Part Number Hot Search : 
R18120 DM1621 P117MAE IDT74L HD14082B SRA1660 1110A 12C4052
Product Description
Full Text Search
 

To Download MLX75030RLQAAA-000TU Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features & benefits  two independent simultaneously operating active light measurement channels  integrated dc light cancellation circuitry for active light channel dc light suppression  two logarithmic ambient light channels  high input capacitance tolerant input current terminals  extremely high degree of adaptability for different optical systems  stand-by and sleep modes  integrated 16bit adc  integrated temperature sensor  easy digital communication interface via spi  integrated watchdog timer  high safety design by comprehensive diagnostic and monitoring functions  minimum amount of external components  small-size smd package qfn24 4x4 mm ordering information product code temperature code package code option code packing form code mlx75030 r lq aaa-000 re mlx75030 r lq aaa-000 tu mlx75030 c lq aaa-000 re mlx75030 c lq aaa-000 tu legend: temperature code: r = -40 to 105c, c = 0c to 70c package code: lq = quad flat package (qfn) option code: aaa-000 = design revision packing form: re = reel, tu = tube ordering example: mlx75030rlq-baa-000-re application examples pin description C top view  optical proximity sensing & display dimming  touch-less gesture recognition  driver/passenger discrimination  touch screen wake-up on proximity
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 2 of 72 3901075030 general description the mlx75030 universal activelight sensor interface has been designed to allow easy and robust dual-ch annel optical reflection and dual channel ambient light measureme nt. therefore it is ideally suited for the design o f responsive human-machine interfaces (hmi) that require proximi ty or gesture detection in environments subject to wide background light level variations, possibly in comb ination with display dimming. the mlx75030 ic consists of two optical sensor inte rface parts. part one is optimized for active light measurements and is designed to control up to 2 external leds an d to sense modulated light current from up to 2 ext ernal photodiodes on independent channels a and b. the ac tivelight detection is virtually independent from b ackground light by means of integrated hardware-level ambient light suppression. part two consists of two logari thmic current sensors c and d, which measure the photocurrent of externally connected photodiodes. simple and progra mmable operation is ensured by internal control logic, con figurable user registers and spi communication.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 3 of 72 3901075030 functional block diagram figure 1 : mlx75030 functional block diagram
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 4 of 72 3901075030 1. general description the universal active light sensor interface can con trol two active light channels independently. each channel is defined by a control output to driv e 1 led and a sense input to connect a photodiode. a wide range of leds and photodiodes are supported directly. the device will control the led current a nd measure any photodiode current, which will be converted by the on-board adc. this information can be transferred t o a basic microcontroller via spi. the optical light intensit y of both active light channels can be used to dete ct proximity of an object close to the detectors, independent from the backgr ound light level. this information can be used by s oftware algorithms to distinguish human gestures like swiping from left t o right or up to down and vice versa. smart placeme nt of the leds / photodiodes can extend the number of gestures that can be detected. the mlx75030 measures up to two ambient light level s and provides this data to various other systems. for this application a wide range of different detectors can be connecte d to the ambient sensor terminals of the device. the ic provides various auxiliary circuit functions to support the main mission of the active light se nsor interface, for example, a watchdog function, bias and reference so urces and clock generators to control and drive the various on-chip functions. in addition, an spi interface is include d to support data exchange between the ic and the m icrocontroller.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 5 of 72 3901075030 application diagram figure 2 : application diagram of a dual channel ac tive reflection detector with 2 photodiodes and 2 l eds. the measured signal is virtually independent of background light from the sun or other sources.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 6 of 72 3901075030 table of contents functional block diagram functional block diagram functional block diagram functional block diagram ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ... ...................... ...................... ...................... 3 33 3 1 general description 1 general description 1 general description 1 general description ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ......... ............................ ............................ ............................ 4 44 4 2 glossa 2 glossa 2 glossa 2 glossary of terms ry of terms ry of terms ry of terms ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............ ............................... ............................... ............................... 8 88 8 3 absolute maximum ratings 3 absolute maximum ratings 3 absolute maximum ratings 3 absolute maximum ratings ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ .............................................. .............. .............. .............. 10 1010 10 4 pin definitions & descriptions 4 pin definitions & descriptions 4 pin definitions & descriptions 4 pin definitions & descriptions ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ .......................................... .......... .......... .......... 10 1010 10 5 general electrical specifications 5 general electrical specifications 5 general electrical specifications 5 general electrical specifications ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ....................................... ....... ....... ....... 13 1313 13 6 sensor specific specifications 6 sensor specific specifications 6 sensor specific specifications 6 sensor specific specifications ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ........................................... ........... ........... ........... 14 1414 14 7 detailed description 7 detailed description 7 detailed description 7 detailed description ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ...... ......................... ......................... ......................... 19 1919 19 7.1 analog sensor functions ....................... ................................................... .................................... 19 7.1.1 active light sensor ......................... ................................................... ..................................... 19 7.1.1.1 active light channel dc light measurement . ................................................... .......... 19 7.1.2 activelight channel dc light compensation.... ................................................... .................. 20 7.1.3 ambient light sensor ........................ ................................................... .................................. 22 7.1.3.1 normal operation .......................... ................................................... ............................ 22 7.1.3.2 calibration and temperature compensation .. ................................................... .......... 22 7.1.3.3 diagnostics mode operation ................ ................................................... .................... 24 7.1.4 temperature sensor .......................... ................................................... .................................. 24 7.1.5 dac ......................................... ................................................... .............................................. 25 7.1.6 led driver .................................. ................................................... ........................................... 25 7.1.7 por ......................................... ................................................... .............................................. 26 7.2 spi ........................................... ................................................... ................................................... . 26 7.2.1 general description of spi interface ........ ................................................... ........................... 26 7.2.2 detailed explanation of spi instruction words .................................................. ................... 30 7.2.2.1 nop C idle command ........................ ................................................... ........................ 30 7.2.2.2 cr C chip reset command ................... ................................................... ..................... 30 7.2.2.3 rslp/cslp C request sleep/confirm sleep ... ................................................... ........... 30 7.2.2.4 rstby/cstby - request standby/confirm stand by ................................................ .... 31
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 7 of 72 3901075030 7.2.2.5 nrm C normal running mode ................. ................................................... ................. 31 7.2.2.6 sm C start measurement .................... ................................................... ...................... 31 7.2.2.7 ro C start read-out ....................... ................................................... ........................... 33 7.2.2.8 sm+ro - start measurement combined with rea d-out ............................................ 36 7.2.2.9 wr/rr C write/read register ............... ................................................... ................... 37 7.2.2.10 sd C start diagnostics ................... ................................................... ........................... 38 7.3 internal status flags ......................... ................................................... .......................................... 40 7.4 user registers overview ....................... ................................................... ..................................... 42 7.4.1 setana register ............................. ................................................... ........................................ 43 7.4.2 setah register .............................. ................................................... ........................................ 44 7.4.3 setal register .............................. ................................................... ......................................... 44 7.4.4 setbh register .............................. ................................................... ........................................ 45 7.4.5 setbl register .............................. ................................................... ......................................... 45 7.4.6 setpf register .............................. ................................................... ......................................... 46 7.4.7 err register ................................ ................................................... ........................................... 47 7.4.8 rst register ................................ ................................................... ........................................... 49 7.4.9 dccomp register ............................. ................................................... ..................................... 49 7.4.10 gainbuf register ........................... ................................................... ...................................... 50 7.4.11 calib1/calib2 register ..................... ................................................... ................................... 51 7.4.12 enchan register............................. ................................................... ..................................... 55 7.4.13 tamb register .............................. ................................................... ....................................... 56 7.5 window watchdog timer ......................... ................................................... ................................ 57 7.6 reset behaviour ............................... ................................................... .......................................... 59 7.7 wake-up from sleep or standby ................. ................................................... .............................. 60 7.8 crc calculation ............................... ................................................... ........................................... 61 7.9 global timing diagrams ........................ ................................................... ..................................... 62 8 8 8 8 performance graphs performance graphs performance graphs performance graphs ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ..... ........................ ........................ ........................ 63 6363 63 8.1 activelight channel dc measurement ............ ................................................... ......................... 63 8.2 temperature sensor characteristics ............ ................................................... ............................ 63 8.3 ambient light channel c ....................... ................................................... .................................... 63 8.4 ambient light channel d ....................... ................................................... .................................... 63
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 8 of 72 3901075030 9 application information 9 application information 9 application information 9 application information ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... . .................... .................... .................... 64 6464 64 9.1 application circuit for 2 activelight channels and 2 ambient light channels ...................... ...... 64 10 application comments 10 application comments 10 application comments 10 application comments ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ................... ................... ................... 65 6565 65 11 tape and re 11 tape and re 11 tape and re 11 tape and ree ee el specification l specification l specification l specification ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ............................................ ............ ............ ............ 66 6666 66 12 standard information regarding manufacturability of melexis products with different soldering 12 standard information regarding manufacturability of melexis products with different soldering 12 standard information regarding manufacturability of melexis products with different soldering 12 standard information regarding manufacturability of melexis products with different soldering processes processes processes processes ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ........................................ ........ ........ ........ 69 6969 69 13 esd precautions 13 esd precautions 13 esd precautions 13 esd precautions................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ........... .............................. .............................. .............................. 70 7070 70 14 package information 14 package information 14 package information 14 package information ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... .... ....................... ....................... ....................... 70 7070 70 15 mar 15 mar 15 mar 15 marking information king information king information king information ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ... ...................... ...................... ...................... 71 7171 71 16 disclaimer 16 disclaimer 16 disclaimer 16 disclaimer ................................ ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ................................................... ............. ................................ ................................ ....................................... ....... ....... ....... 72 7272 72 2. glossary of terms adc analog-digital converter cr chip reset crc cyclic redundancy check cs chip select cslp confirm sleep cstby confirm standby ctrl control signal dac digital to analog converter dc direct current dr device ready emc electromagnetic compatibility gnda ground for analog blocks of mlx7530 gndd ground for digital blocks of mlx75030 ir infrared led light emitting diode lpf low-pass filter lsb least significant bit miso master in slave out mosi master out slave in mr master reset msb most significant bit mux multiplexer nop no operation np number of pulses nrm normal running mode osc oscillator otp one time programmable otr optical transfer ratio pd photodiode por power on reset rco rc-oscillator ro read-out rr read register rslp request sleep rstby request standby s&h sample and hold sclk spi shift clock sc-lpf switched capacitor biquad low-pass filter sm start measurement snr signal-to-noise ratio
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 9 of 72 3901075030 spi serial peripheral interface tia transimpedance amplifier vbatt_30 vbatt which is supplied from connection 30 of the car vcca supply voltage for the analog blocks vccd supply voltage for the digital blocks vdd_30 vdd which is supplied from connection 30 of the car vsense voltage across the shunt resistor wdt watchdog timer wr write register wt watchdog trigger uc microcontroller
