Part Number Hot Search : 
SEL6227S AS1507 0AA01 CPC75821 48C50 BUH150 AD7835AP APT8011
Product Description
Full Text Search
 

To Download APT30M30LFLLG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7162 rev b 7-2004 maximum ratings all ratings: t c = 25c unless otherwise specified. caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. apt website - http://www.advancedpower.com g d s lower input capacitance increased power dissipation lower miller capacitance easier to drive lower gate charge, qg popular t-max? or to-264 package fast recovery body diode apt30m30b2fll apt30m30lfll 300v 100a 0.030 ?? ?? ? t-max ? to-264 b2fll lfll power mos 7 ? is a new generation of low loss, high voltage, n-channel enhancement mode power mosfets. both conduction and switchinglosses are addressed with power mos 7 ? by significantly lowering r ds(on) and q g . power mos 7 ? combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with apt'spatented metal gate structure. power mos 7 r fredfet characteristic / test conditionsdrain-source breakdown voltage (v gs = 0v, i d = 250a) drain-source on-state resistance 2 (v gs = 10v, i d = 50a) zero gate voltage drain current (v ds = 300v, v gs = 0v) zero gate voltage drain current (v ds = 240v, v gs = 0v, t c = 125c) gate-source leakage current (v gs = 30v, v ds = 0v) gate threshold voltage (v ds = v gs , i d = 2.5ma) symbol v dss i d i dm v gs v gsm p d t j ,t stg t l i ar e ar e as parameterdrain-source voltage continuous drain current 5 @ t c = 25c pulsed drain current 1 gate-source voltage continuousgate-source voltage transient total power dissipation @ t c = 25c linear derating factoroperating and storage junction temperature range lead temperature: 0.063" from case for 10 sec. avalanche current 1 (repetitive and non-repetitive) repetitive avalanche energy 1 single pulse avalanche energy 4 unit volts amps volts watts w/c c amps mj static electrical characteristics symbol bv dss r ds(on) i dss i gss v gs(th) unit volts ohms ana volts min typ max 300 0.030 250 1000 100 35 apt30m30b2fll_lfll 300100 400 3040 694 5.56 -55 to 150 300100 50 3000 downloaded from: http:///
050-7162 rev b 7-2004 dynamic characteristics note: duty factor d = t 1 / t 2 peak t j = p dm x z jc + t c t 1 t 2 p dm single pulse z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 1, maximum effective transient thermal impedance, junction-to-case vs pulse duration 0.200.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 0.5 0.1 0.3 0.7 0.9 0.05 apt30m30b2fll_lfll source-drain diode ratings and characteristics thermal characteristics characteristic / test conditionscontinuous source current (body diode) pulsed source current 1 (body diode) diode forward voltage 2 (v gs = 0v, i s = -100a) peak diode recovery dv / dt 6 reverse recovery time(i s = -100a, di / dt = 100a/s) reverse recovery charge(i s = -100a, di / dt = 100a/s) peak recovery current(i s = -100a, di / dt = 100a/s) symbol i s i sm v sd dv / dt t rr q rr i rrm unit amps volts v/ns ns c amps min typ max 100415 1.3 8 t j = 25c 250 t j = 125c 500 t j = 25c 1.4 t j = 125c 4.9 t j = 25c 14 t j = 125c 25 symbol r jc r ja min typ max 0.18 40 unitc/w characteristicjunction to case junction to ambient symbol c iss c oss c rss q g q gs q gd t d(on) t r t d(off) t f e on e off e on e off characteristicinput capacitance output capacitance reverse transfer capacitance total gate charge 3 gate-source charge gate-drain ("miller ") charge turn-on delay time rise time turn-off delay time fall time turn-on switching energy 7 turn-off switching energyturn-on switching energy 7 turn-off switching energy test conditions v gs = 0v v ds = 25v f = 1 mhz v gs = 10v v dd = 150v i d = 100a @ 25c resistive switching v gs = 15v v dd = 150v i d = 100a @ 25c r g = 0.6 ? inductive switching @ 25c v dd = 200v, v gs = 15v i d = 100a, r g = 5 ? inductive switching @ 125c v dd = 200v v gs = 15v i d = 100a, r g = 5 ? min typ max 70301895 110140 4170 15 22 35 8 925 13451055 1485 unit pf nc ns j 1 repetitive rating: pulse width limited by maximum junction temperature 2 pulse test: pulse width < 380 s, duty cycle < 2% 3 see mil-std-750 method 3471 4 starting t j = +25c, l = 0.60mh, r g = 25 ? , peak i l = 100a 5 the maximum current is limited by lead temperature 6 dv / dt numbers reflect the limitations of the test circuit rather than the device itself. i s - i d 100a di / dt 700a/s v r 300v t j 150 c 7 eon includes diode reverse recovery. see figures 18, 20. apt reserves the right to change, without notice, the specifications and inforation contained herein. downloaded from: http:///
