![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
p r o du c t o v e r vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy dual, 14 - bit, 1.25 gsps, 1.2 v/2.5 v, analog - to - digital converter data sheet ad9680 rev. c information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their re spective owners. one technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ? 2014 C 2015 analog devices, inc. all rights reserved. features jesd204b (subclass 1) coded serial digital outputs 1.65 w total power per channel at 1 gsps (default settings) sfdr at 1 gsps = 85 dbfs at 340 mhz, 80 dbfs at 1 ghz snr at 1 gsps = 65.3 dbfs at 340 mhz (a in = ?1.0 dbfs), 60.5 dbfs at 1 ghz (a in = ?1.0 dbfs) enob = 10.8 bits at 10 mhz dnl = 0.5 lsb inl = 2.5 lsb noise density = ?154 dbfs/hz at 1 gsps 1.25 v, 2.5 v, and 3.3 v dc supply operation no missing codes internal adc voltage reference flexible input range: 1.46 v p - p to 1.94 v p - p ad9680 - 1250 : 1.58 v p - p nominal ad9680 - 1000 and ad9680 - 820 : 1.70 v p - p nominal ad9680 - 500 : 1.46 v p - p to 2.06 v p - p (2.06 v p - p nominal) programmable termination impedance 400 , 200 , 100 , and 50 diffe rential 2 ghz usable analog input full power bandwidth 95 db channel isolation/crosstalk amplitude detect bits for efficient agc implementation 2 integrated wideband digital processors per channel 12- bit nco, up to 4 half - band filters differential clock input integer clock divide by 1, 2, 4, or 8 flexible jesd204b lane configurations small signal dither applications communications diversity multiband, multimode digital receivers 3g/4g, td - scdma, w - cdma, gsm, lte general - purpose software radios ultrawideba nd satellite receivers instrumentation radars signals intelligence (sigint) docsis 3.0 cmts upstream receive paths hfc digital reverse path receivers functional block dia gram vin+a vin?a vin+b vin?b clk+ clk? ad9680 serdout0 serdout1 serdout2 serdout3 2 4 sysref clock generation 14 14 pdwn/ stby syncinb fd_a fd_b buffer buffer jesd204b high speed serializer tx outputs jesd204b subclass 1 control v_1p0 8 agnd drgnd dgnd sdio sclk csb avdd1 (1.25v) avdd2 (2.5v) avdd3 (3.3v) avdd1_sr (1.25v) dvdd (1.25v) drvdd (1.25v) spivdd (1.8v to 3.3v) 4 fast detect fast detect signal monitor signal monitor adc core adc core spi control ddc ddc 11752-001 control registers figure 1. product highlights 1. wide full power bandwidth supports if sampling of signals up to 2 ghz. 2. buffered inputs with programmable input termination eases filter design and implementation. 3. four integrated wideband decimation filters and numerically controlled oscillator (nco) blocks supporting mul tiband receivers. 4. flexible serial port interface (spi) controls various product features and functions to meet specific system requirements. 5. programmable fast overrange detection. 6. 9 mm 9 mm, 64 - lead lfcsp.
p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 2 of 97 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 functional block diagram .............................................................. 1 product highlights ........................................................................... 1 revision history ............................................................................... 3 general description ......................................................................... 4 specifications ..................................................................................... 5 dc specifications ......................................................................... 5 ac specifications .......................................................................... 6 digital specifications ................................................................... 8 switching specifications .............................................................. 9 timing specifications ................................................................ 10 absolute maximum ratings .......................................................... 12 thermal characteristics ............................................................ 12 esd caution ................................................................................ 12 pin configuration and function descriptions ........................... 13 typical performance characteristics ........................................... 15 ad9680 - 1250 .............................................................................. 15 ad9680 - 1000 .............................................................................. 19 ad9680 - 820 ................................................................................ 24 ad9680 - 500 ................................................................................ 29 equivalent circuits ......................................................................... 33 theory of operation ...................................................................... 35 adc architecture ...................................................................... 35 analog input considerations .................................................... 35 voltage reference ....................................................................... 41 clock input considerations ...................................................... 42 adc overrange and fast detect .................................................. 44 adc overrange .......................................................................... 44 fast threshold detection (fd_a and fd_b) ........................ 44 signal monitor ................................................................................ 45 sport over jesd204b ............................................................. 46 digital downconverter (ddc) ..................................................... 48 ddc i/q input selection .......................................................... 48 ddc i/q output selection ....................................................... 48 ddc general description ........................................................ 48 frequency translation ................................................................... 54 frequency translation general description .............................. 54 ddc nco plus mixer loss and sfdr ................................... 55 numerically controlled oscillator .......................................... 55 fir filters ........................................................................................ 57 fir filters general description ............................................... 57 half - band filters ........................................................................ 58 ddc gain stage ......................................................................... 60 ddc complex to real conversion ......................................... 60 ddc example configurations ................................................. 61 digital outputs ............................................................................... 64 introducti on to the jesd204b interface ................................. 64 jesd204b overview .................................................................. 64 functional overview ................................................................. 65 jesd204b link establishment ................................................. 65 physical layer (driver) outputs .............................................. 67 jesd204b tx converter mapping ........................................... 69 configuring the jesd204b link .............................................. 71 multichip synchronization ............................................................ 74 sysref setup/hold window monitor ................................. 76 test modes ....................................................................................... 78 adc test modes ........................................................................ 78 jesd204b block test modes .................................................... 79 serial port interface ........................................................................ 81 configuration using the spi ..................................................... 81 hardware interface ..................................................................... 81 spi accessible features .............................................................. 81 memory map .................................................................................. 82 reading the memory map register table ............................... 82 memory map register table ..................................................... 83 ap plications information .............................................................. 96 power supply recommendations ............................................. 96 exposed pad thermal heat slug recommendations ............ 96 avdd1_sr (pin 57) and agnd (pin 56 and pin 60) .............. 96 outline dimensions ....................................................................... 97 ordering g uide .......................................................................... 97 p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 3 of 97 revision history 1 1 /15 rev. b to rev. c added ad9680 - 1250 ......................................................... universal changes to features section ............................................................ 1 change to general description section ......................................... 4 changes to table 1 ............................................................................ 5 changes to table 2 ............................................................................ 6 changes to table 4 ............................................................................ 9 changes to table 5 .......................................................................... 10 changes to figure 4 ......................................................................... 11 changes to pin 14 description, table 8 ....................................... 14 added ad9680 - 1250 section and figure 6 to figure 29; renumbered sequentially .............................................................. 15 chan ges to figure 113 .................................................................... 34 changes to analog i nput considerations section ...................... 35 changes to table 9 .......................................................................... 36 changes to input buffer control registers (0x018, 0x019, 0x01a, 0x935, 0x934, 0x11a) section .......................................... 