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 10 of 72 3901075030 3. absolute maximum ratings exceeding the absolute maximum ratings may cause pe rmanent damage. exposure to absolute-maximum-rated conditions for e xtended periods may affect device reliability. parameter symbol condition min max units supply voltage range v dd -0.3 5.0 v terminal current i terminal per bondpad -20 +20 ma terminal voltage v terminal pins 1-8, 14-24 -0.3 v dd +0.3 v pins 9-13 1 -0.3 v dd +0.3 v storage temperature t stg -40 +150 c junction temperature t j +150 c power dissipation 2 p tot for max ambient temperature of 100c and teta_ja = 154k/w 320 mw esd capability of any pin (human body model) esd hbm human body model, acc. to aec-q100-002 -2 2 kv pins 9-13 -1 1 kv esd capability of any pin (charge device model) esd cdm charge device model acc. to aec- q100-011 -750 +750 v maximum latchCup free current at any pin i latch jedec- standard eia / jesd78 -100 +100 ma table 1 : absolute maximum ratings 4. pin definitions & descriptions pin name functional schematic type function 1 \mr digital output master reset 2 \wt digital input watchdog trigger 1 pins 9-13 require special care with regard to the used esd protection devices, since these nodes of t he design are very sensitive to substrate noise and/or leakage current s. 2 the power dissipation is valid for ? ja values for the 24 pin qfn 4x4 package according to table 27. pad vccd vccd pad
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 11 of 72 3901075030 3 sclk digital input spi shift clock 4 miso digital output spi data output 5 mosi digital input spi data input 6 \cs digital input chip select 7 dr digital output device ready 8 \wake-up digital input normal mode 9 activelight detect pda analog input ir photo diode a 1 0 activelight detect pdb analog input ir photo diode b 1 1 ambient pdc analog input ambient light photo diode c 1 2 ambient pdd analog input ambient light photo diode d 1 3 diagamb analog input ambient channel diagnostic 1 4 gndamb analog i/o ground ambient light channels 1 5 gnda ground ground 1 6 vcca supply regulated power supply 1 7 aout analog i/o analog test output, connect to vcca vccd pad vccd pad en vccd pad vccd pad vccd pad vccd pad vcca pad vcca pad vcca pad vcca pad vcca pad vcca pad
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 12 of 72 3901075030 1 8 shunt r gnd analog input shunt resistor feedback to ground 1 9 shunt r- analog input shunt resistor feedback 2 0 drive led b analog output drives fet gate for ir led emitter b 2 1 drive led a analog output drives fet gate for ir led emitter a 2 2 cext analog input external blocking cap, connected to gnda 2 3 vccd supply regulated external power supply 2 4 gndd ground ground table 2 : pin definitions and descriptions vcca pad vcca pad vcca pad vcca pad vcca pad
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 13 of 72 3901075030 5. general electrical specifications dc operating parameters t a = -40c to 105c (r version), t a = 0c to 70c (c version), v dd = 3.0v to 3.6v (unless otherwise specified) parameter symbol test conditions min typ max units supply voltage range v dd 3.0 3.3 3.6 v supply current (active mode) i dd without photodiode dc current 6 ma standby current i sby @ vcc=3.6v, t=30 c 500 ua sleep current i sleep @ vcc=3.6v, t=30 c 50 ua operation temperature range t a -40 105 c pull-up resistor rpu for sclk and \cs 50k ohm pull-down resistor rpd for mosi 50k ohm high-level input voltage v ih 0.7 v dd v dd v low-level input voltage v il 0 0.3 v dd v hysteresis on digital inputs v hyst 0.28 v high output voltage (not on pin mr) v oh c l =30pf 0.8 v dd v dd v low output voltage (not on pin mr) v ol c l =30pf 0 0.2 v dd v input leakage i lk -10 10 a tri-state output leakage current i oz -10 10 a input capacitance, per pin c in 10 pf output voltage low, pin mr v outl i odc =2ma 0.1 v table 3 : electrical specifications
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 14 of 72 3901075030 6. sensor specific specifications dc operating parameters t a = -40c to 105c, t a = 0c to 70c (c version), v dd = 3.0v to 3.6v (unless otherwise specified) activelight channels (detectors a & b) parameter symbol test conditions min typ max units active light signal optical transfer ratio pdab led i i otr = 30 80000 dc sunlight signal i sun 140 900 ua fast full scale transition at i sunmax t sunrise 3.5 ms min. relative active light modulation (referred to received ir signal) pdab pdab i i min_ ? - 400hz bw, - max led current of 1000ma - 25c - dc sun constant - activelight response time per channel 2.5ms 0.3 % carrier frequency range for activelight measurement signal f 0 selectable via setpf register, see also 7.4.6 45.7 109.4 khz input capacitance pda, pdb c pda,b at 1.0 v reverse bias 10 pf dc light measurement range i dc range 0 275 ua dc light measurement offset i dc offset at i dc = 0ua 4096 7168 10240 lsb dc light measurement slope i dc sens 115 150 184 lsb/ua dc light measurement linearity error idc range: 0ua -> 275ua 5 12 % dc light measurement word length 16 bit dc light measurement resolution for averaging of 8 measurements 13 bit tia test pulse adc tia_test_00 t=27c, daca6=0, daca7=0 gain anti-alias filter=2 adc buffer bypassed 35035 36182 37570 lsb temperature coefficient of tia test pulse tc adc tia_test_00 daca6=0, daca7=0 gain anti-alias filter=2 adc buffer bypassed -2.78 lsb/k tia test pulse step width adc tia_test_step t=27c, gain anti-alias filter=2 adc buffer bypassed 4458 5932 7770 lsb temperature coefficient of tia test pulse step width tc adc tia_test_step gain anti-alias filter=2 adc buffer bypassed -4.8 lsb/k tia test pulse step width variation step test tia adc _ __ ? gain anitalias filter=2 adc buffer bypassed 5 10 % error condition err6 critical error detected on tia output, is tia outpu t outside 1.1v+/- (0.65 0.75v) note: ? critical error may occur if the referring active li ght channel is disabled and the according diagnosti c function is enabled (see enchan register). ? critical error may occur after enabling of the refe rring active light channel due to analog settling t ime. table 4 : activelight sensor channels specification s
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 15 of 72 3901075030 activelight channel dc-light compensation parameter symbol test conditions min typ max units maximum activelight signal dc-light compensation range rs comp_max in percent of led current dc_comp_ic1,2,3,4,5=15 dac=255 15 20 % activelight signal compensation offset rs comp_offset in percent of led current @ idc = 0ua 0.8 % range of segment 1 iamb_1 1 rst corner dc current 7.2 10.0 12.0 ua range of segment 2 iamb_2 2 nd corner dc current 40.0 45.0 50.0 ua range of segment 3 iamb_3 3 rd corner dc current 135.0 150.0 165.0 ua range of segment 4 iamb_4 4 th corner dc current 440.0 500.0 560.0 ua full compensation level @ segment 1 icomp_1 dc_comp_ic1,2,3,4,5 = 15 dac=255 in percent of led current 1.5 3.5 4.7 % full compensation level @ segment 2 icomp_2 5.1 7.7 10.3 % full compensation level @ segment 3 icomp_3 9.5 13. 7 17.9 % full compensation level @ segment 4 icomp_4 13.6 18 .8 24.0 % full compensation level @ 900ua (max dc sunlight) icomp_5 15.0 20.7 25.8 % full compensation level @ segment 1 icomp_1 dc_comp_ic1,2,3,4,5 = 7 dac=255 in percent of led current 0.65 1.6 2.2 % full compensation level @ segment 2 icomp_2 2.4 3.6 4.8 % full compensation level @ segment 3 icomp_3 4.4 6.4 8.4 % full compensation level @ segment 4 icomp_4 6.3 8.8 5 11.4 % full compensation level @ 900ua (max dc sunlight) icomp_5 7.1 9.6 12.1 % dc_comp_ic1 = 15, other =0 i c_1 in percent of led current 1.4 2.3 2.8 % dc_comp_ic2 = 15, other =0 i c_2 in percent of led current 2.1 2.9 3.6 % dc_comp_ic3 = 15, other =0 i c_3 in percent of led current 5.0 6.6 8.2 % dc_comp_ic4 = 15, other =0 i c_4 in percent of led current 4.4 5.9 7.3 % dc_comp_ic5 = 15, other =0 i c_5 in percent of led current 2.0 3.0 4.1 % table 5: dc light compensation specifications
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 16 of 72 3901075030 ambient light channels (detectors c, d) parameter symbol test conditions min typ max units input current range for detectors c i ambc 0.01 1040 ua input current range for detectors d i ambd 0.0005 20 ua input current threshold level c i ambc_detect 333 na input current threshold level d i ambd_detect 5.5 na input capacity on ambient pdc c ambc at 0.6v 1 nf input capacity on ambient pdd c ambd at 0.6v 100 pf transfer function logarithmic v amb see section 8.3 and 8.4 output ambient channel c at vcc=3,3v, iin=100ua 29464 32768 36072 lsb output ambient channel d at vcc=3,3v, iin=10ua 29 464 32768 36072 lsb slope ambient channel c at vcc=3,3v and 105c 530 0 5900 6500 lsb/dec slope ambient channel d at vcc=3,3v and 105c 5300 5900 6500 lsb/dec ambient channels linearity error for iin i ambx_detect including temperature compensation 3 5 % ambient light word length 16 bits ambient light channel resolution for averaging of 16 measurements 13 bits ambient light response time see section 7.1.3 for a detailed explanation of this parameter. for iin i ambx_detect 3 ms ambient pdc voltage v ambc at vcc=3,3v, iin=100ua 0.4 0.6 0.9 v ambient pdd voltage v ambd at vcc=3,3v, iin=10ua 0.4 0.6 0.9 v error condition err3 note: ? err3 is set if output voltage outn or outp of the a mbient channel sc filter is out of range (meaning: <40% of vcca or >60% of vcca). critical error may occur after e nabling of the referring ambient light channel due to analog settling time. table 6 : ambient light channel specifications
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 17 of 72 3901075030 temperature sensor parameter symbol test conditions min typ max units temp. sensor range ? -40 105 c temp. sensor transfer function 3 v ? @ vdd=3,3v -82 -67 -51 lsb/k temp. sensor error ? error@0105c @ vdd=3,3v, t amb = 0105 o c 5 c temp. response time t resp_ ? 1 s temp. sensor word length 16 bits temp. sensor resolution for averaging of 16 measurements 13 bits table 7 : temperature sensor specifications led driver parameter symbol test conditions min typ max units led current shunt = 1 1.05 993 ma shunt resistor values 1 10 ohm shunt voltage 1.05 993 mv rising and falling time 3 us dc offset level 1 mv time before pulse t dc_pulse see section 7.4.1 47.5 420 us external important transistor parameter max gate source voltage v gs vdd=3v 2 v max gate/basis current i g/b vdd=3v 400 ua error condition err5 err5 difference between vdac and vsense. detection level larger 100mv table 8 : led driver specifications por parameter symbol test conditions min typ max units por on threshold voltage v por - on 1.58 2.75 v por off threshold voltage v por-off 1.68 2.85 v por hysteresis voltage v hys 60 130 mv table 9: power on reset specifications 3 this value is stored in the calib1 register
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 18 of 72 3901075030 spi and timing parameter symbol test conditions min typ max units spi word length 8 bit spi clock frequency f sclk = 1/t sclk 0.5 1 5 mhz frequency of internal rc oscillator f rco = 1/t rco 2.5 7.5% mhz cs low prior to first sclk edge t cs_sclk 50 ns cs high after last sclk edge t sclk_cs 50 ns cs high time between transmissions t cs_inter 50 ns time between cs high and dr low t cs_dr 0 21.84 (232us) 4 s min low time on wake_up pin t wu_l 100 s min low time on wt pin t wt_l 10 s wdt initial active window time t wdt_init after por, watchdog reset and wake-up 140 7.5% ms wdt open window time t wdt_open 70 7.5% ms wdt closed window time t wdt_closed 70 7.5% ms mr low time during reset t mr after watchdog reset 2 7.5% ms start-up time after power-on t startup 50 7.5% ms start-up time after power-on for spi t startup_spi 15 s start-up time after wake-up from sleep t wakeup_slp 50 7.5% ms start-up time after wake-up from standby t wakeup_stby 50 7.5% ms error condition err2 rco stuck at high or low error condition err4 internal voltage regulator : err4 is set if the reg ulator does not start (detection threshold in the range [1v;2v] table 10 : serial peripheral interface specificatio ns 4 with random measurement start, the max time can be up to 232us, if an autozeroing phase of the ic is executed.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 19 of 72 3901075030 7. detailed description 7.1. 7.1. 7.1. 7.1. analog sensor functions analog sensor functions analog sensor functions analog sensor functions 7.1.1. 7.1.1. 7.1.1. 7.1.1. active light sensor active light sensor active light sensor active light sensor the mlx75030 works with two separate transmit- and receive-channels a and b. in order to perform an ac tive light measurement, carrier modulated light signal bursts are transmitted by the led(s) and received by the a ctivelight channel detectors connected to the pins 9 and 10. both rece ive-channels can work separate or in parallel. the measured activelight signal current is amplifie d and converted to digital numbers by the on-board adc by following formula: 15 4 2 3,50 _ * _ _ * * 10.4 + = lsb v buf gain aa adj gain k i a demod tpd activeligh tadc activeligh where ? is the activelight signal value in dn ? is the activelight signal current in ua ? is a correlation gain value between 0.25 and 0.5, depending on the setting of tdem bits in register s etana ? __ is the anti-aliasing filter gain, set by setal and setbl registers, defaulting to value 2 ? _ is the adc input buffer gain, set by setana and ga inbuf registers, defaulting to value 1 it is recommended to use the default values of __ and _ . it is recommended to optimize the value of . 7.1.1.1. 7.1.1.1. 7.1.1.1. 7.1.1.1. active light channel dc light measurement active light channel dc light measurement active light channel dc light measurement active light channel dc light measurement the input dc current compensation circuitry of the transimpedance amplifier is able to supply and meas ure the dc current supplied to the photodetector. both active light ch annels are identical in structure. in order to reac h a feasible resolution in the current range of interest (low currents in the range up to 275ua), the measurement characteristic will saturate for currents above the i dc current range, however the compensation circuit is nevertheless able to supply the specified current levels up to 900ua to the detector. the given adc w ord length for the active light channel dc light da ta is 16bit. the dc light measurement can be used to estimate am bient light conditions and compensate dc light depe ndent parameters (see next section).
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 20 of 72 3901075030 figure 3: typical activelight channel dc measuremen t characteristics for both channels a and b 7.1.2. 7.1.2. 7.1.2. 7.1.2. activelight activelight activelight activelight channel dc light channel dc light channel dc light channel dc light co coco compensation mpensation mpensation mpensation under certain operating conditions, the spectral se nsitivity of some photodiodes is not constant and v aries with the amount of (infrared) dc-light received. for the activeligh t measurements this means that the activelight sign al can change rapidly if the sensor experiences highly changing sunlight con ditions, even if all other conditions are constant. this results in reduced activelight signal sensitivity of the system under changing dc-light conditions. the variation of the activelight signals as a funct ion of dc-light can be partially compensated by aut omatically adapting the amplitude of the sensors transmitted infrared ligh t pulses for activelight measurement. in order to make the system as flexible as possible , the compensation can be adapted to different phot odiode types by definition of the compensation characteristics as a piecewise linear curve like described in figure 4. the values of the 5 corner points of the curve can be defined by the co rresponding 4-bit words pd_comp_icx<3:0> (x = 1..5) in the register maps, see section 7.4. the pd light compensation ca n be enabled by setting the en_pdcomp bit to 1. in order to calculate the decimal values pd_comp_ic x<3:0> (x = 1..5) for a certain photodiode, one has to measure the relative activelight signal levels p x at 5 different dc light levels i amb_x while the en_pdcomp is set to "0" (a calculation example is given below, where @_ is the measured activelight signal at dc light sig nal _ ): p 0 = pulse level at ( i amb_0 = 0) = 1 (this is the 100% reference) p 1 = pulse level at ( i amb_1 = 10ua) = e.g. 0.97440 = 15 15 2 1_ @ 2 0_ @ ? ? iamb a iamb a p 2 = pulse level at ( i amb_2 = 45ua) = e.g. 0.94224 = 15 15 2 2_ @ 2 0_ @ ? ? iamb a iamb a p 3 = pulse level at ( i amb_3 = 150ua) = e.g. 0.91556 = p 4 = pulse level at ( i amb_4 = 500ua) = e.g. 0.89858 = p 5 = pulse level at ( i amb_5 = 900ua) = e.g. 0.89477 = based on these relative activelight pulse levels, o ne can calculate the following parameters (x = 1..5 ): 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 0 50 100 150 200 250 300 350 400 450 500 idc [ua] adc out [lsb] pda pdb