050-7162 rev b 7-2004 apt30m30b2fll_lfll typical performance curves 6v 5.5v 7v 6.5 v gs =15 &10v 8v 7.5v v gs =10v v gs =20v t j = +125c t j = +25c t j = -55c v ds > i d (on) x r ds(on) max. 250sec. pulse test @ <0.5 % duty cycle r ds(on) , drain-to-source on resistance i d , drain current (amperes) i d , drain current (amperes) (normalized) v gs(th) , threshold voltage bv dss , drain-to-source breakdown r ds(on) , drain-to-source on resistance i d , drain current (amperes) (normalized) voltage (normalized) v ds , drain-to-source voltage (volts) figure 2, transient thermal impedance model figure 3, low voltage output characteristics v gs , gate-to-source voltage (volts) i d , drain current (amperes) figure 4, transfer characteristics figure 5, r ds(on) vs drain current t c , case temperature (c) t j , junction temperature (c) figure 6, maximum drain current vs case temperature figure 7, breakdown voltage vs temperature t j , junction temperature (c) t c , case temperature (c) figure 8, r ds(on) vs. temperature figure 9, threshold voltage vs temperature 0 5 10 15 20 25 30 0 2 4 6 8 10 0 20 40 60 80 100 120 140 160 180 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 250200 150 100 50 0 120100 8060 40 20 0 2.52.0 1.5 1.0 0.5 0.0 normalized to v gs = 10v @ i d = 50a i d = 50a v gs = 10v 250200 150 100 50 0 1.401.30 1.20 1.10 1.00 0.90 0.80 1.15 1.10 1.05 1.00 0.95 0.90 1.21.1 1.0 0.9 0.8 0.7 0.6 0.02710.0656 0.0859 0.00899f0.0202f 0.293f power (watts) junction temp. ( c) rc model case temperature downloaded from: http:///
050-7162 rev b 7-2004 apt30m30b2fll_lfll 1ms 100s t c =+25c t j =+150c single pulse operation here limited by r ds (on) v ds , drain-to-source voltage (volts) v ds , drain-to-source voltage (volts) figure 10, maximum safe operating area figure 11, capacitance vs drain-to-source voltage q g , total gate charge (nc) v sd , source-to-drain voltage (volts) figure 12, gate charge vs gate-to-source voltage figure 13, source-drain diode forward voltage v gs , gate-to-source voltage (volts) i d , drain current (amperes) i dr , reverse drain current (amperes) c, capacitance (pf) 1 10 100 300 0 10 20 30 40 50 0 50 100 150 200 250 0.3 0.5 0.7 0.9 1.1 1.3 1.5 400100 10 1 1612 84 0 t j =+150c t j =+25c c rss c iss c oss 10ms 20,00010,000 1,000 100 10 300100 10 1 v ds =150v v ds =60v v ds =240v i d = 100a i d (a) i d (a) figure 14, delay times vs current figure 15, rise and fall times vs current i d (a) r g , gate resistance (ohms) figure 16, switching energy vs current figure 17, switching energy vs. gate resistance v dd = 200v r g = 5 ? t j = 125c l = 100h t d(on) t d(off) e on e off e on e off t r t f switching energy ( j) t d(on) and t d(off) (ns) switching energy ( j) t r and t f (ns) v dd = 300v r g = 5 ? t j = 125c l = 100h 40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160 0 5 10 15 20 25 30 35 40 45 50 120100 8060 40 20 0 35003000 2500 2000 1500 1000 500 0 200180 160 140 120 100 8060 40 20 0 50004000 300 20001000 0 v dd = 200v i d = 100a t j = 125c l = 100h e on includes diode reverse recovery. v dd = 200v r g = 5 ? t j = 125c l = 100h e on includes diode reverse recovery. downloaded from: http:///
050-7162 rev b 7-2004 apt30m30b2fll_lfll typical performance curves figure 19, turn-off switching waveforms and definitions figure 18, turn-on switching waveforms and definitions drain current drain voltage gate voltage t j 125c 10% 0 t d(off) t f switching energy 90% 90% drain current drain voltage gate voltage t j 125c switching energy 10% t d(on) 90% 5% t r 5% 10% i d d.u.t. v ds figure 20, inductive switching test circuit v dd g apt60ds30 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 5.45 (.215) bsc 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) drain source gate these dimensions are equal to the to-247 without the mounting hole. drain 2-plcs. 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090) 2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122) 3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) drain source gate dimensions in millimeters and (inches) drain 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. dimensions in millimeters and (inches) t-max tm (b2) package outline to-264 (l) package outline apts products are covered by one or more of u.s.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. us and foreign patents pending. all rights reserved. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT30M30LFLLG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X