37 added figure 118 to figure 120 .................................................... 37 changes to table 10 ........................................................................ 40 changes to table 17 ........................................................................ 57 changes to adc test modes section ........................................... 78 changes to table 36 ........................................................................ 83 changes to ordering guide ........................................................... 97 3/15 rev. a to rev. b added ad9680 - 820 ........................................................... universal changes to features section ............................................................ 1 changes to table 1 ............................................................................ 5 changes to table 2 ............................................................................ 6 changes to table 3 ............................................................................ 8 changes to table 4 ............................................................................ 9 added figure 14; renumbered sequentially ............................... 15 added a d9680 - 820 section and figure 31 through figure 36 ... 19 added figure 37 through figure 42 ............................................ 20 added figure 43 through figure 48 ............................................ 21 added figure 49 through figure 54 ............................................ 22 added figure 55 .............................................................................. 23 changes to f igure 69 and figure 70 ............................................. 26 changes to input buffer control registers (0x018, 0x019, 0x01a, 0x935, 0x934, 0x11a) section, table 9, and figure 93 .................... 31 added figure 99 through figure 100 .......................................... 33 changes to table 10 ........................................................................ 34 changes to clock jitter considerations section ......................... 37 added figure 112 ............................................................................ 37 changes to digital downconverter (ddc) section ................... 42 changes to table 17 ........................................................................ 51 changes to table 36 ........................................................................ 77 changes to ordering guide ........................................................... 91 12/14 rev. 0 to rev. a added ad9680 - 500 ........................................................... universal changes to features section and figure 1 ..................................... 1 changes to general description section ....................................... 4 changes to specifications section and table 1 ............................. 5 changes to ac specifications section and table 2 ....................... 6 changes to digital specifications section ..................................... 8 changes to switching specifications section and table 4 ........... 9 changes to table 6, therm al characteristics section, and table 7 ............................................................................................... 11 change to digital inputs description, table 8 ............................ 13 added ad9680 - 1000 section, figure 10, and figure 11; renumbered sequentially .............................................................. 14 changes to figure 6 to figure 9 .................................................... 14 added figure 12 to figure 14 ........................................................ 15 changes to figure 15 to figure 17 ................................................ 15 changes to figure 18 to figure 21 ................................................ 16 changes to figure 25 and figure 29 ............................................. 17 changes to figure 30 ...................................................................... 18 deleted figure 35, figure 36, and figure 38 ................................ 19 added ad9680 - 500 section and figure 31 to figure 54 ............. 19 changes to analog input considerati ons section and differential input configurations section ................................... 25 added input buffer control registers (0x018, 0x019, 0x01a, 0x935, 0x934, 0x11a) section, figure 66, figure 68, and table 9; renumbered sequentially .............................................................. 26 changes to analog input buffer controls and sfdr optimization section and figure 67 ............................................ 26 added figure 69 to figure 72 ........................................................ 27 added figure 73 to figure 75 ........................................................ 28 changes to table 10 ........................................................................ 28 added input clock divider ? period delay adjust section and clock fine delay adjust section ................................................... 30 changes to figure 83 and temperature diode section ............. 31 added signal monitor section and figure 86 to figure 89 ....... 33 changes to table 11 ........................................................................ 39 changes to table 12 to table 14 .................................................... 40 changes to table 16 ........................................................................ 41 deleted figure 65 and figure 66 ................................................... 45 changes to table 17 ........................................................................ 45 changes to table 19 to table 20 .................................................... 46 changes to table 22 ........................................................................ 47 changes to table 23 ........................................................................ 49 changes to jesd204b link establishment section ................... 53 added figure 105 to figure 110 .................................................... 56 changes to example 1: full bandwidth mode section .............. 60 added multichip synchronization section, figure 115 to figure 117, and table 28 ................................................................. 62 added test modes section and table 29 to table 33 ................. 66 changes to reading the memory map register table section ....... 70 changes to table 36 ........................................................................ 71 changes to power supply recommendations section, figure 118, and exposed pad thermal heat slug recommend ations section ............................................................ 83 changes to ordering guide ........................................................... 84 5/14 revision 0: initial version p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 4 of 97 general description the ad9680 is a dual, 14 - bit, 1.25 gsps/1 gsps/820 msps/ 500 msps analog - to - digital converter (adc). the device has an on - chip buffer and sample - and - hold circuit designed for low power, small size , and ease of use. this device is designed for sampling wide bandwidth analog signals of up to 2 ghz. the ad9680 is optimized for wide input bandwidth, high sampling rate, excellent linearity, and low power in a small package. the dual adc cores feature a multistage, differential pipelined architecture with integrated output error correction logic. each adc features wide bandwidth inputs supporting a variety of user - selectable input ranges. an inte grated voltage reference eases design considerations. the analog input and clock signals are differential inputs. each adc data output is internally connected to two digital down - converters (ddcs). each ddc consists of up to five cascaded signal processing stages: a 12 - bit frequency translator (nco), and four half - band decimation filters. the ddcs are bypassed by default. in addition to the ddc blocks, the ad9680 has several functions that simplif y the automatic gain control (agc) function in the communications receiver. the programmable threshold detector allows monitoring of the incoming signal power using the fast detect output bits of the adc. if the input signal level exceeds the programmable threshold, the fast detect indicator goes high. because this threshold indicator has low latency, the user can quickly turn down the system gain to avoid an overrange condition at the adc input. users can configure the subclass 1 jesd204b - based high speed serialized output in a variety of one - , two - , or four - lane configurations, depending on the ddc configuration and the acceptable lane rate of the receiving logic device. multiple device synchronization is supported through the sysref and syncinb input pi ns. the ad9680 has flexible power - down options that allow significant power savings when desired. all of these features can be programmed using a 1.8 v to 3.3 v capable , 3 - wire spi. the ad9680 is available in a pb - free, 64 - lead lfcsp and is specified over the ?40c to +85c industrial temperature range. this product is protected by a u.s. patent. p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 5 of 97 specifica tions dc specifications avdd1 = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, avdd1_sr = 1.25 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, specified maximum sampling rate for each speed grade, a in = ?1.0 dbfs, clock divider = 2, default spi settings, t a = 25c, unless otherwise noted. table 1 . ad9680 - 500 ad9680 - 820 ad9680 - 1000 ad9680 - 1250 parameter temp min typ max min typ max min typ max min typ max unit resolution full 14 14 14 14 bits accuracy no missing codes full guaranteed guaranteed guaranteed guaranteed offset error full ?0.3 0 +0.3 ?0.3 0 +0.3 ?0.31 0 +0.31 ?0.31 0 +0.31 % fsr offset matching full 0 0.3 0 0.23 0 0.23 0 0.3 % fsr gain error full ?6 0 +6 ?6 0 +6 ?6 0 +6 ?6 0 +6 % fsr gain matching full 1 5.1 1 5.5 1 4.5 1 4.5 % fsr differential nonlinearity (dnl) full ?0.6 0.5 +0.7 ?0.7 0.5 +0.8 ?0.7 0.5 +0.8 ?0.8 0.5 +0.8 lsb integral nonlinearity (inl) full ?4.5 2.5 +5.0 ?3.3 2.5 +4.3 ?5.7 2.5 +6.9 ?6 3 +6 lsb temperature drift offset error full ?3 ? 