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 21 of 72 3901075030 ( ) x i comp p r ? ? = ? 1 10 3 5 _ y comp_1 1.285714 -0.28571 0 0 0 r comp_1 y comp_ 2 -1.28571 1.714286 -0.42857 -1.8e-17 1.78e-17 r comp_ 2 y comp_ 3 = 0 -1.42857 1.857143 -0.42857 -7.9e-17 ? r comp_ 3 y comp_ 4 0 0 -1.42857 2.678571 -1.25 r comp_ 4 y comp_ 5 0 0 0 -2.25 2.25 r comp_ 5 for the calculation example, we get the following v alues: r comp_1 7.68e - 07 r comp_ 2 1.73e - 06 r comp_ 3 = 2.53e - 06 r comp_ 4 3.04e - 06 r comp_ 5 3.16e - 06 the settings pd_comp_icx<3:0> (x = 1..5) can be der ived from the y comp_x (x = 1..5) as follows: pd_comp_ic1[3:0] = round ( 6 1_ 10 132.0 4.0 ? comp y , 0) pd_comp_ic2[3:0] = round ( 6 2_ 10 165.0 4.0 ? comp y , 0) pd_comp_ic3[3:0] = round ( 6 3_ 10 334.0 4.0 ? comp y , 0) pd_comp_ic4[3:0] = round ( 6 4_ 10 334.0 4.0 ? comp y , 0) pd_comp_ic5[3:0] = round ( 6 5_ 10 180.0 4.0 ? comp y , 0) for the calculation example, this means: pd_comp_ic1[3:0] = 9dec pd_comp_ic2[3:0] = 14dec pd_comp_ic3[3:0] = 7dec pd_comp_ic4[3:0] = 5dec pd_comp_ic5[3:0] = 3dec these values can be written inside the correspondin g registers, see section 7.4. when the pd compensat ion is enabled (en_pdcomp = "1"), the compensation will modulate t he led current of the activelight channels.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 22 of 72 3901075030 figure 4: example of a compensation curve i comp for i c_5 =0. the dc-currents of the corner points are fixed in the design and cannot be influenced. the compensation components i c_1 i c_5 are defined by the registers dc_comp_ic15 with 4 b its each. the resulting compensation characteristics are shown in the black graph. 7.1.3. 7.1.3. 7.1.3. 7.1.3. ambient light sensor ambient light sensor ambient light sensor ambient light sensor 7.1.3.1. 7.1.3.1. 7.1.3.1. 7.1.3.1. normal operation normal operation normal operation normal operation the ambient light detection system of the mlx75030 consists of two independent channels c and d and an on-chip controllable dedicated ground pin gndamb. gndamb sh ould not be directly connected to gnd. an external photodiode is connected in between each channel and gndamb. the ambient light signal is low pass filtered on ch ip. the signal of a 1ms switched-capacitor filters is s ampled by the adc (on request by an spi command, ea ch 2.5ms), where it is converted into a 16bit digital word. the total input stage, this means from the external diode up to the 1ms filter, has a cut-off frequenc y at ~160hz. sampling this output every 2.5ms, commanded by spi, would ma ke a sample rate of 400hz, which well above the nyq uist frequency of the present frequency content of 160hz. within the specified input current range the ambien t input stages bias the external photodiodes with > 0v in normal operation. 7.1.3.2. 7.1.3.2. 7.1.3.2. 7.1.3.2. calibration and temperature compensation calibration and temperature compensation calibration and temperature compensation calibration and temperature compensation the output of each ambient channel has a strong tem perature dependence and a slight process dependence that can be compensated at run time. this is shown in following equation (channel x, where x = c or d): ( ) + ? ?? ? ? ?? ? ? ?? ? ?? ? ? + ? + = t ambout t o t tc i x x iref x 15 2 2 300 1 1 e (1)
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 23 of 72 3901075030 ? i x : calculated input light value ? ambout x : 16-bit adc converted value of the ambient channe l ? tc iref : temperature coefficient of the reference curren t (typ. value = +375ppm/k) ? o x : offset of the measurement (digital value) ? x , x : calibration values for channel x (see below) during calibration at least 2 light levels (i x1 and i x2 ) have to be supplied to the target ambient channel (x) with its photodiode at the same known temperature t. the closer these v alues are chosen to the range used in application, the more accurate the final result will be. during the setting of the se light levels, the output of ambient channel x: a mbout x1 and ambout x2 are measured. this results in 2 equations and 2 unknown s: x and x . both unknowns can be calculated from following fo rmulas: 2 1 2 1 ln ambout ambout i i t ? ? ?? ? ? ?? ? = and ? ?? ? ? ?? ? ? ? ?? ? ?? ? = t ambout i 15 1 1 2 1 ln (2) note that these 2 values automatically correct any gain error of the connected photodiode and used len s system.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 24 of 72 3901075030 7.1.3.3. 7.1.3.3. 7.1.3.3. 7.1.3.3. diagnostics mode operation diagnostics mode operation diagnostics mode operation diagnostics mode operation in diagnostics mode, the status of the external pho todiodes is checked. the following checks are perfo rmed for each ambient light channel x where x is c or d: ? x disconnected ? gndamb disconnected ? x shorted to gnda/gndd/gndamb ? x shorted to vcca/vccd ? gndamb shorted to gnda/gndd ? gndamb shorted to vcca/vccd ? x shorted to other ambient light channel note that in spite of the ability to detect any err or by the ambient diagnostics, an error on an ambie nt pin might still have other unwanted effects. ? shorting any channel to gnda/gndd/gndamb will make the readout of the whole ambient block useless. at this time a maximum current of 14ma might be constantly pulled from the supply, independent of the amount o f channels that is shorted to gnda/gndd/gndamb. ? during normal operation, node gndamb should be cons idered a ground pin. shorting this pin to any other voltage might result in a short current of max 800ma! ? because of such unwanted effects, a detection of an error in diagnostics mode should be followed by a disabling of the ambient channels in order to avoid disturbing t he operation of other blocks in the system. ? note that unused channels should be connected with an external resistance (~60kohm) to gndamb. doing s o will avoid disturbing the other channels, but will give a constant error on the channel connected to gndamb . 7.1.4. 7.1.4. 7.1.4. 7.1.4. temperature sensor temperature sensor temperature sensor temperature sensor the on-chip temperature sensor measures the ic temp erature. the output voltage of the sensor is conver ted by the 16-bit adc. the sensor will be trimmed for the best result during the production. this trimming value is not applied to the temperature sensor internally, but is available to the customer through two on-chip registers calib1 a nd calib2, see 7.4.11. the calib1 register contains the slope of the tempe rature curve in lsb/k. the calib2 register contains the offset of the curve at a defined temperature at which the chip is teste d in production. the temperature is calculated from the temperature readout ( tempout ) and the gain and offset calibration data (calibra tion data measured at 30c) according to the formula: ( ) )16 1 ( 67 )32 2 (67 11775 15. 303 ? + ? ? + + = calib tempout calib k t k k or in c: ( ) )16 1 ( 67 )32 2 (67 11775 30 ? + ? ? + + = calib tempout calib t c c where: ? tempout: digital temperature readout (16 bit) ? calib1: contents of calib1 register (5 bit) ? calib2: contents of calib2 register (6 bit )
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 25 of 72 3901075030 7.1.5. 7.1.5. 7.1.5. 7.1.5. dac dac dac dac for active light sensor applications, the mlx75030 dac has been designed to have the following featur es: to generate a pulse voltage signal from 1mv to 1v, so that led current driven by led driver can be 1ma to 1a if a 1 shunt resistor is used between pins 18 and 19. after cont rolling and slewing circuitry, the final output vol tage over external shunt resistor is like in figure 6. dac piece (2msbs b[7:6] ) steps each piece (6lsbs b[5:0] ) step size for 1 bit (v) range covered (v) range start (v) range end (v) 00 64 1.00e-04 6.40e-03 1.05e-03 7.35e-03 01 64 5.00e-04 3.20e-02 7.65e-03 3.92e-02 10 64 2.50e-03 1.60e-01 4.07e-02 1.98e-01 11 64 1.25e-02 8.00e-01 2.06e-01 9.93e-01 table 11 : the dac voltage values based dac codes ( b[7:6]) can refer to the following table figure 5 : piece wise linear dac voltage vs dac co des 1mv...1v 1mv t dc_pulse <1:0> ( max 400us) t pulse_on t rising = 3u figure 6: vshunt waveform 7.1.6. 7.1.6. 7.1.6. 7.1.6. led driver led driver led driver led driver 0.00e+00 2.00e-01 4.00e-01 6.00e-01 8.00e-01 1.00e+00 1.20e+00 0 50 100 150 200 250 300
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 26 of 72 3901075030 led driver will set the dac voltage on external shu nt resistor by a closed regulation loop. 7.1.7. 7.1.7. 7.1.7. 7.1.7. por por por por the power on reset (por) is connected to voltage su pply. the por cell generates a reset signal (high level) before the supply voltage exceeds a level from 2.7v . the cell contains a hysteresis of 100mv. figure 7: por sequence 7.2. 7.2. 7.2. 7.2. spi spi spi spi 7.2.1. 7.2.1. 7.2.1. 7.2.1. general description of spi interface general description of spi interface general description of spi interface general description of spi interface after power-on, the sensor enters a reset state (in voked by the internal power-on-reset circuit). a st art-up time t startup after power-on, the internal reference voltages have beco me stable and a first measurement cycle can start. to indicate that the start-up phase is complete, the dr pin will go high ( dr is low during the start-up phase). the control of this sensor is completely spi driven . for each task to be executed, the proper command must be uploaded via the spi. the spi uses a four-wire communication pro tocol. the following pins are used: ? cs : when cs pin is low, transmission and reception are enabled and the miso pin is driven. when the cs pin goes high, the miso pin is no longer driven and becomes a floating out put. this makes it possible that one micro-processo r takes control over multiple sensors by setting the cs pin of the appropriate sensor low while sending co mmands. the idle state of the chip select is high. ? sclk : clock input for the sensor. the clock input must b e running only during the upload of a new command o r during a read-out cycle. the idle state of the clock input i s high. ? mosi : data input for uploading the different commands an d the data that needs to be written into some regis ters. the idle state of the data input is low. ? miso : data output of the sensor. a spi timing diagram is given in figure 8. this is the general format for sending a command. first the cs pin must be set low so that the sensor can accept data. the low level o n the cs pin in combination with the first rising clock edg e is used to start an internal synchronization counter that counts the incoming bits. data on the mosi pin is clocked in at the rising clock edge. data on the miso pin is shifted out during the falling clock edge. note that the tri-state of the miso pin is controlled by the state of cs . after uploading a command, the cs pin must be set high for a minimum time of t cs_inter in order to reset the internal synchronization counter and to allow new commands t o be interpreted.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 27 of 72 3901075030 control1 byte control2 byte cs sclk mosi miso 7 6 5 4 3 2 1 0 2 1 0 34567 tri state tri state t cs_sclk t sclk_cs t cs_inter data1 byte data2 byte figure 8 : spi timing diagram for 2 byte instructio ns the basic structure of a command consists of 2 byte s: the control1 byte and the control2 byte that are uploaded to the device and the data1 byte and the data2 byte that a re downloaded to the micro-controller. exceptions a re the commands needed to read and write the user registers (wr/rr) . these commands need 3 bytes. the timing diagram i s given in figure 9. all data transfer happens with msb first, lsb last. referring to figure 8 and figure 9 : within a byte, bit 7 is always defined as the msb, bit 0 is the lsb. this applies to all data transfer s from master to slave and vice versa. control1 byte control2 byte control3 byte cs sclk mosi miso 7 6 5 4 3 2 1 0 2 1 0 7 6 5 4 3 2 1 0 34567 tri state tri state t cs_sclk t sclk_cs t cs_inter data1 byte data2 byte data3 byte figure 9 : spi timing diagram for 3 byte instructio ns the msb of the control1 byte (bit 7) is a command t oken: setting this bit to 1 means that the control1 byte will be interpreted as a new command. if the msb is 0, the next bits are ignored and no command will be accep ted. the idle command has a control1 byte of 0x00. the command type (chip reset, power mode change, st art measurements, start read-out, read/write regist er) is selected with the next bits 6..0 of the control1 byte. the control2 byte consists of 0x00, to allow clocki ng out the data2 byte. the data2 byte contains alwa ys the ctrl1 byte that was uploaded. thus the micro-controller can check t hat the data2 byte is an exact replica of the ctrl1 byte, to verify that the right command is uploaded to the device. the data1 byte contains some internal status flags to allow checking the internal state of the device. the internal status flags are defined in the table below. see section 7.3 for more information concerning the operation of the status flags.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 28 of 72 3901075030 status flag status when bit is set status when bit is clear bit 7 (msb) previous command was invalid previous c ommand was valid bit 6..5 power state: 11 = (reserved) 10 = normal running mode 01 = stand-by state 00 = sleep state bit 4 sleep request was sent no sleep request avail able bit 3 standby request was sent no standby request a vailable bit 2 device is in testmode device is not in testmo de bit 1 internal oscillator is enabled (standby mode or normal running mode) internal oscillator is shut down (sleep mode) bit 0 (lsb) critical error occurred no error is det ected table 12 : internal status flags as given in the da ta1 byte table 13 : instruction set of the active light sens or summarizes the instruction set of the sensor. a detailed explanation of these different commands is given in section 7.2.2. symbol command description control1 byte control2 byte control3 byte nop idle command 0000 0000 0000 0000 n/a cr chip reset 1111 0000 0000 0000 n/a rslp request sleep 1110 0001 0000 0000 n/a cslp confirm sleep 1010 0011 0000 0000 n/a rstby request standby 1110 0010 0000 0000 n/a cstby confirm standby 1010 0110 0000 0000 n/a nrm normal running mode 1110 0100 0000 0000 n/a sm start measurement 1101 r 2 r 1 r 0 t m 6 ..m 3 m 2 m 1 m 0 p n/a sd start diagnostics 1011 0000 m 6 ..m 3 m 2 m 1 m 0 p n/a ro start read-out 1100 0011 0000 0000 n/a wr write register 1000 0111 d 7 ..d 0 a 3 ..a 0 p 1 p 0 00 rr read register 1000 1110 a 3 ..a 0 0000 0000 0000 table 13 : instruction set of the active light sens or besides the above instruction set, there are some t est commands available for production test purposes . to prevent unintentional access into these test mod es, it requires multiple commands before the actual test mode is entered.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 29 of 72 3901075030 an overview of modes in which the device can operat e is shown in figure 10 : state diagram of the mlx7 5030below. it also indicates which commands are available in t he different operation modes. por wd initialized rstby cr sleep mode flag 1+2+5+6 = 0 standby mode flag 2+6 = 0 flag 1+5 = 1 rslp normal running mode (idle state ) flag 2+5 = 0 flag 1+6 = 1 cstby & flag 3=1 cslp & flag 4=1 set flag 3 clear flag 7 set flag 4 clear flag 7 clear flag 3 clear flag 4 clear flag 7 wd disable clear flag 4 clear flag 7 nop, wr, rr, ro after sm or sd when dr =1, cstby & flag 3=0, cslp & flag 4=0 sm, sd, sm+ro, sd+ro cr cr measurement sequence or diagnostic measurement sequence test mode flag 2 = 1 dr = 0 dr = 1 clear flag 3 clear flag 7 low level on wake_up pin dr low for 50ms nop, wr, rr, sm, sd, ro after sm or sd cr nrm low level on wake_up pin wd initialized set flag 7 cr nrm low level on wake_up pin state diagram mlx 75308ba clear flag 3 clear flag 4 clear flag 7 nrm rstby, rslp, cstby, cslp, ro only set flag 7 clear flag 7 clear flag 7 rstby, rslp, cstby, cslp, ro only nop, wr, rr, sm, sd, ro after sm or sd set flag 7 ro only, ro when dr =0 clear flag 7 clear flag 7 figure 10 : state diagram of the mlx75030
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 30 of 72 3901075030 7.2.2. 7.2.2. 7.2.2. 7.2.2. detailed explanation of spi instruction words detailed explanation of spi instruction words detailed explanation of spi instruction words detailed explanation of spi instruction words 7.2.2.1. 7.2.2.1. 7.2.2.1. 7.2.2.1. nop nop nop nop C CC C idle command idle command idle command idle command the idle command can be used to read back the inter nal status flags that appear in the data1 byte. the state of the device is not changed after the no p command is uploaded. 7.2.2.2. 7.2.2.2. 7.2.2.2. 7.2.2.2. cr cr cr cr C CC C chip reset command chip reset command chip reset command chip reset command after upload of a chip reset command, the sensor re turns to a state as it is after power-up (normal ru nning mode) except for the watchdog counter, the state of the mr line and the contents of the 'rst' register. the w atchdog counter, the 'rst' register and the state of the mr line will not be influenced by a cr command. the cr command can be uploaded at any time, even du ring a measurement or a read-out cycle, provided th at the internal synchronization counter is reset. this is done by s etting the cs pin high for at least a time t cs_inter . when a cr command is uploaded during sleep mode res p. standby mode, the device goes automatically into normal running mode. note that this requires a time t wakeup_slp resp. t wakeup_stby before the internal analog circuitry is fully set up again. right after upload of a cr command, the dr pin will go low during a time t startup . once the wake-up/reset phase is complete, the dr pin will go high. 7.2.2.3. 7.2.2.3. 7.2.2.3. 7.2.2.3. rslp/cslp rslp/cslp rslp/cslp rslp/cslp C CC C request sleep/confirm sleep request sleep/confirm sleep request sleep/confirm sleep request sleep/confirm sleep to avoid that the slave device goes unintentionally into sleep mode, the master has to upload two comm ands. first a rslp (request sleep) shall be uploaded, then the slave s ets bit 4 of the internal status flag byte high. th e master has to confirm the sleep request by uploading a cslp (confirm slee p). afterwards the slave will go into sleep mode, h ereby reducing the current consumption. the status flag can be cleared by uploading a cr co mmand or a nrm command. note that uploading a chip reset makes the device s witching into normal running mode. when the device is operating in sleep mode, the wake_up pin will be monitored. a falling edge on wake_up will wake up the device and will switch it into normal running m ode. when the device is operating in sleep mode, the wt pin will be monitored. if a falling edge is detect ed, the critical error flag in the internal status flag byte will be set high a nd the corresponding bit in the 'err' register will be set high (refer also to sections 7.3 and 7.4.7). note that no pull-up or pull-down resistor is fores een on the wake_up pin. to avoid that parasitic spikes can wake up the device, the wake_up input is debounced (typical debounce time is in th e range of 2s). the low time on the wake_up pin should be at least a time t wu_l . the state of the dr pin will not be changed when go ing into sleep mode. however, after a wake-up event the dr pin is set low during a time t wakeup_slp .
