p 3 . 3 m p g n d a g n d 19 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul i/o e quivalen ce c ircuit s c 2 : v s e l 2 , c 3 : v s e l 1 a 1 : p g n d , a 2 : l x , a 3 : v i n , b 2 : a g n d b 1 : v o u t b 3 : e n c 1 : p g v i n l x p g n d a g n d v o u t e n v i n v i n p g v i n v s e l 2 , v s e l 1 v i n 20 / 24 tsz02201 - 0q1q0aj00400 - 1 - 2 ? 20 17 rohm co., ltd. all rights reserved. 21.aug.2017 rev.002 www.rohm.com tsz22111 ? 15 ? 001 b d70522gul operational notes 1. reverse c onnection of p ower s upply connecting the power supply in reverse polarity can damage the ic. take pr ecautions against reverse polarity when connecting the power supply , such as mounting an external diode between the power supply and the ic ? s power supply pin s. 2. power s upply l ines design the pcb layout pattern to provide low impedance supp ly lines. furthermore, connect a capacitor to ground at all power supply pins . consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. g round voltage ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. g round w iring p attern when using both small - signal and large - current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the a pplication board to avoid fluctuations in the small - signal ground caused by large currents. also ensure that the ground traces of external components do not cause variations on the ground voltage. the ground lines must be as short and thick as possible to reduce line impedance. 5. recommended o perating c onditions the function and operation of the ic are guaranteed within the range specified by the recommended operating conditions. the c harac teristic values are guaranteed only under the conditions of each item specified by the electrical characteristics. 6. inrush current when power is first supplied to the ic, it is possible that the internal logic may be unstable and inrush current may flow in stantaneously due to the internal powering sequence and delays, especially if the ic has more than one power supply. therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 7. ope ration u nder s trong e lectromagnetic f ield operating the ic in the presence of a strong electromagnetic field may cause the ic to malfunction . 8. testing on a pplication b oards when testing the ic on an application board, connecting a capacitor directly to a l ow - impedance output pin may v x e m h f w w k h , & |