10 ?12 ?1 5 ppm/c gain error full 25 54 13.8 92 ppm/c internal voltage reference vol tage full 1.0 1.0 1.0 1.0 v input - referred noise v ref = 1.0 v 25c 2.06 2.46 2.63 3.45 lsb rms analog inputs differential input voltage range (programmable) full 1.46 2.06 2.06 1.46 1.70 1.94 1.46 1.70 1.94 1.46 1.58 1.94 v p - p common - mode voltage (v cm ) 25c 2.05 2.05 2.05 2.05 v differential input capacitance 1 25c 1.5 1.5 1.5 1.5 pf analog input full power bandwidth 25c 2 2 2 2 ghz power supply avd d1 full 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 v avdd2 full 2.44 2.50 2.56 2.44 2.50 2.56 2.44 2.50 2.56 2.44 2.50 2.56 v avdd3 full 3.2 3.3 3.4 3.2 3.3 3.4 3.2 3.3 3.4 3.2 3.3 3.4 v avdd1_sr full 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 v dvdd full 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 v drvdd full 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 1.22 1.25 1.28 v spivdd full 1.7 1.8 3.4 1.7 1.8 3.4 1.7 1.8 3.4 1.7 1.8 3.4 v i avdd1 full 435 467 605 660 685 720 785 880 ma i avdd2 full 395 463 490 545 595 680 675 780 ma i avdd3 full 87 101 125 140 125 142 125 142 ma i avdd1_sr full 15 22 15 18 16 18 17 20 ma i dvdd 2 full 145 152 205 246 208 269 250 325 ma i drvdd 1 full 190 237 200 240 200 225 220 300 ma i drvdd (l = 2 mode) 25c 140 n/a 3 n/a 3 n/a 3 ma i s pivdd full 5 6 5 6 5 6 5 6 ma p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 6 of 97 ad9680 - 500 ad9680 - 820 ad9680 - 1000 ad9680 - 1250 parameter temp min typ max min typ max min typ max min typ max unit power consumption total power dissipation (including output drivers) 2 full 2.2 2.9 3.3 3.7 w total pow er dissipation ( l = 2 mode ) 25c 2.1 n/a 3 n/a 3 n/a 3 w power - down dissipation full 700 820 835 1030 mw standby 4 full 1.2 1.3 1.4 1.66 w 1 all lanes running. power dissipation on drvdd changes with lane rate and number of lanes used. 2 default mode. no ddcs used. l = 4, m = 2, f = 1. 3 n/a means not applicable. at the maximum sample rate, it is not applicable to use l = 2 mode on the jesd204b output interface because this exceeds the maximum lane rate of 12.5 gbps. l = 2 mode is support ed when the equation ((m n? (10/8) f out )/l) results in a line rate that is 12.5 gbps. f out is the output sample rate and is denoted by f s /dcm, where dcm is the decimation ratio. 4 can be controlled by the spi. ac specifications avdd1 = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, avdd1_sr = 1.25 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, specified maximum sampling rate for each speed grade, a in = ?1.0 dbfs, clock divider = 2, default spi settings, t a = 25c, unless otherwise noted. table 2 . ad9680 - 500 ad9680 - 820 ad9680 - 1000 ad9680 - 1250 parameter 1 temp min typ max min typ max min typ max min typ max unit analog input full scale full 2.06 1.7 1.7 1.58 v p -p noise density 2 full ?153 ?153 ?154 ?151.5 dbfs/hz signal - to - noise ratio (snr) 3 f in = 10 mhz 25c 69.2 67.2 67.2 63.6 dbfs f in = 170 mhz full 67.8 69.0 65.6 67.0 65.1 66.6 61.5 63.2 dbfs f in = 340 mhz 25c 68.6 66.5 65.3 62.8 dbfs f in = 450 mhz 25c 68.0 65.1 64.0 62.2 dbfs f in = 765 mhz 25c 64.4 64.0 61.5 61.1 dbfs f in = 985 mhz 25c 63.8 63.4 60.5 59.2 dbfs f in = 1950 mhz 25c 60.5 59.7 57.0 55.5 dbfs snr and distortion ratio (sinad) 3 f in = 10 mhz 25c 69.0 67.1 67.1 63.5 dbfs f in = 170 mhz full 67.6 68.8 65.2 66.8 65.0 66.4 61.4 62.8 dbfs f in = 340 mhz 25c 68.4 66.3 65.2 62.6 dbfs f in = 450 mhz 25c 67.9 64.7 63.8 61.8 dbfs f in = 765 mhz 25c 64.2 63.5 62.1 60.8 dbfs f in = 985 mhz 25c 63.6 62.7 61.1 58.2 dbfs f in = 1950 mhz 25c 60.3 58.7 56.0 51.5 dbfs effective number of bits (enob) f in = 10 mhz 25c 11.2 10.9 10.8 10.3 bits f in = 170 mhz full 10.9 11.1 10.5 10.8 10.5 10.7 9.9 10.1 bits f in = 340 mhz 25c 11.1 10.7 10.5 10.1 bits f in = 450 mhz 25c 11.0 10.5 10.3 10.0 bits f in = 765 mhz 25c 10.4 10.3 10.0 9.8 bits f in = 985 mhz 25c 10.3 10.1 9.8 9.4 bits f in = 1950 mhz 25c 9.7 9.5 9.0 8.3 bits p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 7 of 97 ad9680 - 500 ad9680 - 820 ad9680 - 1000 ad9680 - 1250 parameter 1 temp min typ max min typ max min typ max min typ max unit spurious - free dynamic range (sfdr) 3 f in = 10 m hz 25c 83 91 88 84 dbfs f in = 170 mhz full 80 88 75 83 75 85 74 77 dbfs f in = 340 mhz 25c 83 81 85 78 dbfs f in = 450 mhz 25c 81 78 82 76 dbfs f in = 765 mhz 25c 80 78 82 77 dbfs f in = 985 mhz 25c 75 74 80 71 dbfs f in = 1950 mhz 25c 70 70 68 61 dbfs worst harmonic, second or third 3 f in = 10 mhz 25c ?83 ?91 ?88 ?84 dbfs f in = 170 mhz full ?88 ?80 ?83 ?75 ?85 ?75 ?77 ? 74 dbfs f in = 340 mhz 25c ?83 ?81 ?85 ?78 dbfs f in = 450 mhz 25c ?81 ?78 ?82 ?76 dbfs f in = 765 mhz 25c ?80 ?78 ?82 ?77 dbfs f in = 985 mhz 25c ?75 ?74 ?80 ?71 dbfs f in = 1950 mhz 25c ?70 ?70 ?68 ?61 dbfs worst other, excluding second or third harmonic 3 f in = 10 mhz 25c ? 95 ?97 ?95 ?87 dbfs f in = 170 mhz full ? 95 ? 82 ?93 ?80 ?94 ?81 ?79 ? 74 dbfs f in = 340 mhz 25c ? 93 ?91 ?88 ?81 dbfs f in = 450 mhz 25c ? 93 ?90 ?86 ?79 dbfs f in = 765 mhz 25c ? 88 ?83 ?81 ?79 dbfs f in = 985 mhz 25c ? 89 ?84 ?82 ?77 dbfs f in = 1950 mhz 25c ? 84 ?74 ?75 ?69 dbfs two - tone intermodulation distortion (imd), a in1 and a in2 = ?7 dbfs f in1 = 185 mhz, f in2 = 188 mhz 25c ?88 ?90 ?87 ?82 dbfs f in1 = 338 mhz, f in2 = 341 mhz 25c ?88 ?87 ?88 ?78 4 dbfs crosstalk 5 25c 95 95 95 95 db full power bandwidth 6 25c 2 2 2 2 ghz 1 see the an - 835 application note, understanding high speed adc testing and evaluation , for definitions and for details on how these tests were completed. 2 noise density is measured at a low analog input frequency (30 mhz). 3 see table 10 for the recommended settings for full - scale voltage and buffer current setting s. 4 measurement taken with 449 mhz and 452 mhz inputs for two - tone. 5 crosstalk is measured at 170 mhz with a ?1.0 dbfs analog input on one channel and no input on the adjacent channel. 6 measured with the circuit shown in figure 115. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 8 of 97 digital specificatio ns avdd1 = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, avdd1_sr = 1.25 v, dvd d = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, specified maximum sampling rate for each speed grade, a in = ?1.0 dbfs, clock divider = 2, default spi settings, t a = 25c, unless otherwise noted. table 3 . parameter temperature min typ max unit clock inputs (clk+, clk?) logic compliance full lvds/lvpecl differential input voltage full 600 1200 1800 mv p -p input common - mode voltage full 0.85 v input resistance (differential) full 35 k? input capacitance full 2.5 pf sysref inputs (sysref+, sysref?) logic compliance full lvds/lvpecl differential input voltage full 400 1200 1800 mv p -p input common - mode voltage full 0.6 0.85 2.0 v input resistance (differential) full 35 k? input capacitance (differential) full 2.5 pf logic inputs (sdi, sclk, csb, pdwn/stby) logic compliance full cmos logic 1 voltage full 0.8 spivdd v logic 0 voltage full 0 0.5 v input resistance full 30 k? logic output (sdio) logic compliance full cmos logic 1 voltage (i oh = 800 a) full 0.8 spivdd v logic 0 voltage (i ol = 50 a) full 0 0.5 v syncin input (syncinb+/syncinb?) logic compliance full lvds/lvpecl/cmos differential input voltage full 400 1200 1800 mv p -p input common - mode voltage full 0.6 0.85 2.0 v input resistance (differential) full 35 k? input capacitance full 2.5 pf logic outputs (fd_a, fd_b) logic compliance full cmos logic 1 voltage full 0.8 spivdd v logic 0 voltage full 0 0.5 v input resistance full 30 k? digital outputs (serdoutx, x = 0 to 3) logic compliance full cml differential output voltage full 360 770 mv p -p output common - mode voltage (v cm ) ac - coupled 25c 0 1.8 v short - circuit current (i dshort ) 25c ?100 +100 ma differential return loss (rl diff ) 1 25c 8 db common - mode return loss (rl cm ) 1 25c 6 db differential termination impedance full 80 100 120 ? 1 differential and common - mode return loss are measured from 100 mhz to 0.75 baud rate. p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 9 of 97 switching specificat ions avdd1 = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, avdd1_sr = 1.25 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, specified maximum sampling rate for each speed grade, a in = ?1.0 dbfs, default spi settings, t a = 25c, unless otherwise noted. table 4 . ad9680 - 500 ad9680 - 820 ad9680 - 1000 ad9680 - 1250 parameter temp min typ max min typ max min typ max min typ max unit clock clock rate (at clk+/clk? pins) full 0.3 4 0.3 4 0.3 4 0.3 4 ghz maximum sample rate 1 full 500 820 1000 1250 msps minimum sample rate 2 full 300 300 300 300 msps clock pulse width high full 1000 609.7 500 400 ps clock pulse width low full 1000 609.7 500 400 ps output parameters unit interval (ui) 3 full 80 200 80 121.95 80 100 80 80 ps rise time (t r ) (20% to 80% into 100 ? load) 25c 24 32 24 32 24 32 24 32 ps fall time (t f ) (20% to 80% into 100 ? load) 25c 24 32 24 32 24 32 24 32 ps pll lock time 25c 2 2 2 2 ms data rate per channel (nrz) 4 25c 3.125 5 12.5 3.125 8.2 12.5 3.125 10 12.5 3.1215 12.5 12.5 gbps latency 5 pipeline latency full 55 55 55 55 clock cycles fast detect latency full 28 28 28 28 clock cycles wake - up time 6 standby 25c 1 1 1 1 ms power - down 25c 4 4 4 4 ms aperture aperture delay (t a ) full 530 530 530 530 ps aperture uncertainty (jitter, t j ) full 55 55 55 55 f s rms out - of - range recovery time full 1 1 1 1 clock c ycles 1 the maximum sample rate is the clock rate after the divider. 2 the minimum sample rate operates at 300 msps with l = 2 or l = 1. 3 baud rate = 1/ui. a subset of this range can be supported . 4 default l = 4. this number can be changed based on the sample rate and decimation ratio. 5 no ddcs used. l = 4, m = 2, f = 1. 6 wake - up time is defined as the time required to return to normal operation from power - down mode. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 10 of 97 timing specification s table 5 . parameter test conditions/comments min typ max unit clk+ to sysref+ timing requirements see figure 3 t su_sr device clock to sysref+ setup time 117 ps t h_sr device clock to sysref+ hold time ?96 ps spi timing requirements see figure 4 t ds setup time between the data and the rising edge of sclk 2 ns t dh hold time between the data and the rising edge of sclk 2 ns t clk period of the sclk 40 ns t s setup time between csb and sclk 2 ns t h hold time between csb and sclk 2 ns t high minimum period that sclk must be in a logic high state 10 ns t low minimum period that sclk must be in a logic low state 10 ns t access maximum time delay between falling edge of sclk and output data valid for a read operation 6 10 ns t dis_sdio time required for the sdio pin to switch from an output to an input relative to the sclk rising edge (not shown in figure 4 ) 10 ns timing diagrams serdout0? n ? 