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 31 of 72 3901075030 7.2.2.4. 7.2.2.4. 7.2.2.4. 7.2.2.4. rstby/cstby rstby/cstby rstby/cstby rstby/cstby - -- - r rr request standby/confirm standby equest standby/confirm standby equest standby/confirm standby equest standby/confirm standby to put the device in standby mode, a similar system is used: the master shall send the rstby command, requesting the slave to go into standby mode. the slave device sets bit 3 of the internal status flag byte high, indicating that it wants to go into standby. the master has to confirm this by sending the cstby byte. the status flag can be cleared by uploading a cr co mmand or a nrm command. uploading a chip reset makes the device switching i nto normal running mode. when the device is operating in standby mode, the wake_up pin will be monitored. a falling edge on wake_up will wake up the device and will switch it into normal runnin g mode. note that no pull-up or pull-down resistor is fores een on the wake_up pin. to avoid that parasitic spikes can wake up the device, the wake_up input is debounced (typical debounce time is in th e range of 2s). the low time on the wake_up pin should be at least a time t wu_l . the state of the dr pin will not be changed when go ing into standby mode. however, after a wake-up eve nt the dr pin is set low during a time t wakeup_stby . 7.2.2.5. 7.2.2.5. 7.2.2.5. 7.2.2.5. nrm nrm nrm nrm C CC C normal running mode normal running mode normal running mode normal running mode the nrm command shall be used to wake up the device from sleep mode, or to go from standby into normal running mode. this requires a time t wakeup_slp resp. t wakeup_stby before the internal analog circuitry is fully set up again. the nrm will also clear the sleep request or standby request fla g. when the nrm command is uploaded during normal runn ing mode, the state of the device will not be influ enced, except when the sleep request or standby request flag was set high due to a rslp or rstby command. in this ca se, the sleep request or standby request flag will be cleared; th e state of the dr pin will not change. 7.2.2.6. 7.2.2.6. 7.2.2.6. 7.2.2.6. sm sm sm sm C CC C start measurement start measurement start measurement start measurement the sm command is used to start up measurement cycl es. several types of measurements can be selected w ith the measurement selection bits m 6 ..m 0 in the control2 byte: ? m 6 : setting this bit high enables the temperature mea surement ? m 5 : setting this bit high enables the read-out of the two ambient light channels ? m 4 : setting this bit high enables the dc light measur ement in the active light channel(s) ? m 3 : setting this bit high fires led a ? m 2 : setting this bit high fires led b ? m 1 : setting this bit high enables the active light me asurement in channel a ? m 0 : setting this bit high enables the active light me asurement in channel b a typical timing diagram is given in figure 11. aft er uploading the sm command, the measurement cycle is started as soon as the cs pin is set high. the adc starts converting all the needed analog voltages and stores the digital valu es in registers. a time t cs_dr after cs is set high, the state of the dr pin goes low. a time t dr after dr was set low, the state of the dr pin becomes high, indicating that all measurements are completed and that the resulted data is available f or read-out (read- back of the stored data in the registers). this tim e can be up to 231.84us, if an internal autozeroing process is under execution and needs to be finished. table 14 : example measurement execution times tdr gives an overview of some execution times t dr for the basic types of measurements.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 32 of 72 3901075030 measurement type min. t dr (s) max. t dr (s) temperature measurement 269 298 ambient light measurements on all channels c and d 388 430 active light measurements on channels a & b, with 3 2 pulses, pulse frequency of 48.1khz, tdem=6us, tdc_pulse=400us 1513 1673 dc + active light measurements on channels a & b, w ith 32 pulses, pulse frequency of 48.1khz, tdem=6us, tdc_pulse=400us 1811 2002 temperature measurement + ambient light measurement s on all channels c & d + dc + active light measurements on channels a & b, with 3 2 pulses, pulse frequency of 48.1khz, tdem=6us, tdc_pulse=400us 2079 2299 table 14 : example measurement execution times t dr note that the dr pin can be used as an interrupt for the master device as it indicates when a read-out cycl e can be started. note that measurement execution of activelight measureme nt only is not allowed. activelight measurements mu st always be done with ambient light measurements. cs sclk mosi miso tri state tri state dr sm/sd command t dr internal state idle state measurement cycle sm/sd idle state s tatus flags / ctrl 1 t cs_d r figure 11 : timing diagram of a measurement cycle the sm command contains 3 option bits r 2 r 1 r 0 . these bits set the polarity of the anti-aliasing filters, the switched capacitors low pass filters and the adc input buffer in active light channels a & b: ? r2: this bit inverts the op-amp in the anti-aliasin g filter. the output will change from (signal + off set_opamp_aa) to (signal - offset_opamp_aa). in this way, by process ing 2 measurements with inverted r2 bits, the offse t of the aa filter can be cancelled. ? r1: inversion of the offset of active light_sclp_fi lter. the output will change from (signal + offset_ opamp_sclp) to (signal - offset_opamp_sclp). in this way, by proce ssing 2 measurements with inverted r1 bits, the off set of the sclp filter can be cancelled. ? r0: inversion of the offset of the adc_buffer. the output will change from (signal + offset_opamp_buf) to (signal - offset_opamp_buf). in this way, by processing 2 mea surements with inverted r0 bits, the offset of the sclp filter can be cancelled. ? t: this bit replaces the light pulses by internal c urrent pulses during the active light measurements.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 33 of 72 3901075030 the sm command contains an option bit t. if this bi t is set to 0, normal active light measurements are performed (i.e. the external leds are fired and the active light channe ls a and/or b are measured). if this bit is set to 1, no leds are fired, but internal test pulses are applied to channels a and/ or b. the internal test pulses can be influenced in amplitude by the bits daca7 and daca6. limits for adc outputs of the tia test pulses are shown in table 15 : current levels for active light test mode. daca7 daca6 i_testpulse [ua] 0 0 5 0 1 13 1 0 21 1 1 29 table 15 : current levels for active light test mod e in the control2 byte an even parity bit p is forese en. the parity bits calculation is based on the mea surement selection bits m 6 ..m 0 . if the number of ones in the given data set [m 6 ..m 0 ] is odd, the even parity bit p shall be set to 1, making the total number of ones in the set [m 6 ..m 0 , p] even. the spi invalid flag will be set when the parity bi t does not correspond to the calculated parity bit. after upload of a sm/sd command, no other commands will be accepted till dr is high. this is done to avoid too much disturbances in the analog part. once dr is high, the next command will be accepted. an exc eption however is the chip reset command. this will always be accepted. note that none of the sm/sd commands are available in standby mode. 7.2.2.7. 7.2.2.7. 7.2.2.7. 7.2.2.7. ro ro ro ro C CC C start read start read start read start read- -- -out outout out when the state of the dr pin changed into a high state, the measurement dat a is available for read-out. the ro command shall be uploaded to start a read-out cycle and to start reading out the data that was stored in the i nternal registers. to make sure that no memory effects can occur, all data registers are cleared at the end of each read- out cycle. a typical timing diagram is given in figure 12 belo w: figure 12 : timing diagram for read-out the data that appears on the miso pin depends on the type of measurement that was do ne (i.e. it depends on the command that was uploaded: sm/sd and the selected measureme nt bits m 6 ..m 0 ).
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 34 of 72 3901075030 the table below shows the output data frame when al l measurements are selected : data byte number output data frame contents comments byte 3 temperature (8 msb) depends on m 6 byte 4 temperature (8 lsb) depends on m 6 byte 5 ambient light channel c measurement (8 msb) depends on m 5 + on en_ch_c byte 6 ambient light channel c measurement (8 lsb) depends on m 5 + on en_ch_c byte 7 ambient light channel d measurement (8 msb) depends on m 5 + on en_ch_d byte 8 ambient light channel d measurement (8 lsb) depends on m 5 + on en_ch_d byte 9 not used byte 10 not used byte 11 dc measurement of ir channel a, before the active li ght burst measurement (8 msb) depends on m 4 byte 12 dc measurement of ir channel a, before the active li ght burst measurement (8 lsb) depends on m 4 byte 13 dc measurement of ir channel b, before the active li ght burst measurement (8 msb) depends on m 4 byte 14 dc measurement of ir channel b, before the active li ght burst measurement (8 lsb) depends on m 4 byte 15 active light burst measurement of ir channel a (8 msb) depends on m 1 + led selection depends on m 3 /m 2 byte 16 active light burst measurement of ir channel a (8 lsb) depends on m 1 + led selection depends on m 3 /m 2 byte 17 active light burst measurement of ir channel b (8 msb) depends on m 0 + led selection depends on m 3 /m 2 byte 18 active light burst measurement of ir channel b (8 lsb) depends on m 0 + led selection depends on m 3 /m 2 byte 19 dc measurement of ir channel a, after the active lig ht burst measurement (8 msb) depends on m 4 byte 20 dc measurement of ir channel a, after the active lig ht burst measurement (8 lsb) depends on m 4 byte 21 dc measurement of ir channel b, after the active lig ht burst measurement (8 msb) depends on m 4 byte 22 dc measurement of ir channel b, after the active lig ht burst measurement (8 lsb) depends on m 4 byte 23 crc (8 bit) output always table 16 : sm output data frame when certain measurements are disabled, the corresp onding data bytes are omitted from the output data frame.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 35 of 72 3901075030 cyclic redundancy check calculation in all output data frames, a crc byte is included a s last byte. this byte provides a way to detect tra nsmission errors between slave and master. an easy method to check i f there were no transmission errors is to calculate the crc of the whole read-out frame as defined in previous tables. when the calculated crc results in 0x00, the transmissio n was error free. if the resulting crc is not equal to zero, then an error o ccurred in the transmission and all the data should be ignored. for more information regarding the crc calculation, please refer to section 7.8.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 36 of 72 3901075030 7.2.2.8. 7.2.2.8. 7.2.2.8. 7.2.2.8. sm+ro sm+ro sm+ro sm+ro - -- - start measurement combined with read start measurement combined with read start measurement combined with read start measurement combined with read- -- -out outout out if after upload of the sm command, extra clocks are given (without putting cs high!), the data stored in the internal registers will appear on the miso pin. at the end of the read-out phase the internal registers will be cleared to avoid memory effects in the next read-outs. the newly uploaded sm command will be executed afte r the read-out, when the cs pin goes high. the two figures below show the difference between t he two modes of operation : - figure 13 : separated sm - ro (x value is defined in figure 6)shows the operation with separate sm a nd ro commands. after upload of a sm command, the measurement cycle will start and the internal registers will be fill ed. once the dr pin is high, the ro command can be uploaded to start the r ead-out cycle. all data of the internal registers w ill be transferred and at the end of the read-out the registers will be cl eared. - figure 14 : combined sm - ro (x value is defined in figure 6) shows the operation with the combined sm and ro. first one has to upload a sm command to start a measurement. the data is available for read-out when the dr pin goes high. instead of uploading a ro command, a sm command can be uplo aded again to combine read-out and the start of the next measurement cycle. if extra clocks are given after upload of the sm command, the data of the internal registers becomes available on the miso pin. note that the cs pin shall not be set high until the read-out is fi nished. once cs pin goes high, the dr pin is set low and a new measurement cycle will be started. a time t dr later the dr pin goes high to indicate that the data is available. cs sclk mosi miso tri state tri state sm/ sd 8t sclk 8t sclk s tatus flags 1 byte ctrl 1 1 byte idle measurement cycle device state dr 0x00 tri state ro-ctrl1 8t sclk x*8t sclk output data frame x bytes t dr 8t sclk s tatus flags 1 byte ctrl1 1 byte ro-ctrl 2 idle read-out idle 0x00 data available filling up 0x00 internal registers emptying t cs _dr figure 13 : separated sm - ro (x value is defined i n figure 6) cs sclk mosi miso 8t sclk x*8t sclk output data frame x bytes 8t sclk s tatus flags 1 byte ctrl1 1 byte idle measurement cycle device state read-out dr sm/ sd 0x00 tri state tri state sm/ sd 8t sclk 8t sclk s tatus flags 1 byte ctrl 1 1 byte idle measurement cycle 0x00 t dr idle tri state t dr 0x00 data available filling up 0x 00 internal registers emptying data available filling up t cs _dr t cs_ dr figure 14 : combined sm - ro (x value is defined in figure 6)