54 n ? 53 n ? 52 n ? 51 n ? 1 sample n n + 1 aperture delay n ? 55 clk+ clk? clk+ clk? serdout0+ serdout1? serdout1+ serdout2? serdout2+ serdout3? serdout3+ a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j a b c d e f g h i j converter0 msb converter0 lsb converter1 msb converter1 lsb analog input signal 11752-002 sample n ? 55 encoded into 1 8-bit/10-bit symbol sample n ? 54 encoded into 1 8-bit/10-bit symbol sample n ? 53 encoded into 1 8-bit/10-bit symbol figure 2 . data output timing (full bandwidth mode; l = 4; m = 2; f = 1) p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 11 of 97 clk+ clk? sysref+ sysref? t su_sr t h_sr 1 1752-003 figure 3 . sysref setup and hold timing don?t care don?t care don?t care don?t care sdio sclk t s t dh t clk t ds t access t h r/w a14 a13 a12 a11 a10 a9 a8 a7 d7 d6 d3 d2 d1 d0 t low t high csb 1 1752-004 figure 4 . serial port interface timing diagram p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 12 of 97 absolute maximum rat ings table 6 . parameter rating electrical avdd1 to agnd 1.32 v avdd1_sr to agnd 1.32 v avdd2 to agnd 2.75 v avdd3 to agnd 3.63 v dvdd to dgnd 1.32 v drvdd to drgnd 1.32 v spivdd to agnd 3.63 v agnd to drgnd ?0.3 v to +0.3 v vin x to agnd 3.2 v sclk, sdio, csb to agnd ?0.3 v to spivdd + 0.3 v pdwn/stby to agnd ?0.3 v to spivdd + 0.3 v operating temperature range ?40c to +85c junction temperature range ?40c to +115c storage temperature range (ambient) ?65c to +150c stresses at or above those listed under absolute maximum ratings may cause permanent damage to the product. this is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. operation beyond the maximum operating conditions for extended periods may affect product reliability. thermal characterist ics typical ja , jb , and jc are specified vs. the number of printed circuit board (pcb) layers in different airflow velocities (in m/sec). airflow increases heat dissipation effectively reducing ja and jb . in addition, metal in direct contact with the package leads and exposed pad from metal traces, through holes, ground, and power planes, reduces ja . thermal performance for actual applications requires careful inspection of the conditions in an applica tion. the use of appropriate thermal management techniques is recommended to ensure that the maximum junction temperature does not exceed the limits shown in table 6 . table 7 . thermal resistance values pcb type airflow velocity (m/sec) ja jb jc_top jc_bot unit jedec 2s2p board 0.0 17.8 1, 2 6.3 1, 3 4.7 1, 4 1.2 1, 4 c/w 1.0 15.6 1, 2 5.9 1, 3 n/a 5 c/w 2.5 15.0 1, 2 5.7 1, 3 n/a 5 c/w 1 per jedec 51 - 7, plus jedec 51 - 5 2s2p test board. 2 per jedec jesd51 - 2 (still air) or jedec jesd51 - 6 (moving air). 3 per jedec jesd51 - 8 (still air). 4 per mil - std 883, method 1012.1. 5 n/a means not applicable. esd caution p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 13 of 97 pin configuration an d function descripti ons ad9680 top view (not to scale) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 fd_a drgnd drvdd syncinb? syncinb+ serdout0? serdout0+ serdout1? serdout1+ serdout2? serdout2+ serdout3? serdout3+ drvdd drgnd fd_b 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 avdd1 avdd2 avdd2 avdd1 agnd sysref? sysref+ avdd1_sr agnd avdd1 clk? clk+ avdd1 avdd2 avdd2 avdd1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 avdd1 avdd1 avdd2 avdd3 vin?a vin+a avdd3 avdd2 avdd2 avdd2 avdd2 v_1p0 spivdd pdwn/stby dvdd dgnd avdd1 avdd1 avdd2 avdd3 vin?b vin+b avdd3 avdd2 avdd2 avdd2 spivdd csb sclk sdio dvdd dgnd 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 notes 1. exposed pad. the exposed thermal pad on the bottom of the package provides the ground refence for avddx. this exposed pad must be connected to ground for proper operation. 11752-005 figure 5 . pin configuration (top view) table 8 . pin function descriptions pin no. mnemonic type description power supplies 0 epad ground exposed pad. the exposed thermal pad on the bottom of the package provides the ground reference for avddx. this exposed pad must be connected to ground for proper operation. 1, 2, 47, 48, 49, 52, 55, 61, 64 avdd1 supply analog power supply (1.25 v nominal). 3, 8, 9, 10, 11, 39, 40, 41, 46, 50, 51, 62, 63 avdd2 supply analog power supply (2.5 v nominal). 4, 7, 42, 45 avdd3 supply analog power supply (3.3 v nominal). 13, 38 spivdd supply digital power supply for spi (1.8 v to 3.3 v). 15, 34 dvdd supply digital power supply (1.25 v nominal). 16, 33 dgnd ground ground reference for dvdd. 18, 31 drgnd ground ground reference for drvdd. 19, 30 drvdd supply digital driver power supply (1.25 v nominal). 56, 60 agnd 1 ground ground reference for sysref. 57 avdd1_sr 1 supply analog power supply for sysref (1.25 v nominal). analog 5, 6 vin?a, vin+a input adc a analog input complement/true. 12 v_1p0 input/dnc 1.0 v reference voltage input/do not connect. this pin is configurable through the spi as a no connect or an input. do not connect this pin if using the internal reference. requires a 1.0 v reference voltage input if using an external voltage reference sou rce. 44, 43 vin?b, vin+b input adc b analog input complement/true. 53, 54 clk+, clk? input clock input true/complement. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 14 of 97 pin no. mnemonic type description cmos outputs 17, 32 fd_a, fd_b output fast detect outputs for channel a and channel b. digital inputs 20, 21 syncinb?, syncinb+ input active low jesd204b lvds sync input true/complement. 58, 59 sysref+, sysref? input active high jesd204b lvds system reference input true/complement. data outputs 22, 23 serdout0?, serdout0+ output lane 0 output data complement/true. 24, 25 serdout1?, serdout1+ output lane 1 output data complement/true. 26, 27 serdout2?, serdout2+ output lane 2 output data complement/true. 28, 29 serdout3?, serdout3+ output lane 3 output data complement/true. device under test (dut) controls 14 pdwn/stby input power - down input (active high). the operation of this pin depends on the spi mode and can be configured as power - down or standby. requires an external 10 k ? pull - down resistor . 35 sdio input/output spi serial data input/output. 36 sclk input spi serial clock. 37 csb input spi chip select (active low). 1 to ensure proper a dc operation, connect avdd1_sr and agnd separate ly from the avdd1 and epad connection. for more information , see the applications information section . p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 15 of 97 typical performance characteristics ad9680 - 1250 avdd1 = 1.25 v, avdd1_sr = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, 1.58 v p - p full - scale differential input, a in = ?1.0 dbfs, default spi settings, clock divider = 2, t a = 25c, 128k fft sample, unless otherwise noted. see table 10 for recommended settings. ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 64dbfs enob = 10.3 bits sfdr = 82dbfs buffer current = 3.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-606 figure 6 . single- tone fft with f in = 10.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 63.4dbfs enob = 10.2 bits sfdr = 79dbfs buffer current = 3.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-607 figure 7 . single- tone fft with f in = 170.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 62.8dbfs enob = 10.1 bits sfdr = 76dbfs buffer current = 3.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-608 figure 8 . single- tone fft with f in = 340.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 62.5dbfs enob = 9.9 bits sfdr = 70dbfs buffer current = 3.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-609 figure 9 . single- tone fft with f in = 450.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 60.9dbfs enob = 9.8 bits sfdr = 74dbfs buffer current = 5.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-610 figure 10 . single - tone fft with f in = 765.3 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 59.7dbfs enob = 9.6 bits sfdr = 74dbfs buffer current = 5.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-6 1 1 figure 11 . single - tone fft with f in = 985.3 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 16 of 97 ?120 ?100 ?80 ?60 ?40 ?20 0 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 58.5dbfs enob = 9.3 bits sfdr = 68dbfs buffer current = 5.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-612 figure 12 . single - tone fft with f in = 1205.3 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 56.6dbfs enob = 9.0 bits sfdr = 67dbfs buffer current = 7.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-613 figure 13 . single - tone fft wit h f in = 1602.3 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 0 625.000 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 55.4dbfs enob = 8.8 bits sfdr = 63dbfs buffer current = 8.5 78.125 156.250 234.375 312.500 390.625 468.750 546.875 1 1752-614 figure 14 . single - tone fft with f in = 1954.3 mhz 60 85 80 75 70 65 snr/sfdr (dbfs) sample rate (mhz) snr sfdr 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 1 1752-615 figure 15 . snr/sfdr vs. f s , f in = 170.3 mhz; buffer control 1 (0x018) = 3.5 667.3 589.3 511.3 433.3 355.3 290.3 212.3 147.3 10.3 snr/sfdr (dbfs) input frequency (mhz) 60 65 70 75 80 85 3.5 snr (dbfs) 3.5 sfdr (dbfs) 4.5 snr (dbfs) 4.5 sfdr (dbfs) 1 1752-616 figure 16 . snr/sfdr vs. f in ; f in < 700 mhz; buffer control 1 (0x018) = 3.5 and 4.5 snr/sfdr (dbfs) input frequency (mhz) 55 60 65 70 75 80 snr 6.5 sfdr 6.5 628.3 706.6 784.3 862.3 940.3 1018.3 1096.3 1174.3 1252.3 1 1752-617 figure 17 . snr/sfdr vs. f in ; 65 0 mhz < f in < 1.3 ghz; buffer control 1 (0x018) = 6 . 