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 37 of 72 3901075030 7.2.2.9. 7.2.2.9. 7.2.2.9. 7.2.2.9. wr/rr wr/rr wr/rr wr/rr C CC C write/read write/read write/read write/read register register register register the slave contains several user registers that can be read and written by the master. the wr and rr commands are used for that. the wr command writes the contents of an 8-bit regi ster addressed by bits a 3..0 with data d 7..0 . data is sent to the device over the mosi pin. control2 byte contains the 8 bit data that sh all be written into the target register. control3 b yte contains the address of the target register. the wr command is defined in the table below: control1 byte control2 byte control3 byte 1000 0111 d 7 d 6 d 5 d 4 d 3 d 2 d 1 d 0 a 3 a 2 a 1 a 0 p 1 p 0 00 d 7 d 6 d 5 d 4 d 3 d 2 d 1 d 0 a 3 a 2 a 1 a 0 p 1 p 0 data contents of register to be written address of target register parity bits (p 1 = odd parity bit, p 0 = even parity bit) data1 byte data2 byte data3 byte status flag byte 1000 0111 0000 0000 table 17 : write register command in order to detect some transmission errors while w riting data towards the slave device, the micro-con troller has to compute an odd and an even parity bit of the control2 and t he 4 msb's of the control3 byte and send these pari ty bits to the slave. the slave will check if the parity bits are valid. the data will only be written into the registers if the parity bits are correct. if the parity bits are not correct, bit 7 of the inter nal status flag byte will be set high, indicating t hat the command was invalid. this can be seen when uploading a nop command (when one is only interested in reading back the interna l status flags) or during upload of the next command. in case the parity bits were not correct, the data of the registers will not be changed. the parity bits calculation is based on the data d 7 ..d 0 and a 3 ..a 0 . if the number of ones in the given data set [d 7 ..d 0 , a 3 ..a 0 ] is odd, the even parity bit p 0 shall be set to 1, making the total number of ones in the set [d 7 ..d 0 , a 3 ..a 0 , p 0 ] even. similar: if the number of ones in the given data se t [d 7 ..d 0 , a 3 ..a 0 ] is even, the odd parity bit p 1 shall be set to 1, making the total number of ones in the set [d 7 ..d 0 , a 3 ..a 0 , p 1 ] odd. note that the parity bits can be generated with xor instructions: p 1 = xnor(d 7 ..d 0 , a 3 ..a 0 ) and p 0 = xor(d 7 ..d 0 , a 3 ..a 0 ). the odd parity bit p 1 should always be the inverse of the even parity bi t p 0 . the rr command returns the contents of an 8-bit reg ister addressed by bits a 3..0 . data is read back over the miso pin. the data1 byte contains the internal status flag byte. data2 byte contains the copy of the control1 byte. data3 byte contains the 8 bits of the target register. the rr command is defined in the table below:
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 38 of 72 3901075030 control1 byte control2 byte control3 byte 1000 1110 a 3 a 2 a 1 a 0 0000 0000 0000 a 3 a 2 a 1 a 0 address of target register data1 byte data2 byte data3 byte status flag byte 1000 1110 d 7 d 6 d 5 d 4 d 3 d 2 d 1 d 0 d 7 .. 0 data contents of register read table 18 : read register command note that the wr and rr commands are commands that require 3 bytes instead of 2 bytes. an overview of the user registers that can be acces sed with wr/rr commands and more general informatio n concerning the user registers can be found in section 7.4 7.2.2.10. 7.2.2.10. 7.2.2.10. 7.2.2.10. sd sd sd sd C CC C start diagnostics start diagnostics start diagnostics start diagnostics the sd command will start a measurement cycle in wh ich internal signals will be measured and converted . with this command it is possible to test some circuits in the chip and check if they are functioning as expected . the sd command behaves in much the same way as the sm commands: instead of uploading a sm command, a s d command can be uploaded. this starts the measuremen t cycle and conversion of some internal signals. th e pin dr goes high when the cycle is completed, indicating that a read -out can be started. with the ro command it is poss ible to read out the data and check if all the data values are within ce rtain ranges. after upload of a sd command, no other commands wil l be accepted till dr is high. this is done to avoid too much disturbances in the analog part. once dr is high, the next command will be accepted. an exc eption however is the chip reset command. this will always be accepted. the sd command is not available in standby mode. similar to the sm command, the sd command has some measurement selection bits m 6 ..m 0 in the control2 byte. different measurements can be selected with these bits: ? m 6 : setting this bit high enables the adc diagnostics ? m 5 : setting this bit high enables the dac-adc diagnos tics ? m 4 : setting this bit high enables the ambient diode c hecks ? m 3 ..m 0 : (reserved) table 19 gives an overview of some execution times t dr for the basic types of measurements. measurement type min. t dr (s) max. t dr (s) adc diagnostics 224 249 dac-adc diagnostics 91 102 ambient diode checks 370 410 adc + dac-adc + ambient diode diagnostics 680 752 table 19: basic measurement execution times t dr
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 39 of 72 3901075030 if all possible measurements are selected, the outp ut data frame is defined in the table below: data byte number data byte contents after sd command comments byte 3 adctest0 (8 msb) depends on m 6 byte 4 adctest0 (8 lsb) depends on m 6 byte 5 adctest1 (8 msb) depends on m 6 byte 6 adctest1 (8 lsb) depends on m 6 byte 7 adctest2 (8 msb) depends on m 6 byte 8 adctest2 (8 lsb) depends on m 6 byte 9 adctest3 (8 msb) depends on m 6 byte 10 adctest3 (8 lsb) depends on m 6 byte 11 adctest4 (8 msb) depends on m 6 byte 12 adctest4 (8 lsb) depends on m 6 byte 13 dac-adc test (8 msb) depends on m 5 byte 14 dac-adc test (8 lsb) depends on m 5 byte 15 00000 + cd x ambient diodes detection (3 bit) depends on m 4 byte 16 crc (8 bit) output always table 20 : sd output data frame when certain measurements are disabled, the corresp onding data bytes are omitted from the output data frame. adctest0/1/2/3/4 these measurements are ad conversions of some inter nal reference voltages:  adctest0 is typically at 1/16 of the adc range: adc test0 = 0x0e00 .. 0x1200.  adctest1 is typically at 1/4=4/16 of the adc range: adctest1 = 0x3e00 .. 0x4200.  adctest2 is typically at 3/4=12/16 of the adc range : adctest2 = 0xbe00 .. 0xc200.  adctest3 is typically at 15/16 of the adc range: ad ctest3 = 0xee00 .. 0xf200. adctest4 is similar to adctest0/1/2/3: an ad conver sion of an internal reference voltage is made. howe ver, an independent voltage reference is used as input for the adc in c ase of adctest4. in the case of adctest0/1/2/3, the reference voltages are generated from the references used for the adc. the typical output for adctest4 will be as listed i n below table: min typ max adctest4 values @ vs=3.0v 33400 35400 37400 lsb @ vs=3.3v 30400 32400 34400 lsb @ vs=3.6v 27400 29400 31400 lsb dac-adc test a dac-adc test measurement is performed in the foll owing way: the dac output is connected to the adc i nput. the dac input will be daca<7:0> from register 'setah'. this dac-input will be converted to an analog output vo ltage that will be converted again by the adc to give a digital value. this digital value is given in the bytes dac-adc t est. ambient diodes detection during the diagnostics measurement, the status of t he external photo diodes connected to the ambient l ight channel inputs is checked. three bits cdx are output: when the bit c is set hi gh, an error on the photo diode channel c is presen t. in a similar way, bit d indicate if errors on ambie nt light channels d is present or not.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 40 of 72 3901075030 7.3. 7.3. 7.3. 7.3. internal status flags internal status flags internal status flags internal status flags bit 7: previous command invalid/valid when an uploaded command is considered invalid, bit 7 will be set high. this bit can be read out when the next command will be uploaded. if the next command is valid, bit 7 will be cleared again. a command is considered invalid in case: - a command is unknown (i.e. all commands that are not mentioned in table 13) - the parity bit in the sm or sd command is not cor rect - the parity bits in a wr command are not correct - when a command (except the cr command) was sent d uring a measurement cycle (i.e. after uploading a s m/sd command, when dr is still low) - when a ro command was sent when dr is low (at any time, i.e. not only after uploading a sm/sd command) - if a '1' is written into one of the bits of the ' err' register - if an ambient measurement is requested in case al l bits en_ch_c/en_ch_d/en_diagamb are zero bit 6..5: power state, bit 4: sleep request, bit 3: standby request the behaviour of the power state and the sleep requ est bits is explained in figure 15 : power state an d sleep request bits. first a rslp command is uploaded to the sensor. as a result of that, the sensor will put the status fl ag bit 4 (sleep request flag) high. the master can read out that flag by up loading a nop command, or when uploading other comm ands. the master can confirm to go into sleep mode by upl oading a cslp command. the request flag will be res et and the sensor will switch into sleep state. the status flag bits 6 and 5 will be set accordingly. sleep state rslp mosi miso device state sclk normal running mode cs status flag bit 4 (sleep request) (nop) cslp (nop) nrm normal running mode status flag bits 6..5 (power state) 10 00 10 figure 15 : power state and sleep request bits to go into standby mode, the same procedure shall b e applied: uploading a rstby command makes the requ est standby flag going high. uploading a cstby will make the device going into standby mode, whereby the request standb y flag will be cleared and the power state bits will be set accord ingly. bit 2: device in testmode/normal mode to make the sensor efficiently testable in producti on, several test modes are foreseen to get easy acc ess to different blocks. the status flag bit 2 indicates if the device is op erating in test mode or normal mode. if the device enters test mode by accident, the app lication will still work like normal. however, the status flag bit 2 will be set high. the master can take actions to get out of tes t mode by uploading a cr command. bit 1: internal oscillator is enabled/disabled this bit is high when the internal oscillator is en abled. once the rco is shut down the bit will be se t low. bit 0: critical error is detected/not detected during each measurement cycle there is a monitoring of the voltage on critical nodes along the analog paths. when the voltage of one of these controlled nodes goes out o f its normal operating range, the critical error fl ag will be set high.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 41 of 72 3901075030 the critical error flag will also be set high when a falling edge on the wt pin will be detected while the device is in sleep mode. following nodes are monitored: - tia output: when the output is clipped (either hi gh or low), the critical error flag will be set hig h - difference between dac output and shunt-feedback - an internal reference voltage - output of the common mode sc-amplifiers of the am bient light/temperature channels - frequency on rco output in case the critical error flag was set high, the ' err' register indicates which node voltages got out of their normal operating range. more info about the 'err' register can be fo und in section 7.4.7. the critical error flag remains high as long as the 'err' register is not cleared. once the 'err' regi ster is cleared, the critical error flag will be cleared as well. note: after por, or after wake-up from sleep/standb y, some bits in the 'err' register might be set. as such the critical error flag might be set as well.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 42 of 72 3901075030 7.4. 7.4. 7.4. 7.4. user registers overview user registers overview user registers overview user registers overview table 21. user registers overview in the next sections, all the bits of these registe rs are described. the value of the register at powe r-on is indicated in the line 'init' (0 or 1 or x=unknown) and the read/write acc ess ability is indicated in the line 'read/write' ( r indicates read access, w indicates write access). name address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 setana 0x0 tdem3 tdem2 tdem1 tdem0 leddrv_hg tdc_pu lse1 tdc_pulse0 unity_gain setah 0x1 daca7 daca6 daca5 daca4 daca3 daca2 daca1 daca0 setal 0x2 gain_adj_ aa_a2 gain_adj_ aa_a1 gain_adj_ aa_a0 bw_adj_ aa_a2 bw_adj_ aa_a1 bw_adj_ aa_a0 bw_sel_ lp_a1 bw_sel_ lp_a0 setbh 0x3 dacb7 dacb6 dacb5 dacb4 dacb3 dacb2 dacb1 dacb0 setbl 0x4 gain_adj_ aa_b2 gain_adj_ aa_b1 gain_adj_ aa_b0 bw_adj_ aa_b2 bw_adj_ aa_b1 bw_adj_ aa_b0 bw_sel_ lp_b1 bw_sel_ lp_b0 setpf 0x5 np3 np2 np1 np0 en_dccomp rpf2 rpf1 rpf0 err 0x6 - err6 err5 err4 err3 err2 err1 - rst 0x7 dc_comp_ ic13 dc_comp_ ic12 dc_comp_ ic11 dc_comp_ ic10 - - to por dccomp1 0x8 dc_comp_ ic23 dc_comp_ ic22 dc_comp_ ic21 dc_comp_ ic20 dccomp2 0x9 dc_comp_ ic33 dc_comp_ ic32 dc_comp_ ic31 dc_comp_ ic30 dc_comp_ ic43 dc_comp_ ic42 dc_comp_ ic41 dc_comp_ ic40 gainbuf 0xa - - - gain_buf4 gain_buf3 gain_buf2 gai n_buf1 gain_buf0 calib1 0xb trim_ tc_bgi4 trim_ tc_bgi3 trim_ tc_bgi2 trim_ tc_bgi1 trim_ tc_bgi0 - - - calib2 0xc - - trim_ temp5 trim_ temp4 trim_ temp3 trim_ temp2 trim_ temp1 trim_ temp0 enchan 0xd en_temp en_diag_a en_diag_b en_ch_a en_c h_b en_ch_c en_ch_d en_ diagamb tamb 0xe dc_comp_ ic53 dc_comp_ ic52 dc_comp_ ic51 dc_comp_ ic50 - - tamb1 tamb0