5 p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 17 of 97 snr/sfdr (dbfs) input frequency (mhz) 50 55 60 65 70 75 80 snr 8.5 sfdr 8.5 1252.3 1356.3 1460.3 1564.3 1668.3 177.23 1876.3 1980.3 1 1752-618 figure 18 . snr/sfdr vs. f in ; 1.3 ghz < f in < 2ghz; buffer control 1 (0x018) = 8.5 ?120 ?100 ?80 ?60 ?40 ?20 0 amplitude (dbfs) frequency (mhz) a in1 and a in2 = ?7dbfs sfdr = 82dbfs imd2 = 84dbfs imd3 = 82dbfs buffer current = 3.5 1 1752-095 0 78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000 figure 19 . two - tone fft; f in1 = 184 mhz, f in2 = 187 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 amplitude (dbfs) frequency (mhz) a in1 and a in2 = ?7dbfs sfdr = 78dbfs imd2 = 78dbfs imd3 = 78dbfs buffer current = 5.5 1 1752-096 0 78.125 156.250 234.375 312.500 390.625 468.750 546.875 625.000 figure 20 . two - tone fft; f in1 = 449 mhz, f in2 = 452 mhz ?84 ?90 ?78 ?72 ?66 ?60 ?54 ?48 ?42 ?36 ?30 ?24 ?18 ?12 ?6 0 sfdr/imd3 (dbc and dbfs) input amplitude (dbfs) ?120 0 ?20 ?40 ?60 ?80 ?100 imd3 (dbc) imd3 (dbfs) sfdr (dbfs) sfdr (dbc) 1 1752-622 figure 21 . two - tone sfdr/imd3 vs. input amplitude (a in ) with f in1 = 184 mhz and f in2 = 187 mhz ?84 ?90 ?78 ?72 ?66 ?60 ?54 ?48 ?42 ?36 ?30 ?24 ?18 ?12 ?6 0 sfdr/imd3 (dbc and dbfs) input amplitude (dbfs) ?140 ?120 0 ?20 ?40 ?60 ?80 ?100 imd3 (dbc) imd3 (dbfs) sfdr (dbfs) sfdr (dbc) 1 1752-623 figure 22 . two - tone imd3/sfdr vs. input amplitude (a in ) with f in1 = 449 mhz and f in2 = 452 mhz ?84 ?90 ?78 ?72 ?66 ?60 ?54 ?48 ?42 ?36 ?30 ?24 ?18 ?12 ?6 0 snr/sfdr (db) input amplitude (dbfs) ?40 ?20 0 20 40 60 80 100 120 snr (dbfs) snr (dbc) sfdr (dbc) sfdr (dbfs) 1 1752-624 figure 23 . snr/sf dr vs. analog input level, f in = 170.3 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 18 of 97 55 85 80 75 70 65 60 snr/sfdr (dbfs) temperature (c) ?48 ?38 ?28 ?18 ?8 2 12 22 32 42 52 62 72 82 92 102 112 snr sfdr 1 1752-625 figure 24 . snr/sfdr vs. temperature, f in = 170.3 mhz ?4 ?3 ?2 ?1 0 1 2 3 4 0 16000 inl (lsb) output code 2000 4000 6000 8000 10000 12000 14000 1 1752-626 figure 25 . inl, f in = 10.3 mhz ?0.4 ?0.3 ?0.2 ?0.1 0 0.1 0.2 0.3 0.4 0 16000 dnl (lsb) output code 2000 4000 6000 8000 10000 12000 14000 1 1752-627 figure 26 . dnl, f in = 15 mhz number of hits code 0 200000 400000 600000 800000 1000000 1200000 n ? 10 n ? 9 n ? 8 n ? 7 n ? 6 n ? 5 n ? 4 n ? 3 n ? 2 n ? 1 n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10 3.45 lsb rms 1 1752-628 figure 27 . input - referred noise histogram power (w) temperature (c) ?48 ?38 ?28 ?18 ?8 2 12 22 32 42 52 62 72 82 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 1 1752-629 figure 28 . power dissipation vs. temperature 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 power dissipation (w) sample rate (mhz) 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 1 1752-630 figure 29 . power dissipation vs. f s p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 19 of 97 ad9680 - 1000 avdd1 = 1.25 v, avdd1_sr = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, 1.7 v p - p full - scale differential input, a in = ?1.0 dbfs, default spi sett ings, clock divider = 2, t a = 25c, 128k fft sample, unless otherwise noted. see table 10 for recommended settings. ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 67.2dbfs enob = 10.8 bits sfdr = 88dbfs buffer control 1 = 1.5 1 1752-100 figure 30 . single - tone fft with f in = 10.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 66.6dbfs enob = 10.7 bits sfdr = 85dbfs buffer control 1 = 3.0 1 1752-101 figure 31 . single - tone fft with f in = 170.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 65.3dbfs enob = 10.5 bits sfdr = 85dbfs buffer control 1 = 3.0 1 1752-102 figure 32 . single - tone fft with f in = 340.3 mhz ?130 ?110 ?90 ?70 ?50 ?30 ?10 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 64.0dbfs enob = 10.3 bits sfdr = 82dbfs buffer control 1 = 3.0 1 1752-103 figure 33 . single - tone fft with f in = 450.3 mhz 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 61.5dbfs enob = 10.1 bits sfdr = 82dbfs buffer control 1 = 6.0 ?120 ?100 ?80 ?60 ?40 ?20 0 1 1752-104 figure 34 . single - tone fft with f in = 765.3 mhz 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 60.5dbfs enob = 9.9 bits sfdr = 80dbfs buffer control 1 = 6.0 1 1752-105 ?120 ?100 ?80 ?60 ?40 ?20 0 figure 35 . single - tone fft with f in = 985.3 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 20 of 97 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 59.8bfs enob = 9.6 bits sfdr = 79dbfs buffer control 1 = 8.0 ?120 ?100 ?80 ?60 ?40 ?20 0 1 1752-107 figure 36 . single - tone fft with f in = 1293.3 mhz 0 500 400 300 200 100 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 57.7dbfs enob = 9.2 bits sfdr = 70dbfs buffer control 1 = 8.0 1 1752-108 ?120 ?100 ?80 ?60 ?40 ?20 0 figure 37 . single - tone fft with f in = 1725.3 mhz 1 1752-506 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 100 200 300 400 500 a in = ?1dbfs snr = 57.0dbfs enob = 9.1 bits sfdr = 69dbfs buffer current = 6.0 figure 38 . single - tone fft with f in = 1950.3 mhz snr/sfdr (dbfs) sample rate (mhz) 60 65 70 75 80 85 90 1 1752-201 700 750 800 850 900 950 1000 1050 1100 snr (dbfs) sfdr (dbfs) figure 39 . snr/sfdr vs. f s , f in = 170.3 mhz; buffer control 1 (0x018) = 3.0 snr/sfdr (dbfs) 90 85 80 75 70 65 60 55 50 10.3 63.3 100.3 170.3 225.3 analog input frequenc y (mhz) 302.3 341.3 403.3 453.3 502.3 1.5 sfdr (dbfs) 1.5 snr (dbfs) 3.0 sfdr (dbfs) 3.0 snr (dbfs) 1 1752-216 figure 40 . snr/sfdr vs. f in ; f in < 500 mhz; buffer control 1 (0x018) = 1.5 and 3.0 50 100 60 70 80 90 476.8 554.4 593.2 670.8 748.4 826.0 903.6 981.2 analog input frequenc y (mhz) snr/sfdr (dbfs) 4.0 sfdr 4.0 snrfs 6.0 sfdr 6.0 snrfs 1 1752-218 figure 41 . snr/sfdr vs. f in ; 500 mhz < f in < 1 ghz; buffer control 1 (0x018) = 4.0 and 6.0 p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 21 of 97 50 60 70 80 100 90 analog input frequenc y (mhz) 978.5 1065.0 1 142.4 1220.0 1297.3 1374.8 1452.2 sfdr snr snr/sfdr (dbfs) 1 1752-219 figure 42 . snr/sfdr vs. f in ; 1 ghz < f in < 1.5 ghz; buffer control 1 (0x018) = 6.0 50 60 70 100 90 80 analog input frequenc y (mhz) 1513.3 1607.4 1701.6 1795.6 1889.7 snr/sfdr (dbfs) 1 1752-220 sfdr snr figure 43 . snr/sfdr vs. f in ; 1.5 ghz < f in < 2 ghz; buffer control 1 (0x018) = 7.5 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 500 400 300 200 100 11752-205 a in1 and a in2 = ?7dbfs sfdr = 87dbfs imd2 = 93dbfs imd3 = 87dbfs buffer control 1 = 3.0 figure 44 . two - tone fft; f in1 = 184 mhz, f in2 = 187 mhz amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 500 400 300 200 100 11752-206 a in1 and a in2 = ?7dbfs sfdr = 88dbfs imd2 = 93dbfs imd3 = 88dbfs buffer control 1 = 4.5 figure 45 . two - tone fft; f in1 = 338 mhz, f in2 = 341 mhz ?84 ?90 ?78 ?72 ?66 ?60 ?54 ?48 ?42 ?36 ?30 ?24 ?18 ?12 ?6 sfdr/imd3 (dbc and dbfs) input amplitude (dbfs) ?140 ?120 ?100 ?80 ?60 ?40 ?20 20 0 11752-207 sfdr (dbc) sfdr (dbfs) imd3 (dbc) imd3 (dbfs) figure 46 . two - tone sfdr/imd3 vs. input amplitude (a in ) with f in1 = 184 mhz and f in2 = 187 mhz ?84 ?90 ?78 ?72 ?66 ?60 ?54 ?48 ?42 ?36 ?30 ?24 ?18 ?12 ?6 snr/sfdr (dbc and dbfs) input amplitude (dbfs) ?140 ?120 ?100 ?80 ?60 ?40 ?20 20 0 11752-208 sfdr (dbc) sfdr (dbfs) imd3 (dbc) imd3 (dbfs) figure 47 . two - tone imd3/sfdr vs. input amplitude (a in ) with f in1 = 338 mhz and f in2 = 341 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 22 of 97 ?84 ?90 ?78 ?72 ?66 ?60 ?54 ?48 ?42 ?36 ?30 ?24 ?18 ?12 ?6 0 snr/sfdr (db) input amplitude (dbfs) ?20 ?10 0 10 110 100 90 80 70 60 50 40 30 20 1 1752-209 sfdr (dbc) sfdr (dbfs) snr (dbfs) snr (dbc) figure 48 . snr/sfdr vs. analog input level, f in = 170.3 mhz snr/sfdr (dbfs) temperature (c) 50 100 80 90 70 60 ?50 ?40 ?30 ?20 ?10 0 10 20 30 40 50 60 70 80 90 sfdr snr 1 1752-210 figure 49 . snr/sfdr vs. temperature, f in = 170.3 mhz inl (lsb) output code ?3 3 2 1 0 ?1 ?2 0 16000 14000 12000 10000 8000 6000 4000 2000 1 1752-2 1 1 figure 50 . inl, f in = 10.3 mhz dnl (lsb) output code ?0.6 0.6 0.4 0.2 0 ?0.2 ?0.4 0 16000 14000 12000 10000 8000 6000 4000 2000 11752-212 figure 51 . dnl, f in = 15 mhz p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 23 of 97 number of hits code 0 25000 20000 15000 10000 5000 n + 6 n + 5 n + 4 n + 3 n + 2 n + 1 n n ? 1 n ? 2 n ? 3 n ? 4 n ? 5 n ? 6 1 1752-213 2.63 lsb rms figure 52 . input - referred noise histogram power dissipation (w) temperature (c) 3.15 3.40 3.35 3.30 3.25 3.20 ?50 ?40 ?30 ?20 ?10 0 10 20 30 40 50 60 70 80 90 11752-214 l = 4 m = 2 f = 1 figure 53 . power dissipation vs. temperature power dissipation (w) sample rate (mhz) 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 1 1752-215 700 750 800 850 900 950 1000 1050 1100 l = 4, m = 2, f = 1 figure 54 . power dissipation vs. f s p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 24 of 97 ad9680 - 820 avdd1 = 1.25 v, avdd1_sr = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, 1.7 v p - p full - scale differential input, a in = ?1.0 dbfs, default spi settings, clock divider = 2, t a = 25c, 128k fft sample, unless otherwise noted. see table 10 for recommended settings. 1 1752-507 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 67.2dbfs enob = 10.9bits sfdr = 89dbfs buffer control 1 = 1.5 figure 55 . single - tone fft with f in = 10.3 mhz 1 1752-508 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 67.0dbfs enob = 10.8 bits sfdr = 83dbfs buffer control 1 = 2.0 figure 56 . single - tone fft with f in = 170.3 mhz 1 1752-509 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 66.5dbfs enob = 10.7 bits sfdr = 86dbfs buffer control 1 = 3.0 figure 57 . single - tone fft with f in = 340.3 mhz 1 1752-510 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 65.1dbfs enob = 10.5 bits sfdr = 79dbfs buffer control 1 = 6.5 figure 58 . single - tone fft with f in = 450.3 mhz 1 1752-5 1 1 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 64.0dbfs enob = 10.3 bits sfdr = 79dbfs buffer control 1 = 6.5 figure 59 . single - tone fft with f in = 765.3 mhz 1 1752-512 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 63.4dbfs enob = 10.1 bits sfdr = 74dbfs buffer control 1 = 8.5 figure 60 . single - tone fft with f in = 985.3 mhz p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 25 of 97 1 1752-513 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 62.0dbfs enob = 9.9 bits sfdr = 76dbfs buffer control 1 = 6.5 figure 61 . single - tone fft with f in = 1205.3 mhz 1 1752-514 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 60.5dbfs enob = 9.5 bits sfdr = 68dbfs buffer control 1 = 7.5 figure 62 . single - tone fft with f in = 1720.3 mhz 1 1752-515 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 a in = ?1dbfs snr = 59.7dbfs enob = 9.5 bits sfdr = 69dbfs buffer control 1 = 8.5 figure 63 . single - tone fft with f in = 1950.3 mhz 1 1752-516 snr/sfdr (dbfs) sample rate (mhz) 50 55 60 65 70 75 80 85 90 500 550 600 650 700 750 800 850 900 snr sfdr figure 64 . snr/sfdr vs. f s , f in = 170.3 mhz; buffer control 1 (0x018) = 3.0 1 1752-517 snr/sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 80 85 90 95 10.3 65.5 95.3 125.4 150.3 170.3 180.3 210.5 240.3 270.3 301.3 330.3 340.7 360.3 390.3 420.3 450.3 sfdr (3.0) snr (3.0) figure 65 . snr/sfdr vs. f in ; f in < 450 mhz; buffer control 1 (0x018) = 3.0 1 1752-018 snr/sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 80 85 450.3 480.3 510.3 515.3 610.3 766.3 810.3 985.3 sfdr (6.5) snr (6.5) figure 66 . snr/sfdr vs. f in ; 450 mhz < f in < 1 ghz; buffer control 1 (0x018) = 6.5 p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 26 of 97 1 1752-519 snr/sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 80 985.3 1022.3 1110.3 1205.3 1315.3 1420.3 1510.3 sfdr (6.5) snr (6.5) figure 67 . snr/sfdr vs. f in ; 1 ghz < f in < 1.5 ghz; buffer control 1 (0x018) = 6.5 1 1752-520 snr/sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 1510.3 1600.3 1720.3 1810.3 1920.3 1950.3 sfdr (8.5) snr (8.5) figure 68 . snr/sfdr vs. f in ; 1.5 ghz < f in < 2 ghz; buffer control 1 (0x018) = 8.5 1 1752-529 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 ain1 and ain2 = ?7dbfs sfdr = 90dbfs imd2 = 90dbfs imd3 = 91dbfs buffer current = 3.0 figure 69 . two - tone fft; f in1 = 184 mhz, f in2 = 187 mhz 1 1752-527 amplitude (dbfs) frequency (mhz) ?120 ?100 ?80 ?60 ?40 ?20 0 0 82 164 246 328 410 ain1 and ain2 = ?7dbfs sfdr = 87dbfs imd2 = 92dbfs imd3 = 87dbfs buffer current = 3.0 figure 70 . two - tone fft; f in1 = 338 mhz, f in2 = 341 mhz 1 1752-528 sfdr/imd3 (dbc and dbfs) input amplitude (dbfs) ?120 ?100 ?80 ?60 ?40 ?20 0 ?87 ?81 ?75 ?69 ?63 ?57 ?51 ?45 ?39 ?33 ?27 ?21 ?15 ?9 imd3 (dbc) imd3 (dbfs) sfdr (dbc) sfdr (dbfs) figure 71 . two - tone sfdr/imd3 vs. input amplitude (a in ) with f in1 = 184 mhz and f in2 = 187 mhz 1 1752-535 sfdr/imd3 (dbc and dbfs) input amplitude (dbfs) ?120 ?100 ?80 ?60 ?40 ?20 0 ?87 ?81 ?75 ?69 ?63 ?57 ?51 ?45 ?39 ?33 ?27 ?21 ?15 ?9 imd3 (dbc) imd3 (dbfs) sfdr (dbc) sfdr (dbfs) figure 72 . two - tone imd3/sfdr vs. input amplitude (a in ) with f in1 = 338 mhz and f in2 = 341 mhz p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 27 of 97 1 1752-521 snr/sfdr (dbc and dbfs) input amplitude (dbfs) ?30 ?15 0 15 30 45 60 75 90 105 120 ?95 ?90 ?85 ?80 ?75 ?70 ?65 ?60 ?55 ?50 ?45 ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 snr (dbc) snr (dbfs) sfdr (dbc) sfdr (dbfs) figure 73 . snr/sfdr vs. analog input level, f in = 170.3 mhz 1 1752-533 snr/sfdr (dbfs) temperature (c) 60 65 70 75 80 85 90 ?45 ?30 ?15 ?5 5 15 25 45 65 85 snr (dbfs) sfdr (dbfs) figure 74 . snr/sfdr vs. temperature, f in = 170.3 mhz 1 1752-534 inl (lsb) output code ?2.0 ?1.5 ?1.0 ?0.5 0 0.5 1.0 1.5 2.0 2.5 0 2000 4000 6000 8000 10000 12000 14000 16000 figure 75 . inl, f in = 10.3 mhz 1 1752-530 dnl (lsb) output code ?0.30 ?0.25 ?0.20 ?0.15 ?0.10 ?0.05 0 0.05 0.10 0.15 0.20 0.25 0 2000 4000 6000 8000 10000 12000 14000 16000 figure 76 . dnl, f in = 15 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 28 of 97 1 1752-531 number of hits code 0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 n ? 10 n ? 9 n ? 8 n ? 7 n ? 6 n ? 5 n ? 4 n ? 3 n ? 2 n ? 1 n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10 2.46 lsb rms figure 77 . input - referred noise histogram 1 1752-532 power (w) temperature (c) 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 ?45 ?30 ?15 ?5 5 15 25 45 65 85 figure 78 . power dissipation vs. temperature 1 1752-522 power (w) sample rate (mhz) 2.5 2.6 2.7 2.8 2.9 3.0 3.1 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 figure 79 . power dissipation vs. f s ; l = 4, m = 2, f = 1 for f s 625 msps and l = 2, m = 2, f = 2 for f s < 625 msps (default spi) p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 29 of 97 ad9680 - 500 avdd1 = 1.25 v, avdd1_sr = 1.25 v, avdd2 = 2.5 v, avdd3 = 3.3 v, dvdd = 1.25 v, drvdd = 1.25 v, spivdd = 1.8 v, 2.06 v p - p full - scale differential input, a in = ?1.0 dbfs, default spi settings, clock divider = 2, t a = 25c, 128k fft sample, unless otherwise noted. see table 10 for recommended settings. 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 68.9dbfs enob = 10.9 bits sfdr = 83dbfs buffer contro l 1 = 2.0 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 1 1752-132 figure 80 . single - tone fft with f in = 10.3 mhz ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 68.9dbfs enob = 1 1 bits sfdr = 88dbfs buffer contro l 1 = 2.0 1 1752-133 figure 81 . single - tone fft with f in = 170.3 mhz 0 25 50 75 100 125 150 175 200 225 250 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 68.5dbfs enob = 10.9 bits sfdr = 83dbfs buffer contro l 1 = 4.5 1 1752-134 figure 82 . single - tone fft with f in = 340.3 mhz 0 25 50 75 100 125 150 175 200 225 250 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 67.8dbfs enob = 10.8 bits sfdr = 83dbfs buffer contro l 1 = 4.5 1 1752-135 figure 83 . single - tone fft with f in = 450.3 mhz ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 64.7dbfs enob = 10.4 bits sfdr = 80dbfs buffer control 1 = 5.0 11752-136 figure 84 . single - tone fft with f in = 765.3 mhz ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequency (mhz) a in = ?1dbfs snr = 64.0dbfs enob = 10.3 bits sfdr = 76dbfs buffer control 1 = 5.0 11752-137 figure 85 . single - tone fft with f in = 985.3 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 30 of 97 ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 63.0dbfs enob = 10.0 bits sfdr = 69dbfs buffer control 1 = 8.0 1 1752-138 figure 86 . single - tone fft with f in = 1310.3 mhz ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 61.5dbfs enob = 9.8 bits sfdr = 69dbfs buffer control 1 = 8.0 1 1752-139 figure 87 . single - tone fft with f in = 1710.3 mhz ?140 ?120 ?100 ?80 ?60 ?40 ?20 0 0 25 50 75 100 125 150 175 200 225 250 amplitude (dbfs) frequenc y (mhz) a in = ?1dbfs snr = 60.8dbfs enob = 9.6 bits sfdr = 68dbfs buffer control 1 = 8.0 1 1752-140 figure 88 . single - tone fft with f in = 1950.3 mhz 60 65 70 75 80 85 90 95 300 320 340 360 380 400 sample frequenc y (mhz) snr/sfdr (dbfs) 420 440 460 480 500 530 550 sfdr snr 1 1752-141 figure 89 . snr/sfdr vs. f s , f in = 170.3 mhz; buffer control 1 = 2.0 50 60 70 80 90 100 10.3 95.3 150.3 180.3 240.3 301.3 340.7 390.3 450.3 snr/sfdr (dbfs) analog input frequenc y (mhz) 1 1752-142 2.0 snr 2.0 sfdr 4.5 snr 4.5 sfdr figure 90 . snr/sfdr vs. f in ; f in < 500 mhz; buffer control 1 (0x018) = 2.0 and 4.5 50 60 70 80 90 100 snr/sfdr (dbfs) 450.3 480.3 510.3 515.3 610.3 765.3 810.3 985.3 1010.3 analog input frequenc y (mhz) 4.0 snr 4.0 sfdr 8.0 snr 8.0 sfdr 1 1752-143 figure 91 . snr/sfdr vs. f in ; 500 mhz < f in < 1 ghz; buffer control 1 (0x018) = 4.0 and 8.0 p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 31 of 97 snr/sfdr (dbfs) 50 60 65 55 70 75 80 1010.3 1205.3 1410.3 1600.3 1810.3 1950.3 analog input frequenc y (mhz) 7.0 snr 7.0 sfdr 8.0 snr 8.0 sfdr 1 1752-144 figure 92 . snr/sfdr vs. f in ; 1 ghz < f in < 2 ghz; buffer control 1 (0x018) = 7.0 and 8.0 ?120 ?100 ?80 ?60 ?40 ?20 0 0 50 100 150 200 250 amplitude (dbfs) frequenc y (mhz) a in1 and a in2 = ?7dbfs sfdr = 88dbfs imd2 = 94dbfs imd3 = 88dbfs buffer contro l 1 = 2.0 1 1752-146 figure 93 . two - tone fft; f in1 = 184 mhz, f in2 = 187 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 0 50 100 150 200 250 amplitude (dbfs) frequenc y (mhz) a in1 and a in2 = ?7dbfs sfdr = 88dbfs imd2 = 88dbfs imd3 = 89dbfs buffer contro l 1 = 4.5 1 1752-147 figure 94 . two - tone fft; f in1 = 338 mhz, f in2 = 341 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 ? 90 ? 84 ? 78 ? 72 ? 66 ? 60 ? 54 ? 48 ? 42 ? 36 ? 30 ? 24 ? 18 ? 12 sfdr/imd3 (dbc and dbfs) input amplitude (dbfs) sfdr (dbc) sfdr (dbfs) imd3 (dbc) imd3 (dbfs) 1 1752-148 figure 95 . two - tone sfdr/imd3 vs. input amplitude (a in ) with f in1 = 184 mhz and f in2 = 187 mhz ?120 ?100 ?80 ?60 ?40 ?20 0 ?90 ?81 ?72 ?63 ?54 ?45 ?36 ?27 ?18 ?9 sfdr/imd3 (dbc and dbfs) amplitude (dbfs) 1 1752-149 sfdr (dbc) sfdr (dbfs) imd3 (dbc) imd3 (dbfs) figure 96 . two - tone imd3/sfdr vs. input amplitude (a in ) with f in1 = 338 mhz and f in2 = 341 mhz ?20 ?10 0 10 20 30 40 50 60 70 80 90 100 1 10 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 snr/sfdr (dbc and dbfs) input amplitude (dbfs) 1 1752-150 sfdr (dbfs) snr (dbfs) sfdr (dbc) snr (dbc) figure 97 . snr/sfdr vs. analog input level, f in = 170.3 mhz p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 32 of 97 1 1752-151 65 70 75 80 85 90 95 ?40 ?15 10 35 60 85 snr/sfdr (dbfs) temper a ture (c) s fd r s n r figure 98 . snr/sfdr vs. temperature, f in = 170.3 mhz ?2.0 ?1.5 ?1.0 ?0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 0 2000 4000 6000 8000 10000 12000 14000 16000 inl (lsb) output code 11752-152 figure 99 . inl, f in = 10.3 mhz ?0.8 ?0.6 ?0.4 ?0.2 0 0.2 0.4 0.6 0.8 0 2000 4000 6000 8000 10000 12000 14000 16000 dn l (lsb) output code 1 1752-153 figure 100 . dnl, f in = 15 mhz 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 n ? 10 n ? 9 n ? 8 n ? 7 n ? 6 n ? 5 n ? 4 n ? 3 n ? 2 n ? 1 n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10 number of hits output code 2.06 lsb rms 1 1752-154 figure 101 . input - referred noise histogram 2.20 2.22 2.24 2.26 2.28 2.30 2.32 ?45 ?35 ?5 15 25 45 65 85 power (w) temper a ture (c) 1 1752-155 l = 4 m = 2 f = 1 figure 102 . power dissipation vs. temperature 1.87 1.92 1.97 2.02 2.07 2.12 2.17 2.22 2.27 2.32 2.37 300 320 340 360 380 400 420 440 460 480 500 520 540 power (w) sample r a te (mhz) 1 1752-156 l = 4, m = 2, f = 1 l = 2, m = 2, f = 2 figure 103 . power dissipation vs. f s p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 33 of 97 equivalent circuits a in control (spi) 10pf vin+x vin?x avdd3 avdd3 avdd3 v cm buffer 400 200 200 67 28 200 200 67 28 avdd3 avdd3 1.5pf 3pf 1.5pf 3pf 1 1752-0 1 1 figure 104 . analog inputs clk+ clk? avdd1 25? avdd1 25? 20k? 20k? v cm = 0.85v 1 1752-012 figure 105 . clock inputs sysref+ avdd1_sr 1k? sysref? avdd1_sr 1k? 20k? 20k? level translator v cm = 0.85v 1 1752-013 figure 106 . sysref inputs drvdd drgnd drvdd drgnd output driver emphasis/swing control (spi) data+ data? serdoutx+ x = 0, 1, 2, 3 serdoutx? x = 0, 1, 2, 3 1 1752-014 figure 107 . digital outputs 20k? 20k? level translator v cm = 0.85v syncinb pin control (spi) syncinb+ dvdd 1k? dgnd syncinb? dvdd 1k? dgnd v cm 1 1752-015 figure 108 . syncinb inputs 30k spivdd esd protected esd protected 1k? spivdd sclk 1 1752-016 figure 109 . sclk input p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 34 of 97 30k esd protected esd protected 1k? spivdd csb 1 1752-017 figure 110 . csb input 30k esd protected esd protected 1k? spivdd spivdd sdi sdio sdo 1 1752-018 figure 111 . sdio input esd protected esd protected spivdd fd_a/fd_b fd jesd lmfc fd_x pin control (spi) jesd sync~ temperature diode (fd_a only) 1 1752-019 figure 112 . fd_a/fd_b outputs esd protected esd protected 1k? spivdd pdwn/ stby pdwn control (spi) 1 1752-020 figure 113 . pdwn/stby input esd protected esd protected v_1p0 v_1p0 pin control (spi) avdd2 1 1752-021 figure 114 . v_1p0 input/output p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 35 of 97 theory of operation the ad9680 has two analog input channels and four jesd204b output lane pairs. the adc is designed to sampl e wide bandwidth analog signals of up to 2 ghz. the ad9680 is optimized for wide input bandwidth, high sampling rate, excellent linearity, and low power in a small package. the dual adc cores feat ure a multistage, differential pipelined architecture with integrated output error correction logic. each adc features wide bandwidth inputs supporting a variety of user - selectable input ranges. an integrated voltage reference eases design considerations. the ad9680 has several functions that simplify the agc function in a communications receiver. the programmable threshold detector allows monitoring of the incoming signal power using the fast dete ct output bits of the adc. if the input signal level exceeds the programmable threshold, the fast detect indicator goes high. because this threshold indicator has low latency, the user can quickly turn down the system gain to avoid an overrange condition a t the adc input. the subclass 1 jesd204b - based high speed serialized output data lanes can be configured in one - lane (l = 1), two - lane (l = 2), and four - lane (l = 4) configurations, depending on the sample rate and the decimation ratio. multiple device syn chronization is supported through the sysref and syncinb input pins. adc architecture the architecture of the ad9680 consists of an input buffered pipelined adc. the input buffer is designed to provide a termination impedance to the analog input signal. this termination impedance can be changed using the spi to meet the termination needs of the driver/amplifier. the def ault termination value is set to 400 . the equivalent circuit diagram of the analog input termination is shown in figure 104 . the input buffer is optimized for high linearity, low noise, and low power. the input buffer provides a linear high input impedance (for ease of drive) and reduces kickback from the adc. the buffer is optimized for high linearity, low noise, and low power. the quantized outputs from each stage are combined into a final 14- bit result in the digital correction logic. the pipelined architecture permits the first stage to operate with a new input sample; at the same time, the remaining stages operate with the preceding samples. sampling occurs on th e rising edge of the clock. analog input conside rations the analog input to the ad9680 is a differential buffer. the internal common - mode voltage of the buffer is 2.05 v. the clock signal alternat ely switches the input circuit between sample mode and hold mode. when the input circuit is switched into sample mode, the signal source must be capable of charging the sample capacitors and settling within one - half of a clock cycle. a small resistor, in s eries with each input, can help reduce the peak transient current injected from the output stage of the driving source. in addition, low q inductors or ferrite beads can be placed on each leg of the input to reduce high differential capacitance at the anal og inputs and, thus, achieve the maximum bandwidth of the adc. such use of low q inductors or ferrite beads is required when driving the converter front end at high if frequencies. either a differential capacitor or two single - ended capacitors can be place d on the inputs to provide a matching passive network. this ultimately creates a low - pass filter at the input, which limits unwanted broadband noise. for more information, refer to the an - 742 appl ication note , the an - 827 application note , and the analog dialogue article transforme r - coupled front - end for wideband a/d converters (volume 39, april 2005). in general, the precise values depend on the application. for best dynamic performance, the source impedances driving vin+x and vin?x must be matched such that common - mode settling e rrors are symmetrical. these errors are reduced by the common - mode rejection of the adc. an internal reference buffer creates a differential reference that defines the span of the adc core. maximum snr performance is achieved by setting the adc to the larg est span in a differentia l configuration. in the case of the ad9680 , the available span is programmable through the spi port from 1.46 v p - p to 2.06 v p - p differential, with 1.58 v p - p differential being the default for the ad9680 - 1250, 1.70 v p - p differential being the default for the ad9680 - 1000 and ad9680 - 820 , and 2.06 v p - p differential being the default for the ad9680 - 500. differential input configurations there are several ways to drive the ad9680 , either actively or passively. however, optimum performance is achieved by driving the analog input differentially. for applications where snr and sfdr are key parameters, differential transfo rmer coupling is the recommended input configuration (see figure 115 and table 9 ) because the noise performance of most amplifiers is not adequate to achieve the true performance of the ad9680 . for low to midrange frequencies, a double balun or double transformer network (see figure 115 and table 9 ) is recom - mended for optimum performance of the ad9680 . for higher frequencies in the second or third nyquist zones, it is better to remove some of the front - end passive components to ensure wideband operation (see figure 115 and table 9 ). p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 36 of 97 adc r1 r2 r1 0.1f 0.1f 0.1f c2 r3 r3 balun notes 1. see t able 9 for component v alues. r2 c1 c1 1 1752-168 figure 115 . differential transformer - coupled configuration for ad9680 table 9 . differential transformer - coupled input configuration component values device frequency range transforme r r1 ( ) r2 ( ) r3 ( ) c1 (pf) c2 (pf) ad9680 - 500 dc to 250 mhz etc1 -1 -13 10 50 10 4 2 250 mhz to 2 ghz bal - 0006/bal - 0006smg 10 50 10 4 2 ad9680 - 820 dc to 410 mhz etc1 -1 -13 10 50 10 4 2 410 mhz to 2 ghz bal - 0006/bal - 0006smg 10 50 10 4 2 ad9680 - 1000 dc to 500 mhz etc1 -1 - 13/bal - 0006smg 25 25 10 4 2 500 mhz to 2 ghz bal - 0006/bal - 0006smg 25 25 0 open open ad9680 - 1250 dc to 625 mhz bal - 0006smg 10 50 15 4 2 625 mhz to 2 ghz bal - 0006smg 10 50 0 open open input common mode the analog inputs of the ad9680 are internally biased to the common mode as shown in figure 116 . the common - mode buffer has a limited range in that the performance suffers greatly if the common - mode voltage drops by more than 100 mv. therefore, in dc - coupled applications, set the common - mode voltage to 2.05 v, 100 mv to ensure proper adc operation. the full - scale voltage setting must be at a 1.7 v p - p differential if running in a dc - coupled application. analog input buffer controls a nd sfdr optimization the ad9680 input buffer offers flexible controls for the analog inputs, such as input termination, buffer current, and input full - scale adjustment. all the available controls are shown in figure 116 . 10pf vin+x vin?x avdd3 avdd3 avdd3 v cm buffer 400 200 200 67 28 200 200 67 28 avdd3 avdd3 1.5pf 3pf 1.5pf 3pf ain control spi registers (0x008, 0x015, 0x016, 0x018, 0x019, 0x01a, 0x 1 1a, 0x934, 0x935) 1 1752-169 figure 116 . analog input controls using the 0x018, 0x019, 0x01a, 0x11a, 0x934, and 0x935 registers , the buffer behavior on each channel can be adjusted to optimize the sfdr over various input frequencies and bandwidths of interest. input buffer control registers (0x018, 0x019, 0x01a, 0x935, 0x934, 0x11a) the input buffer has many registers that set the bias currents and other settings for operation at different frequencies. these bias currents and settings can be changed to suit the input frequency range of operation. register 0x018 controls the buffer bias current to help with the kickback from the adc core. this setting can be scaled from a low setting of 1.0 to a high setting of 8.5. the default setting is 3.0 for the ad9680 - 1000 and ad9680 - 820, and 2.0 for the ad9680 - 500 . these settings are sufficient for operation in the first nyquist zone for the products. when the input buffer current in register 0x018 is set, the amount of current required by the avdd3 supply changes. this relationship is shown in figure 117 . for a complete list of buffer current settings, see table 36. i avdd3 (ma) buffer control 1 setting 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 11752-341 50 100 150 200 250 300 ad9680-1250, ad9680-1000, and ad9680-820 ad9680-500 figure 117 . i avdd3 vs . buffer control 1 setting in register 0x018 p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 37 of 97 the 0x019, 0x01a, 0x11a, and 0x935 registers offer secondary bias controls for the input buffer for frequencies >500 mhz. register 0x934 can be used to reduce input capacitance to achieve wider signal bandwidth but may result in slightly lower linearity and noise performance. these register settings do not impact the avdd3 power as much as register 0x018 does. for frequencies <500 mhz, it is recommended to use the default settings for these registers. table 10 shows the recommended values for the buffer current control registers for various speed grades. register 0x11a is used when sampling in higher nyquist zones (>500 mhz for the ad9680 - 1000 ). this setting enables the adc sampling network to optimize the sampling and settling times internal to the adc for high frequency operation. for frequencies greater than 500 mhz, it is recommended t o operate the adc core at a 1.46 v full - scale setting irrespective of the speed grade. this setting offers better sfdr without any significant penalty in snr. figure 118, figure 119 , and figure 120 show the sfdr vs. analog input frequency for various buffer settings for the ad9680 - 1250 . the recommended settings shown in table 10 were used to take the data while changing the contents of register 0x018 only. 60 65 70 75 80 85 sfdr (dbfs) input frequency (mhz) 10.3 147.3 212.3 290.3 355.3 433.3 511.3 589.3 667.3 250mhz 350mhz 450mhz 550mhz 1 1752-631 figure 118 . buffer current sweeps, ad9680 - 1250 (sfdr vs. i buff ); f in < 500 mhz; front - end network shown in figure 115 55 60 65 70 75 80 sfdr (dbfs) input frequency (mhz) 602.3 680.3 