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 43 of 72 3901075030 7.4.1. 7.4.1. 7.4.1. 7.4.1. setana register setana register setana register setana register this register contains some settings of the analog chain. bit 7 6 5 4 3 2 1 0 setana tdem3 tdem2 tdem1 tdem0 leddrv_hg tdc_ pulse1 tdc_ pulse0 unity_gain 0x0 read/write r/w r/w r/w r/w r/w r/w r/w r/w init 0 0 0 0 0 1 0 1  tdem<3:0>: changes the demodulator delay time in th e active light channel tdem3 tdem2 tdem1 tdem0 delay time (in s, +/-5%) 0 0 0 0 0 0 0 0 1 0.4 0 0 1 0 0.8 0 0 1 1 1.2 0 1 0 0 1.6 0 1 0 1 2 0 1 1 0 2.4 0 1 1 1 2.8 1 0 0 0 3.2 1 0 0 1 3.6 1 0 1 0 4 1 0 1 1 4.4 1 1 0 0 4.8 1 1 0 1 5.2 1 1 1 0 5.6 1 1 1 1 6  leddrv_hg: 1 = selects high gain mode of led driver , 0 = selects low gain mode  tdc_pulse<1:0>: defines the time that the dc compon ent in the active light pulse signal is enabled before the actual active light pulses start tdc_ pulse1 tdc_ pulse0 delay time (in s, +/-5%) 0 0 50 0 1 100 1 0 200 1 1 400  unity_gain: only during active light measurements: 1=adc buffer is bypassed, 0=adc gain stage is used (gain is set with bits gain_buf<4:0> in regist er 'gainbuf')
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 44 of 72 3901075030 7.4.2. 7.4.2. 7.4.2. 7.4.2. setah register setah register setah register setah register this register defines the dac level for ir channel a. bit 7 6 5 4 3 2 1 0 setah daca7 daca6 daca5 daca4 daca3 daca2 daca1 daca0 0x1 read/writ e r/w r/w r/w r/w r/w r/w r/w r/w init 0 0 0 0 0 0 0 0  daca<7:0>: the 8 bits of the dac level for ir chann el a 7.4.3. 7.4.3. 7.4.3. 7.4.3. setal register setal register setal register setal register this register defines the gain and cut-off frequenc y adjustments for ir channel a. bit 7 6 5 4 3 2 1 0 setal gain_a dj_ aa_a2 gain_a dj_ aa_a1 gain_a dj_ aa_a0 bw_ adj_ aa_a2 bw_ adj_ aa_a1 bw_ adj_ aa_a0 bw_ sel_ lp_a1 bw_ sel_ lp_a0 0x2 read/writ e r/w r/w r/w r/w r/w r/w r/w r/w init 0 0 0 0 1 1 0 1  gain_adj_aa_a<2:0>: gain adjustment of anti-aliasin g filter of channel a gain_adj_ aa_a2 gain_adj_ aa_a1 gain_adj_ aa_a0 gain gain (db) 0 0 0 2.00 6.02 0 0 1 4.29 12.64 0 1 0 6.57 16.35 0 1 1 8.86 18.95 1 0 0 11.14 20.94 1 0 1 13.43 22.56 1 1 0 15.71 23.93 1 1 1 18.00 25.11  bw_adj_aa_a<2:0>: cut-off frequency adjustment of a nti-aliasing filter of channel a bw_adj_ aa_a2 bw_adj_ aa_a1 bw_adj_ aa_a0 3db cut-off frequency (khz) 0 0 0 18 0 0 1 20 0 1 0 22.5 0 1 1 25 1 0 0 30 1 0 1 35 1 1 0 43 1 1 1 55
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 45 of 72 3901075030  bw_sel_lp_a<1:0>: cut-off frequency selection of lo w-pass filter of channel a bw_sel_ lp_a1 bw_sel_ lp_a0 cut - off frequency (%f 0 ) cut - off frequency (khz @ f 0 =70khz) 0 0 ? 23.5 ? 16.5 0 1 ? 12 ? 7.8 1 0 ? 5.9 ? 4.2 1 1 ? 3 ? 2.1 7.4.4. 7.4.4. 7.4.4. 7.4.4. setbh register setbh register setbh register setbh register this register defines the dac level for ir channel b. bit 7 6 5 4 3 2 1 0 setbh dacb7 dacb6 dacb5 dacb4 dacb3 dacb2 dacb1 dacb0 0x3 read/writ e r/w r/w r/w r/w r/w r/w r/w r/w init 0 0 0 0 0 0 0 0  dacb<7:0>: the 8 bits of the dac level for ir chann el b 7.4.5. 7.4.5. 7.4.5. 7.4.5. setbl register setbl register setbl register setbl register this register defines the gain and cut-off frequenc y adjustments for ir channel b. bit 7 6 5 4 3 2 1 0 setbl gain_a dj_ aa_b2 gain_a dj_ aa_b1 gain_a dj_ aa_b0 bw_ adj_ aa_b2 bw_ adj_ aa_b1 bw_ adj_ aa_b0 bw_ sel_ lp_b1 bw_ sel_ lp_b0 0x4 read/writ e r/w r/w r/w r/w r/w r/w r/w r/w init 0 0 0 0 1 1 0 1  gain_adj_aa_b<2:0>: gain adjustment of anti-aliasin g filter of channel b gain_adj_ aa_b2 gain_adj_ aa_b1 gain_adj_ aa_b0 gain gain (db) 0 0 0 2.00 6.02 0 0 1 4.29 12.64 0 1 0 6.57 16.35 0 1 1 8.86 18.95 1 0 0 11.14 20.94 1 0 1 13.43 22.56 1 1 0 15.71 23.93 1 1 1 18.00 25.11  bw_adj_aa_b<2:0>: cut-off frequency adjustment of a nti-aliasing filter of channel b
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 46 of 72 3901075030 bw_adj_ aa_b2 bw_adj_ aa_b1 bw_adj_ aa_b0 3db cut - off frequency (khz) 0 0 0 18 0 0 1 20 0 1 0 22.5 0 1 1 25 1 0 0 30 1 0 1 35 1 1 0 43 1 1 1 55  bw_sel_lp_b<1:0>: cut-off frequency selection of lo w-pass filter of channel b bw_sel_ lp_b1 bw_sel_ lp_b0 cut - off freuency (%f 0 ) cut - off frequency (khz @ f 0 =70khz) 0 0 ? 23.5 ? 16.5 0 1 ? 12 ? 7.8 1 0 ? 5.9 ? 4.2 1 1 ? 3 ? 2.1 7.4.6. 7.4.6. 7.4.6. 7.4.6. setpf setpf setpf setpf register register register register this register defines the frequency settings and th e number of pulses for the active light measurement s. bit 7 6 5 4 3 2 1 0 setpf np3 np2 np1 np0 en_dc comp rpf2 rpf1 rpf0 0x5 read/writ e r/w r/w r/w r/w r/w r/w r/w r/w init 0 1 0 0 0 1 0 0  np<3:0>: number of pulses for the active light meas urements, as defined in the table below: bit 3 - np3 bit 2 - np2 bit 1 - np1 bit 0 - np0 number of pulses 0 0 0 0 2 0 0 0 1 4 0 0 1 0 6 0 0 1 1 8 0 1 0 0 10 0 1 0 1 12 0 1 1 0 14 0 1 1 1 16 1 0 0 0 18 1 0 0 1 20 1 0 1 0 22 1 0 1 1 24 1 1 0 0 26 1 1 0 1 28
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 47 of 72 3901075030 1 1 1 0 30 1 1 1 1 32  en_dccomp: 1 = enables the dc light compensation, 0 = disables the dc light compensation  rpf<2:0>: frequency selection of pulses for the act ive light measurements, as defined below: bit 2 - rpf2 bit 1 - rpf1 bit 0 - rpf0 frequency of pulses (in khz, +/-5%) 0 0 0 48.1 0 0 1 52.1 0 1 0 56.8 0 1 1 62.5 1 0 0 69.4 1 0 1 78.1 1 1 0 89.3 1 1 1 104.2 7.4.7. 7.4.7. 7.4.7. 7.4.7. err register err register err register err register as described in section 7.3 (under section 'bit 0: critical error is detected/not detected'), the volt ages on critical nodes are monitored continuously. when a voltage on such a cr itical node goes outside its operating range, the c ritical error flag and the appropriate error bit in the 'err' register wil l be set high. as such, the source of the error can be found in the 'err' register. the error bit remains high as long as the error con dition is present, or as long as the error bit is n ot cleared (in case the error condition is not present anymore). bit 7 6 5 4 3 2 1 0 err - err6 err5 err4 err3 err2 err1 - 0x6 read/writ e r r/w* r/w* r/w* r/w* r/w* r/w* r init 0 0 0 x** x** x** 0 0 the following bits are defined (0= no error detecte d; 1=error is detected):  err<7>: not implemented, read as '0'  err6: critical error detected on tia output  err5: critical error detected on the difference bet ween dac output and shunt-feedback  err4: critical error detected on internal voltage r eference: when the internal voltage reference is below 1v.  err3: critical error detected on one of the common mode sc-filters of the ambient light/temperature channels  err2: critical error detected on rco: either a stuc k-at-high or a stuck-at-low condition occurred at the output of the rco. note that in slp , the error flag on the rco will be set high.  err1: set to '1' when a falling edge on the wt pin is detected while the device is in sleep mode  err<0>: not implemented, read as '0'
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 48 of 72 3901075030 *: only writing '0' is allowed. if a '1' is written , the bit value in the register will not be changed , but bit 7 of the internal status flags will be set high (previous command invalid). **: 'x' indicates that the value after por is unkno wn. if the voltages of the nodes are out of range r ight after por, it will be immediately reflected in the 'err' register and the critical error flag will be set. the same is valid after wake-up from sleep/standby.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 49 of 72 3901075030 7.4.8. 7.4.8. 7.4.8. 7.4.8. rst register rst register rst register rst register this register allows differentiation of either a po r or a reset due to a watchdog time-out + settings for the dc light compensation circuitry. bit 7 6 5 4 3 2 1 0 rst dc_ comp_ ic13 dc_ comp_ ic12 dc_ comp_ ic11 dc_ comp_ ic10 - - to por 0x7 read/writ e r/w r/w r/w r/w r r r r/w init 0 0 0 0 0 0 0 1  dc_comp_ic1<3:0>: setting of the amplitude of the 1 st pwl slope  rst<3:2>: not implemented, read as '0'  to: 1=a watchdog time-out and a master reset occurr ed. 0=no watchdog time-out occurred, or after power-on, or after a falling edg e at the wt pin  por: 1=a por occurred, 0=a por has not occurred. to detect subsequent power-on-resets, the por-bit shall be cleared right after power-on. 7.4.9. 7.4.9. 7.4.9. 7.4.9. dccomp dccomp dccomp dccomp register register register register this register contains settings for the dc light co mpensation circuitry. these settings have to be cal culated for the individual application (activelight-channel photodiode used). bit 7 6 5 4 3 2 1 0 dccomp1 dc_ comp_ ic23 dc_ comp_ ic22 dc_ comp_ ic21 dc_ comp_ ic20 0x8 read/ write r r r r r/w r/w r/w r/w init x x x x 0 0 0 0  dc_comp_ic2<3:0>: setting of the amplitude of the 2 nd pwl slope bit 7 6 5 4 3 2 1 0 dccomp2 dc_ comp_ ic33 dc_ comp_ ic32 dc_ comp_ ic31 dc_ comp_ ic30 dc_ comp_ ic43 dc_ comp_ ic42 dc_ comp_ ic41 dc_ comp_ ic40 0x9 read/ write r/w r/w r/w r/w r/w r/w r/w r/w init 0 0 0 0 0 0 0 0  dc_comp_ic3<3:0>: setting of the amplitude of the 3 rd pwl slope  dc_comp_ic4<3:0>: setting of the amplitude of the 4 th pwl slope
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 50 of 72 3901075030 7.4.10. 7.4.10. 7.4.10. 7.4.10. gainbuf register gainbuf register gainbuf register gainbuf register this register contains the gain settings of the adc input buffer. the use of this buffer is depending on bit 'unity_gain' in the register 'setana'. bit 7 6 5 4 3 2 1 0 gainbuf - - - gain_b uf4 gain_b uf3 gain_b uf2 gain_b uf1 gain_ buf0 0xa read/writ e r r r r/w r/w r/w r/w r/w init 0 0 0 1 1 0 1 0  gainbuf<7:5>: not implemented, read as '0'  gain_buf<4:0>: defines the gain setting of the adc input buffer gain_ buf4 gain_ buf3 gain_ buf2 gain_ buf1 gain_ buf0 gain 0 0 0 0 1 2 0 0 0 1 0 1 0 0 0 1 1 0.67 0 0 1 0 0 0.5 0 0 1 0 1 0.4 0 0 1 1 0 0.33 0 0 1 1 1 0.29 0 1 0 0 0 0.25 0 1 0 0 1 0.22 0 1 0 1 0 0.2 1 0 0 0 1 10 1 0 0 1 0 5 1 0 0 1 1 3.33 1 0 1 0 0 2.5 1 0 1 0 1 2 1 0 1 1 0 1.67 1 0 1 1 1 1.43 1 1 0 0 0 1.25 1 1 0 0 1 1.11 1 1 0 1 0 1
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 51 of 72 3901075030 7.4.11. 7.4.11. 7.4.11. 7.4.11. calib1/calib2 register calib1/calib2 register calib1/calib2 register calib1/calib2 register these registers contain the gain settings of the ba ndgap temperature coefficient correction and the te mperature sensor. bit 7 6 5 4 3 2 1 0 calib1 trim_ tc_bgi4 trim_ tc_bgi3 trim_ tc_bgi2 trim_ tc_bgi1 trim_ tc_bgi0 - - - 0xb read/writ e r r r r r r r r init x x x x x 0 0 0  trim_tc_bgi<4:0>: defines the tc correction of the bandgap current  calib1<2:0>: not implemented, read as '0' the calib1 register is used to indicate the slope o f the temperature sensor curve in lsb/kelvin. the s lope is calculated out of a 2- point measurement of the temperature curve and is p ermanently programmed in the otp by means of a 5-bi t word and accessible via the calib1 register, see table 22. calib1 - trim_tc_bgi dec bin slope (lsb/kelvin) 0 0 -51 1 1 -52 2 10 -53 3 11 -54 4 100 -55 5 101 -56 6 110 -57 7 111 -58 8 1000 -59 9 1001 -60 10 1010 -61 11 1011 -62 12 1100 -63 13 1101 -64 14 1110 -65 15 1111 -66 16 10000 -67 17 10001 -68 18 10010 -69 19 10011 -70 20 10100 -71 21 10101 -72 22 10110 -73 23 10111 -74 24 11000 -75 25 11001 -76 26 11010 -77 27 11011 -78 28 11100 -79 29 11101 -80 30 11110 -81 31 11111 -82 table 22 : 5-bit temperature sensor slope informati on as it is stored in the calib1 register.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 52 of 72 3901075030 bit 7 6 5 4 3 2 1 0 calib2 - - trim_t emp5 trim_t emp4 trim_t emp3 trim_t emp2 trim_t emp1 trim_t emp0 0xc read/writ e r r r r r r r r init 0 0 x x x x x x  calib2<7:6>: not implemented, read as '0'  trim_temp<5:0>: defines the calibration settings of the temperature sensor the offset of the temperature curve is measured at one temperature (preferably 30deg. c) and permanent ly stored in the zenerzap otp with 6 bit word length. this information is accessible via the calib2 regis ter, see table 23. calib2 - trim_temp slope: -67 lsb/k 25degc 30degc dec bin offset (degc) lsl expected usl lsl expected usl 1 1 -31 10003.07 10036.51 10069.95 9668.67 9702.11 9735.55 2 10 -30 10069.95 10103.39 10136.83 9735.55 9768.99 9802.43 3 11 -29 10136.83 10170.27 10203.71 9802.43 9835.87 9869.31 4 100 -28 10203.71 10237.15 10270.59 9869.31 9902.7 5 9936.19 5 101 -27 10270.59 10304.03 10337.47 9936.19 9969.6 3 10003.07 6 110 -26 10337.47 10370.91 10404.35 10003.07 10036 .51 10069.95 7 111 -25 10404.35 10437.79 10471.23 10069.95 10103 .39 10136.83 8 1000 -24 10471.23 10504.67 10538.11 10136.83 1017 0.27 10203.71 9 1001 -23 10538.11 10571.55 10604.99 10203.71 1023 7.15 10270.59 10 1010 -22 10604.99 10638.43 10671.87 10270.59 103 04.03 10337.47 11 1011 -21 10671.87 10705.31 10738.75 10337.47 103 70.91 10404.35 12 1100 -20 10738.75 10772.19 10805.63 10404.35 104 37.79 10471.23 13 1101 -19 10805.63 10839.07 10872.51 10471.23 105 04.67 10538.11 14 1110 -18 10872.51 10905.95 10939.39 10538.11 105 71.55 10604.99 15 1111 -17 10939.39 10972.83 11006.27 10604.99 106 38.43 10671.87 16 10000 -16 11006.27 11039.71 11073.15 10671.87 10 705.31 10738.75 17 10001 -15 11073.15 11106.59 11140.03 10738.75 10 772.19 10805.63 18 10010 -14 11140.03 11173.47 11206.91 10805.63 10 839.07 10872.51 19 10011 -13 11206.91 11240.35 11273.79 10872.51 10 905.95 10939.39 20 10100 -12 11273.79 11307.23 11340.67 10939.39 10 972.83 11006.27 21 10101 -11 11340.67 11374.11 11407.55 11006.27 11 039.71 11073.15 22 10110 -10 11407.55 11440.99 11474.43 11073.15 11 106.59 11140.03 23 10111 -9 11474.43 11507.87 11541.31 11140.03 111 73.47 11206.91 24 11000 -8 11541.31 11574.75 11608.19 11206.91 112 40.35 11273.79 25 11001 -7 11608.19 11641.63 11675.07 11273.79 113 07.23 11340.67 26 11010 -6 11675.07 11708.51 11741.95 11340.67 113 74.11 11407.55 27 11011 -5 11741.95 11775.39 11808.83 11407.55 114 40.99 11474.43 28 11100 -4 11808.83 11842.27 11875.71 11474.43 115 07.87 11541.31 29 11101 -3 11875.71 11909.15 11942.59 11541.31 115 74.75 11608.19 30 11110 -2 11942.59 11976.03 12009.47 11608.19 116 41.63 11675.07 31 11111 -1 12009.47 12042.91 12076.35 11675.07 117 08.51 11741.95 32 100000 0 12076.35 12109.79 12143.23 11741.95 117 75.39 11808.83 33 100001 1 12143.23 12176.67 12210.11 11808.83 118 42.27 11875.71 34 100010 2 12210.11 12243.55 12276.99 11875.71 119 09.15 11942.59 35 100011 3 12276.99 12310.43 12343.87 11942.59 119 76.03 12009.47
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 53 of 72 3901075030 36 100100 4 12343.87 12377.31 12410.75 12009.47 120 42.91 12076.35 37 100101 5 12410.75 12444.19 12477.63 12076.35 121 09.79 12143.23 38 100110 6 12477.63 12511.07 12544.51 12143.23 121 76.67 12210.11 39 100111 7 12544.51 12577.95 12611.39 12210.11 122 43.55 12276.99 40 101000 8 12611.39 12644.83 12678.27 12276.99 123 10.43 12343.87 41 101001 9 12678.27 12711.71 12745.15 12343.87 123 77.31 12410.75 42 101010 10 12745.15 12778.59 12812.03 12410.75 12 444.19 12477.63 43 101011 11 12812.03 12845.47 12878.91 12477.63 12 511.07 12544.51 44 101100 12 12878.91 12912.35 12945.79 12544.51 12 577.95 12611.39 45 101101 13 12945.79 12979.23 13012.67 12611.39 12 644.83 12678.27 46 101110 14 13012.67 13046.11 13079.55 12678.27 12 711.71 12745.15 47 101111 15 13079.55 13112.99 13146.43 12745.15 12 778.59 12812.03 48 110000 16 13146.43 13179.87 13213.31 12812.03 12 845.47 12878.91 49 110001 17 13213.31 13246.75 13280.19 12878.91 12 912.35 12945.79 50 110010 18 13280.19 13313.63 13347.07 12945.79 12 979.23 13012.67 51 110011 19 13347.07 13380.51 13413.95 13012.67 13 046.11 13079.55 52 110100 20 13413.95 13447.39 13480.83 13079.55 13 112.99 13146.43 53 110101 21 13480.83 13514.27 13547.71 13146.43 13 179.87 13213.31 54 110110 22 13547.71 13581.15 13614.59 13213.31 13 246.75 13280.19 55 110111 23 13614.59 13648.03 13681.47 13280.19 13 313.63 13347.07 56 111000 24 13681.47 13714.91 13748.35 13347.07 13 380.51 13413.95 57 111001 25 13748.35 13781.79 13815.23 13413.95 13 447.39 13480.83 58 111010 26 13815.23 13848.67 13882.11 13480.83 13 514.27 13547.71 59 111011 27 13882.11 13915.55 13948.99 13547.71 13 581.15 13614.59 60 111100 28 13948.99 13982.43 14015.87 13614.59 13 648.03 13681.47 61 111101 29 14015.87 14049.31 14082.75 13681.47 13 714.91 13748.35 62 111110 30 14082.75 14116.19 14149.63 13748.35 13 781.79 13815.23 63 111111 31 14149.63 14183.07 14216.51 13815.23 13 848.67 13882.11
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 54 of 72 3901075030 calib2 - trim_temp slope: -67 lsb/k 85degc 105degc dec bin offset (degc) lsl expected usl lsl expected usl 1 1 -31 5990.27 6023.71 6057.15 4652.67 4686.11 471 9.55 2 10 -30 6057.15 6090.59 6124.03 4719.55 4752.99 47 86.43 3 11 -29 6124.03 6157.47 6190.91 4786.43 4819.87 48 53.31 4 100 -28 6190.91 6224.35 6257.79 4853.31 4886.75 4 920.19 5 101 -27 6257.79 6291.23 6324.67 4920.19 4953.63 4 987.07 6 110 -26 6324.67 6358.11 6391.55 4987.07 5020.51 5 053.95 7 111 -25 6391.55 6424.99 6458.43 5053.95 5087.39 5 120.83 8 1000 -24 6458.43 6491.87 6525.31 5120.83 5154.27 5187.71 9 1001 -23 6525.31 6558.75 6592.19 5187.71 5221.15 5254.59 10 1010 -22 6592.19 6625.63 6659.07 5254.59 5288.03 5321.47 11 1011 -21 6659.07 6692.51 6725.95 5321.47 5354.91 5388.35 12 1100 -20 6725.95 6759.39 6792.83 5388.35 5421.79 5455.23 13 1101 -19 6792.83 6826.27 6859.71 5455.23 5488.67 5522.11 14 1110 -18 6859.71 6893.15 6926.59 5522.11 5555.55 5588.99 15 1111 -17 6926.59 6960.03 6993.47 5588.99 5622.43 5655.87 16 10000 -16 6993.47 7026.91 7060.35 5655.87 5689.3 1 5722.75 17 10001 -15 7060.35 7093.79 7127.23 5722.75 5756.1 9 5789.63 18 10010 -14 7127.23 7160.67 7194.11 5789.63 5823.0 7 5856.51 19 10011 -13 7194.11 7227.55 7260.99 5856.51 5889.9 5 5923.39 20 10100 -12 7260.99 7294.43 7327.87 5923.39 5956.8 3 5990.27 21 10101 -11 7327.87 7361.31 7394.75 5990.27 6023.7 1 6057.15 22 10110 -10 7394.75 7428.19 7461.63 6057.15 6090.5 9 6124.03 23 10111 -9 7461.63 7495.07 7528.51 6124.03 6157.47 6190.91 24 11000 -8 7528.51 7561.95 7595.39 6190.91 6224.35 6257.79 25 11001 -7 7595.39 7628.83 7662.27 6257.79 6291.23 6324.67 26 11010 -6 7662.27 7695.71 7729.15 6324.67 6358.11 6391.55 27 11011 -5 7729.15 7762.59 7796.03 6391.55 6424.99 6458.43 28 11100 -4 7796.03 7829.47 7862.91 6458.43 6491.87 6525.31 29 11101 -3 7862.91 7896.35 7929.79 6525.31 6558.75 6592.19 30 11110 -2 7929.79 7963.23 7996.67 6592.19 6625.63 6659.07 31 11111 -1 7996.67 8030.11 8063.55 6659.07 6692.51 6725.95 32 100000 0 8063.55 8096.99 8130.43 6725.95 6759.39 6792.83 33 100001 1 8130.43 8163.87 8197.31 6792.83 6826.27 6859.71 34 100010 2 8197.31 8230.75 8264.19 6859.71 6893.15 6926.59 35 100011 3 8264.19 8297.63 8331.07 6926.59 6960.03 6993.47 36 100100 4 8331.07 8364.51 8397.95 6993.47 7026.91 7060.35 37 100101 5 8397.95 8431.39 8464.83 7060.35 7093.79 7127.23 38 100110 6 8464.83 8498.27 8531.71 7127.23 7160.67 7194.11 39 100111 7 8531.71 8565.15 8598.59 7194.11 7227.55 7260.99 40 101000 8 8598.59 8632.03 8665.47 7260.99 7294.43 7327.87 41 101001 9 8665.47 8698.91 8732.35 7327.87 7361.31 7394.75 42 101010 10 8732.35 8765.79 8799.23 7394.75 7428.1 9 7461.63 43 101011 11 8799.23 8832.67 8866.11 7461.63 7495.0 7 7528.51 44 101100 12 8866.11 8899.55 8932.99 7528.51 7561.9 5 7595.39 45 101101 13 8932.99 8966.43 8999.87 7595.39 7628.8 3 7662.27 46 101110 14 8999.87 9033.31 9066.75 7662.27 7695.7 1 7729.15 47 101111 15 9066.75 9100.19 9133.63 7729.15 7762.5 9 7796.03 48 110000 16 9133.63 9167.07 9200.51 7796.03 7829.4 7 7862.91
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 55 of 72 3901075030 49 110001 17 9200.51 9233.95 9267.39 7862.91 7896.3 5 7929.79 50 110010 18 9267.39 9300.83 9334.27 7929.79 7963.2 3 7996.67 51 110011 19 9334.27 9367.71 9401.15 7996.67 8030.1 1 8063.55 52 110100 20 9401.15 9434.59 9468.03 8063.55 8096.9 9 8130.43 53 110101 21 9468.03 9501.47 9534.91 8130.43 8163.8 7 8197.31 54 110110 22 9534.91 9568.35 9601.79 8197.31 8230.7 5 8264.19 55 110111 23 9601.79 9635.23 9668.67 8264.19 8297.6 3 8331.07 56 111000 24 9668.67 9702.11 9735.55 8331.07 8364.5 1 8397.95 57 111001 25 9735.55 9768.99 9802.43 8397.95 8431.3 9 8464.83 58 111010 26 9802.43 9835.87 9869.31 8464.83 8498.2 7 8531.71 59 111011 27 9869.31 9902.75 9936.19 8531.71 8565.1 5 8598.59 60 111100 28 9936.19 9969.63 10003.07 8598.59 8632. 03 8665.47 61 111101 29 10003.07 10036.51 10069.95 8665.47 869 8.91 8732.35 62 111110 30 10069.95 10103.39 10136.83 8732.35 876 5.79 8799.23 63 111111 31 10136.83 10170.27 10203.71 8799.23 883 2.67 8866.11 table 23: 6-bit temperature curve offset informatio n for a typical slope of -67 lsb/k. 7.4.12. 7.4.12. 7.4.12. 7.4.12. enchan register enchan register enchan register enchan register this register contains bit to enable/disable active light and ambient light channels. bit 7 6 5 4 3 2 1 0 enchan en_ temp en_ diag_a en_ diag_b en_ ch_a en_ ch_b en_ ch_c en_ ch_d en_ diaga mb 0xd read/writ e r/w r/w r/w r/w r/w r/w r/w r/w init 1 1 1 1 1 1 1 1  en_temp: 1 = temperature channel is in use, 0 = tem perature channel is not in use  en_diag_a: 1 = enables diagnostics on active light channel a, 0 = disables the diagnostics  en_diag_b: 1 = enables diagnostics on active light channel b, 0 = disables the diagnostics  en_ch_a: 1 = active light channel a is enabled (tia + demodulator + anti-aliasing filter + sc-lpf), 0 = active light channel a is completely s witched off to reduce current consumption  en_ch_b: 1 = active light channel b is enabled (tia + demodulator + anti-aliasing filter + sc-lpf), 0 = active light channel b is completely s witched off to reduce current consumption  en_ch_c: 1 = ambient light channel c is in use, 0 = ambient light channel c is not in use  en_ch_d: 1 = ambient light channel d is in use, 0 = ambient light channel d is not in use  en_diagamb: 1= ambient diagnosis is possible, 0= am bient diagnosis is not possible the bits en_ch_a/en_ch_b/en_diagamb can be used to switch off channels that are not needed, and thus r educing the current consumption. when going into sleep or standby the setting of the se bits is ignored, all channels will be switched o ff independently of en_ch register contents. the bits en_temp/en_ch_c/en_ch_d/en_diagamb are use d to indicate which channels are in use and which c hannels are not in use. terminals, which are not connected, mus t be disabled in the enchan register. otherwise err or flags might occur. in case all en_ch_c/d/diagamb bits are set to zero, but an ambient measurement is requested, then the command invalid status flag will be set high. the measurement itsel f will not be executed.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 56 of 72 3901075030 7.4.13. 7.4.13. 7.4.13. 7.4.13. tamb regist tamb regist tamb regist tamb register erer er this register contains settings for the dc light co mpensation circuitry + controls the repetition rate of the auto-zero timer. bit 7 6 5 4 3 2 1 0 tamb dc_ comp_ ic53 dc_ comp_ ic52 dc_ comp_ ic51 dc_ comp_ ic50 - - tamb1 tamb0 0xe read/writ e r/w r/w r/w r/w r r r/w r/w init 0 0 0 0 0 0 1 0  dc_comp_ic5<3:0>: setting of the amplitude of the 5 th pwl slope  tamb<3:2>: not implemented, read as '0'  tamb<1:0>: controls the repetition rate of the auto -zero timer  tamb1 tamb0 repetition rate (ms +/-5%) 0 0 1.25 0 1 2.5 1 0 5 1 1 10
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 57 of 72 3901075030 7.5. 7.5. 7.5. 7.5. window watchdog timer window watchdog timer window watchdog timer window watchdog timer the internal watchdog timer is a watchdog based on two different windows: an open and a closed window. during the open window the master can restart the watchdog timer. d uring the closed window, no restarts are accepted. the restart (re-initialisation) of the watchdog tim er happens via the wt (watchdog trigger) pin: when a falling edge is detected on the wt pin, the watchdog will be restarted. the low time on the wt pin should be at least a time t wt_l . after a por or a reset issued by the watchdog and a fter a wake-up from sleep mode (either by uploading the nrm command, or by using the wake_up pin), the window watchdog will open an active wind ow of a time t wdt_init , during which a watchdog restart must be issued by the c. if no wa tchdog restart is received by the end of the open w indow, the c will be reset. after this initial period, the window watchdog is p rogrammed to wait a time t wdt_closed during which no watchdog restarts are allowed. if a watchdog restart is sent during the c losed window time, the watchdog will reset the mast er via the mr (master reset) pin. after a closed window, an open window of a time t wdt_open will follow during which a watchdog restart is expe cted. if no watchdog restart is received till the end of the op en window, the c will be reset via the mr pin. changing mode between normal running mode and stand by mode will not influence the watchdog timing or s tate. also a cr command will not change the used window times. t he watchdog counter will not be influenced when cha nging mode between nrm and stby or when uploading a cr command . the watch dog timer is disabled in sleep mode. a fa lling edge on the wt pin in the sleep mode will set an error flag in th e register err. coming back from sleep mode to norm al running mode always restarts the watchdog with t he initial timing window. this figure shows what timing windows are used in t he different operating modes: wdt window device state nrm stby nrm slp nrm t wdt_init t wdt_init t wdt_ cl osed t wd t_o pen t wdt_ cl osed t wd t_o pen t wdt_ cl osed t wd t_o pen por t wdt_ cl osed t wd t_o pen figure 16 : window times during different operating modes the two diagrams below show the functionality of th e watchdog timer:
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 58 of 72 3901075030 t ms high = active window missing wt initial period t high = active window t wdt_init initial period high = active window wt (watchdog trigger) mr (master reset) initial period t ms high = active window initial period watchdogwindow watchdogwindow mr (master reset) wt (watchdog trigger) premature wt t wdt_closed t wdt_open t wdt_closed t wdt_open t wdt_open t wdt_init figure 17 : functionality of the window watchdog ti mer a reset of the c due to time-out of the watchdog i s achieved by setting the mr pin low during a time t mr (default state of the mr pin is high). when the device is operating in sleep or standby mo de, the wake_up pin will be monitored. when a falling edge is detected on that pin, the device will switch to nor mal running mode and, when waking up from sleep mod e, the watchdog timer will be started (with an initial window time of t wdt_init ). note that no pull-up or pull-down resistor is fores een on the wake_up pin. to avoid that parasitic spikes can wake up the device, the wake_up input is debounced (typical debounce time is in th e range of 2s). the low time on the wake_up pin should be at least a time t wu_l .
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 59 of 72 3901075030 7.6. 7.6. 7.6. 7.6. reset behaviour reset behaviour reset behaviour reset behaviour power-on reset after a power-on reset, the device is operating in normal running mode. all internal data registers ar e set to their initial state: ? the device state is normal running mode ? the watchdog counter is initialized to generate the initial window time ? all registers containing (diagnostic) measurement d ata are initialized to 0x00 ? bits 7, 4, 3 of the internal status flags are clear ed ? the user settings registers are set to their initia l values (see section 7.4) ? the 'err' register will initialize to 0x00. however , as some voltages are continuously measured, it wi ll reflect immediately if an error is detected or not. the mr pin will be initialized to '1'. the dr pin will be initialized to '0', but after the time t startup it will switch to '1' to indicate that the device is ready to accept the first comman d (see also section 7.9). the output of the miso pin is depending on the cs state: if cs is high, the miso pin is in tri-state. if cs is low, the output of the miso pin is undefined. cr command at every upload of the cr command, the device retur ns to the state like it is after a power-on-reset, except for the watchdog counter and the state of the mr line. the watchdog counter and the state of the mr line will not be influenced by uploading a cr command. also, the cr command will n ot change the contents of the 'rst' register. after a cr command the dr pin will be kept low duri ng a time t startup . read-out at the end of each read-out, all registers containi ng (diagnostic) measurement data are cleared to 0x0 0. watchdog time-out when a reset occurs due to a watchdog time-out, the mr pin will go low for a time t mr . the watchdog counter will be initialized with the window time t wdt_init . all other states, lines and registers of the asic will not be affected. changing operation mode when changing operation mode (rslp, cslp, rstby, cs tby, nrm) the right status flags are set. changing operation mode will not affect the user se ttings registers and the (diagnostic) measurement d ata registers. the dr pin will be set to '0' and after the time t wakeup_slp resp. t wakeup_stby it will be set to '1', when waking up from sleep r esp. standby mode.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 60 of 72 3901075030 7.7. 7.7. 7.7. 7.7. wake wake wake wake- -- -up from sleep or standby up from sleep or standby up from sleep or standby up from sleep or standby the figure below shows what happens when switching operation mode, and the behaviour of the dr pin and the watchdog timer. the wake_up pin is only monitored during sleep and standby. wh en a falling edge is detected during sleep or stand by, the following will happen: - the dr pin goes low for a time t wakeup_stby or t wakeup_slp - the watchdog timer is initialised and starts coun ting, when waking up from sleep - the device changes to normal running mode, enabli ng the appropriate blocks wake-up nrm mode stby mode slp mode watchdog active active dr level depending on cr/sm/sd por init init t startup t wakeup_stby t wakeup_slp level depending on cr /sm/sd level depending on cr /sm/ sd figure 18 : behaviour of dr and watchdog when switc hing mode
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 61 of 72 3901075030 7.8. 7.8. 7.8. 7.8. crc calculation crc calculation crc calculation crc calculation the 8-bit crc calculation will be based on the poly nomial x 8 + x 2 + x 1 + x 0 . this polynomial is widely used in the industry, i t is e.g. used for generating: ? the header error correction field in atm (asynchron ous transfer mode) cells ? the packet error code in smbus data packets some probabilities of detecting errors when using t his polynomial: ? 100% detection of one bit errors ? 100% detection of double bit errors (adjacent bits) ? 100% detection of two single-bit errors for frames less than 128 bits in length ? 100% detection of any odd number of bits in error ? 100% detection of burst errors up to 8 bits ? 99.61% detection of any random error a possible hardware implementation using a linear f eedback shift register (lfsr) is shown in the figur e below: figure 14: 8-bit crc implementation using a lfsr the generation of the crc requires the following st eps: ? reset all flip-flops ? 0x00 is the initial value, shifting in all zeroes d oes not affect the crc ? shift in the read-out data bytes. first byte is dat a byte 1 (= internal status flags), last byte is da ta byte (x+1) (with x defined in figure 12). ? when the last byte has been shifted in, the flip-fl ops contain the crc: crc=ff[8..1]. an easy method to check if there were no transmissi on errors is to calculate the crc of the whole read -out data stream including the crc byte. when the calculated crc res ults in 0x00, the transmission was most likely erro r free. if the resulting crc is not equal to zero, then an error occurred in the transmission and the complete data stream shou ld be ignored. some crc results for example messages are given in table 24. ascii string messages crc result - none - 0x00 "a" 0xc0 "123456789" 0xf4 a string of 256 upper case "a" characters with no line breaks 0x8e table 24: crc examples
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 62 of 72 3901075030 7.9. 7.9. 7.9. 7.9. global timing diagrams global timing diagrams global timing diagrams global timing diagrams a global timing diagram with separate sm-ro cycles is given in figure 19. after power-up there is a po wer-on-reset phase (por) to initialize the sensor into a reset state. when the device is ready to accept the first comman d, the dr pin goes high. in figure 19 the first command is the wr command to define the contents of the user registers (optiona lly). the first measurement cycle is e.g. initiated by uploading a sm command. after completion of the measurement cyc le, the dr goes high. this indicates that the read-out cycle can be started. a ro command has to be uploaded to bring the data on the miso pin. when the read-out is completed, a new measurem ent cycle can be started. in figure 19 a sm command is used. this starts a next measurement cycle. once dr is high, a read-out can be done again. in between different measurement/read-out cycles, t he user registers can be changed with wr commands. optionally those registers can be read back with the rr comman d to check if the right values were uploaded. figure 19: global timing diagram with separate sm-r o figure 20 shows a timing diagram wherein separate s m-ro cycles are mixed with combined sm-ro cycles. a fter the power- on-reset phase, a sm measurement cycle is started. once the dr pin is high, the data can be read out. a sm comman d with extra clocks is used to combine the read-out and th e start of the next measurement cycle. with the ext ra clocks, the data of the internal registers is transferred to the miso pin. when the cs pin goes high, the next measurement cycle (sm) wil l be started. once the dr pin is high, a normal ro command is uploaded to br ing the data to the miso pin. if needed, the settings in the user registers can be changed with the wr command a nd optionally the rr command can be used to check i f the right values were uploaded. a new measurement cycle can be started with e.g. a normal sm command. when the dr pin is high, the data can be transferred by uploading e.g. a sm command that com bines the read-out and the start of a new measureme nt cycle. cs sclk mosi miso idle s m measurement device state dr idle r ead-out 0 data a vailable filling up 0 internal registers e mpty ing s m p or (wr) s m output d ata s m meas urement idle r ead-out idle data a vailable filling up 0 e mpty ing ro output data s m meas urement idle read-out d ata a v ailable filling up 0 e mptying s m (wr) s m output data s m measurement filling up idle data a vailable por figure 20: global timing diagram with separate sm-r o and combined sm-ro together
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 63 of 72 3901075030 mlx75308ba temperatures [deg.c] vs. adc out of temp erature sensor (slope and offset depends on calib1 and calib2) -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 20250 19750 19250 18750 18250 17750 17250 16750 16250 15750 15250 14750 14250 13750 13250 12750 12250 11800 11300 10800 10300 9800 9300 8800 8300 7800 7300 6800 6300 5800 5300 4800 4300 3800 3300 2800 adc output of temperature sensor [lsb] temperature [deg. c] 0 0 0 16 0 32 0 48 0 63 8 0 8 16 8 32 8 48 8 63 24 0 24 16 24 32 24 48 24 63 31 0 31 16 31 32 31 48 31 63 16 32 calib1 calib2 bold green calib1 = 16 / calib2 = 32: no offset at 30 deg. c and slope is -67 lsb/k mlx75308ba dc light measurement at rain channels 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 0 50 100 150 200 250 300 350 400 450 500 idc [ua] a d c o u t [l s b ] pda pdb 8. performance graphs 8.1. 8.1. 8.1. 8.1. activelight channel dc measurement activelight channel dc measurement activelight channel dc measurement activelight channel dc measurement 8.2. 8.2. 8.2. 8.2. temperature sensor temperature sensor temperature sensor temperature sensor characteristics characteristics characteristics characteristics 8.3. 8.3. 8.3. 8.3. ambient light channel c ambient light channel c ambient light channel c ambient light channel c 8.4. 8.4. 8.4. 8.4. ambient light channel d ambient light channel d ambient light channel d ambient light channel d -10000 0 10000 20000 30000 40000 50000 1.e-12 1.e-11 1.e-10 1.e-09 1.e-08 1.e-07 1.e-06 1.e-05 1.e -04 1.e-03 1.e-02 ambient current channel c [a] adc out [lsb] detection range channel pdc min offset (-2304lsb) @ 100ua and max slope (6500 lsb/dec) max offset (2304lsb) @ 100ua and min slope (5300 lsb/dec) mlx75030 mlx75030 dc light measurement at active light channels
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 64 of 72 3901075030 9. application information 9.1. 9.1. 9.1. 9.1. application circuit for 2 activelight channels and 2 ambient light application circuit for 2 activelight channels and 2 ambient light application circuit for 2 activelight channels and 2 ambient light application circuit for 2 activelight channels and 2 ambient light channels channels channels channels component type value description c1 smd capacitor 47nf blocking capacitor, connected to analog gnd c2 smd capacitor 68nf blocking capacitor for int. voltage regulator, connected to analog gnd r1 smd resistor 6.4 ohms shunt resistor r2 smd resistor 56k ohms ambient light diagnostic t ermination resistor m1 led driver mosfet m2 led driver mosfet led1/2 active light channel infrared led pda / pdb active light channel infrared photodiode, daylight blocking mold pdc v-lambda photodiode pdd photodiode table 25: application circuit components for 2 acti velight and 2 ambient light channels
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 65 of 72 3901075030 10. application comments the mlx75030 is featuring very sensitive current in puts on the pins 9 and 10 for active light detectio n and on the pins 11 and 12 for ambient light measurements in a range over s everal orders of magnitude. in order to achive opti mum results in the application it is recommended to consider the follo wing hints for the design of the pcb: 1. the both supply voltage pins 16 (vdda for analog ci rcuit parts) and 23 (vddd for digital circuit parts ) shall be star- connected to the local (external) regulator output (3.0v-3.6v) in order to avoid digital disturbance i njection into the analog supply. 2. note that the device works with two separate ground connections: pin 15 works as analog ground for the sensitive input circuitry whereas pin 24 works as digital ground an d as ground connection of the led path, which carri es high pulse currents. 3. the exposed pad of the package should be star-conne cted to the local (external) ground pin of the regu lator. 4. the external blocking capacitors c1 and c2 shall be placed as close as possible to the corresponding p ins of the device. 5. the external photodiodes on the active light channe l inputs as well as on the ambient light inputs sha ll be placed as close as possible to the corresponding pins of the device. if this is not possible due to constructive reasons, the connections shall be shielded by a noise-free analo g ground plane in order to avoid performance-loss d ue to disturbance coupling. 6. notice that gndamb must not be connected to any gnd line on the pcb. this terminal is actively switche d to supply voltage during diagnosis mode. 7. note that not connected input channels (activelight , ambient light) must be disabled in the enchan reg ister. 8. for diagnosis purposes on pin diagamb a current of 10ua is recommended. for a current in this range th e diagnosis result is least sensitive to temperature.
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 66 of 72 3901075030 11. tape and reel specification
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 67 of 72 3901075030
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 68 of 72 3901075030
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 69 of 72 3901075030 12. standard information regarding manufacturability of melexis products with different soldering proces ses our products are classified and qualified regarding soldering technology, solderability and moisture s ensitivity level according to following test methods: reflow soldering smds (surface mount devices) ? ipc/jedec j-std-020 moisture/reflow sensitivity classification for nonh ermetic solid state surface mount devices (classification reflow profiles according to table 5-2) ? eia/jedec jesd22-a113 preconditioning of nonhermetic surface mount device s prior to reliability testing (reflow profiles according to table 2) wave soldering smds (surface mount devices) and th ds (through hole devices) ? en60749-20 resistance of plastic- encapsulated smds to combin ed effect of moisture and soldering heat ? eia/jedec jesd22-b106 and en60749-15 resistance to soldering temperature for through-hol e mounted devices iron soldering thds (through hole devices) ? en60749-15 resistance to soldering temperature for through-hol e mounted devices solderability smds (surface mount devices) and thd s (through hole devices) ? eia/jedec jesd22-b102 and en60749-21 solderability for all soldering technologies deviating from above mentioned standard conditions (regarding peak temp erature, temperature gradient, temperature profile etc) addi tional classification and qualification tests have to be agreed upon with melexis. the application of wave soldering for smds is allo wed only after consulting melexis regarding assuran ce of adhesive strength between device and board. melexis is contributing to global environmental con servation by promoting lead free solutions. for more information on qualifications of rohs compliant products (rohs = european directive on t he restriction of the use of certain hazardous substances) please visit the quality page on our we bsite: https://www.melexis.com/en/quality-environme nt
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 70 of 72 3901075030 13. esd precautions electronic semiconductor products are sensitive to electro static discharge (esd). always observe electro static discharge control pro cedures whenever handling semiconductor products. 14. package information d x e n e a a1 a3 d2 e2 l k b quad all dimensions in mm 4 x 4 24 0.50 0.05 min 0.80 0.00 0.20 ref 2.50 2.50 0.35 0.20 0.18 max 1.00 0.05 2.70 2.70 0.45 C 0.30 table 26: package dimensions package jc [c/w] ja [c/w] (jedec 1s0p board) ja [c/w] (jedec 1s2p board) qfn 4x4 16 154 50 table 27: ? ?? ? ja values
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 71 of 72 3901075030 15. marking information figure 21: package marking of the mlx75030 device i n qfn24 4x4 smd package 6 - digit type number 6 - digit lot number 4-digit date code format: yyww
mlx75030 universal activelight sensor interface datasheet revision 005 C december 2013 page 72 of 72 3901075030 16. disclaimer devices sold by melexis are covered by the warranty and patent indemnification provisions appearing in its term of sale. melexis makes no warranty, express, statutory, impl ied, or by description regarding the information se t forth herein or regarding the freedom of the described devices from patent infringement. melexis reserves the right to change specifications and prices at any time and without notice. therefor e, prior to designing this product into a system, i t is necessary to check with melexis for current information. this product is intended for use in normal commercial applicatio ns. applications requiring extended temperature range, unusual envir onmental requirements, or high reliability applicat ions, such as military, medical life-support or life-sustaining equipment a re specifically not recommended without additional processing by melexis for each application. the information furnished by melexis is believed to be correct and accurate. however, melexis shall no t be liable to recipient or any third party for any damages, including but n ot limited to personal injury, property damage, los s of profits, loss of use, interrupt of business or indirect, special incident al or consequential damages, of any kind, in connec tion with or arising out of the furnishing, performance or use of the technical data herein. no obligation or liability to recipie nt or any third party shall arise or flow out of melexis rendering of technica l or other services. ? 2012 melexis nv. all rights reserved. for the latest version of this document, go to our website at www.melexis.com or for additional information contact melexis direc t: europe, africa, asia: america: phone: +32 1367 0495 phone: +1-248-306-5400 e-mail: sales_europe@melexis.com e-mail: sales_usa@melexis.com iso/ts 16949 and iso14001 certified


▲Up To Search▲   

 
Price & Availability of MLX75030RLQAAA-000TU

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X