758.3 836.3 914.3 992.3 1070.3 1148.3 1226.3 350mhz 450mhz 550mhz 650mhz 1 1752-632 figure 119 . buffer current sweeps, ad9680 - 1250 (sfdr vs. i buff ); 600 mhz < f in < 1300 mhz; front - end network shown in figure 115 58 60 64 68 72 62 66 70 74 76 sfdr (dbfs) input frequency (mhz) 650mhz 750mhz 850mhz 1304.3 1408.3 1512.3 1616.3 1720.3 1824.3 1928.3 1 1752-633 figure 120 . buffer current sweeps, ad9680 - 1250 (sfdr vs. i buff ); 1300 mhz < f in < 2000 mhz; front - end network shown in figure 115 figure 121, figure 122 , and figure 123 show the sfdr vs. analog input frequency for various buffer settings for the ad9680 - 1000 . the recommended settings shown in table 10 were used to take the data while changing the contents of register 0x018 only. 50 55 60 65 70 75 80 85 90 10 60 1 10 160 210 260 310 360 410 460 sfdr (dbfs) analog input frequenc y (mhz) 1.5 3.0 4.5 1 1752-170 figure 121 . buffer current sweeps, ad9680 - 1000 (sfdr vs. i buff ); f in < 500 mhz; front - end network shown in figure 115 40 45 50 55 60 65 70 75 80 85 sfdr (dbfs) analog input frequenc y (mhz) 503.4 677.6 851.9 1026.2 1200.5 1374.8 4.0 5.0 6.0 1 1752-172 figure 122 . buffer current sweeps, ad9680 - 1000 (sfdr vs. i buff ); 500 mhz < f in < 1500 mhz; front - end ne twork shown in figure 115 p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 38 of 97 40 45 50 55 60 65 70 75 80 sfdr (dbfs) analog input frequenc y (mhz) 1513.4 1607.4 1701.5 1795.6 1889.8 4.5 5.5 6.5 7.5 8.5 1 1752-173 figure 123 . buffer current sweeps, ad9 680- 1000 (sfdr vs. i buff ); 1500 mhz < f in < 2000 mhz; front - end network shown in figure 115 in certain high frequency applications, the sfdr can be improved by reducing the full - scale setting, as shown in table 10 . at high frequencies, the performance of the adc core is limited by jitter . the sfdr can be improved by backi ng off of the full scale level. figure 124 shows the sfdr and snr vs. full - scale input level at different high frequencies for the ad9680 - 1000. 1.52ghz 1.65ghz 1.76ghz 1.9ghz 1.95ghz 55 60 65 70 75 80 55 60 65 70 75 80 ?3 ?2 ?1 sfdr (dbfs) snr (dbc) input leve l (dbfs) 1 1752-174 1.52ghz 1.65ghz 1.76ghz 1.9ghz 1.95ghz figure 124 . snr/sfdr vs. analog input level vs. input frequencies, ad9680 - 1000 figure 125, figure 126 , and figure 127 show the sfdr vs. analog input frequency for various buffer settings for the ad9680 - 820 . the re commended settings shown in table 10 were used to take the data while changing the contents of register 0x018 only. 1 1752-523 sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 80 85 90 95 10.3 65.5 95.3 125.4 150.3 170.3 180.3 210.5 240.3 270.3 301.3 330.3 340.7 360.3 390.3 420.3 450.3 1.5 2.0 3.0 4.5 figure 125 . buffer current sweeps, ad9680 - 820 (sfdr vs. i buff ); f in < 500 mhz; front - end network shown in figure 115 1 1752-524 sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 80 85 420.3 450.3 480.3 510.3 515.3 610.3 766.3 810.3 985.3 1022.3 3.5 4.5 5.5 6.5 7.5 figure 126 . buffer current sweeps, ad9680 - 820 (sfdr vs. i buff ); 500 mhz < f in < 1000 mhz; front - end network shown in figure 115 1 1752-525 sfdr (dbfs) analog input frequency (mhz) 50 55 60 65 70 75 80 1022.3 1110.3 1205.3 1315.3 1420.3 1510.3 1600.3 1720.3 1810.3 1920.3 1950.3 6.5 7.5 8.5 figure 127 . buffer current sweeps, ad9680 - 820 (sfdr vs. i buff ); 1000 mhz < f in < 2000 mhz; front - end network shown in figure 115 p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 39 of 97 figure 128 , figure 129 , and figure 130 show the sfdr vs. analog input frequency for various buffer settings for the ad9680 - 500 . the recommended settings shown in table 10 were used to take the data while changing the contents of register 0x018 only. 30 40 50 60 70 80 90 100 10.3 95.3 150.3 180.3 240.3 301.3 340.7 390.3 450.3 sfdr (dbfs) analog input frequenc y (mhz) 1.0 1.5 2.0 3.0 4.5 1 1752-145 figure 128 . buffer current sweeps, ad9680 - 500 ( sfdr vs. i buff ); f in < 500 mhz; front - end network shown in figure 115 buffer control 1 (0x018) = 1.0, 1.5, 2.0, 3.0, or 4.5 65 70 75 80 85 90 95 450.3 480.3 510.3 515.3 analog input frequenc y (mhz) 610.3 765.3 810.3 985.3 sfdr (dbfs) 4.0 5.0 6.0 7.0 8.0 1 1752-175 figure 129 . buffer current sweeps, ad9680 - 500 (sfdr vs. i buff ); 450 mhz < f in < 1000 mhz; front - end network shown in figure 115 sfdr (dbfs) 40 45 50 55 60 65 70 75 80 1010.3 1205.3 1410.3 1600.3 1810.3 1950.3 analog input frequenc y (mhz) 4.0 5.0 6.0 7.0 8.0 1 1752-176 figure 130 . buffer current sweeps, ad9680 - 500 (sfdr vs. i buff ); 1 ghz < f in < 2 ghz; front - end network shown in figure 115 p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 40 of 97 table 10 . recommended register settings for sfdr optimization at different input frequencies product frequency buffer control 1 (0x 018) buffer current control buffer control 2 (0x019) buffer bias setting buffer control 3 (0x01a) buffer bias setting buffer control 4 (0x11a) high frequency setting buffer control 5 (0x935) low frequency setting input full - scale range (0x025) input full - s cale control (0x030) input termination (0x016) 1 input capacitance (0x934) ad9680 - 500 dc to 250 mhz 0x20 (2.0) 0x60 (setting 3) 0x0a (setting 3) 0x00 (off) 0x04 (on) 0x0c (2.06 v p - p) 0x04 0x0c/0x1c/ 0x1f 250 mhz to 500 mhz 0x70 (4.5) 0x60 (setting 3) 0x0a (setting 3) 0x00 (off) 0x04 (on) 0x0c (2.06 v p - p) 0x04 0x0c/0x1c/ 0x1f 500 mhz to 1 ghz 0x80 (5.0) 0x40 (setting 1) 0x08 (setting 1) 0x00 (off) 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0c/0x1c/ 0x1f or 0x00 2 1 ghz to 2 ghz 0xf0 (8.5) 0x40 (setting 1) 0x08 (setting 1) 0x00 (off) 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0c/0x1c/ 0x1f or 0x00 1 ad9680 - 820 dc to 200 mhz 0x10 (1.5) 0x40 (setting 1) 0x09 (setting 2) 0x00 (off) 0x04 (on) 0x0a (1.70 v p - p) 0x14 0x0c/0x1c/ 0x1f dc to 410 mhz 0x40 (3.0) 0x40 (setting 1) 0x09 (setting 2) 0x00 (off) 0x04 (on) 0x0a (1.70 v p - p) 0x14 0x0c/0x1c/ 0x1f 500 mhz to 1 ghz 0x80 (5.0) 0x40 (setting 1) 0x08 (setting 1) 0x00 (off) 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0c/0x1c/ 0x1f or 0x00 2 1 ghz to 2 ghz 0xf0 (8.5) 0x40 (setting 1) 0x08 (setting 1) 0x00 (off) 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0c/0x1c/ 0x1f or 0x00 1 ad9680 - 1000 dc to 150 mhz 0x10 (1.5) 0x50 (setting 2) 0x09 (setting 2) 0x00 (off) 0x04 (on) 0x0a (1.70 v p - p) 0x18 0x0e/0x1e/ 0x1f dc to 500 mhz 0x40 (3.0) 0x50 (setting 2) 0x09 (setting 2) 0x00 (off) 0x04 (on) 0x0a (1.70 v p - p) 0x18 0x0e/0x1e/ 0x1f 500 mhz to 1 ghz 0xa0 (6.0) 0x60 (setting 3) 0x09 (setting 2) 0x20 (on) 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0e/0x1e/ 0x1f or 0x00 1 1 ghz to 2 ghz 0xd0 (7.5) 0x70 (setting 4) 0x09 (setting 2) 0x20 (on) 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0e/0x1e/ 0x1f or 0x00 1 ad9680 - 1250 dc to 625 mhz 0x50 (3.5) 0x50 (setting 2) 0x09 (setting 2) 0x00 (off) 0x04 (on) 0x0a (1.58 v p - p) 0x18 0x0e/0x1e/ 0x1f >625 mhz 0xa0 (6.0) 0x50 (setting 2) 0x09 (setting 2) n/a 3 0x00 (off) 0x08 (1.46 v p - p) 0x18 0x0e/0x1e/ 0x1f or 0x00 1 1 the input termination can be changed to accommodate the application with little or no impact to ac performance. 2 the input capacitance can be set to 1.5 pf to achieve wider input bandwidth but result s in slightly lower ac performance. 3 n/a means not applicable. pr o duct overview o nline documentation design resources discussion sample & buy data sheet ad9680 rev. c | page 41 of 97 absolute maximum input swing the absolute maximum input swing allowed at the inputs of the ad9680 is 4.3 v p-p differential. signals operating near or at this level can cause permanent damage to the adc. voltage reference a stable and accurate 1.0 v voltage reference is built into the ad9680 . this internal 1.0 v reference is used to set the full- scale input range of the adc. the full-scale input range can be adjusted via the adc function register 0x025. for more information on adjusting the input swing, see table 36. figure 131 shows the block diagram of the internal 1.0 v reference controls. adc core full-scale voltage adjust v_1p0 pin control spi register (0x025, 0x02, and 0x024) v_1p0 vin?a/ vin?b vin+a/ vin+b internal v_1p0 generator input full-scale range adjust spi register (0x025, 0x02, and 0x024) 11752-031 figure 131. internal reference configuration and controls the spi register 0x024 enables the user to either use this internal 1.0 v reference, or to provide an external 1.0 v reference. when using an external voltage reference, provide a 1.0 v reference. the full-scale adjustment is made using the spi, irrespective of the reference voltage. for more information on adjusting the full-scale level of the ad9680 , refer to the memory map register table s e c t ion. the use of an external reference may be necessary, in some applications, to enhance the gain accuracy of the adc or to improve thermal drift characteristics. figure 132 shows the typical drift characteristics of the internal 1.0 v reference. ?50 0 25 90 v_1p0 voltage (v) temperature (c) 0.9998 0.9999 1.0000 1.0001 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007 1.0008 1.0009 1.0010 11752-106 figure 132. typical v_1p0 drift the external reference must be a stable 1.0 v reference. the adr130 is a good option for providing the 1.0 v reference. figure 133 shows how the adr130 can be used to provide the external 1.0 v reference to the ad9680 . the grayed out areas show unused blocks within the ad9680 while using the adr130 to provide the external reference. full-scale voltage adjust v_1p0 0.1f v out 4 set 5 nc 6 v in 3 gnd 2 nc 1 adr130 0.1f input full-scale control internal v_1p0 generator 11752-032 figure 133. external reference using adr130 p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 42 of 97 clock input consider ations for optimum performance, drive the ad9680 s ample clock inputs (clk+ and clk?) with a differential signal. this signal is typically ac - coupled to the clk+ and clk? pins via a transformer or clock drivers. these pins are biased internally and require no additional biasing. figure 134 shows a preferred method for clocking the ad9680 . the low jitter clock source is converted from a single - ended signal to a differential signal using an rf transformer. adc clk+ clk? 0.1f 0.1f 100? 50? clock input 1:1z 1 1752-035 figure 134 . transformer - coupled differential clock another option is to ac couple a differential cml or lvds signal to the sample clock input pins, as shown in figure 135 and figure 136. adc clk+ clk? 0.1f 0.1f z0 = 50 z0 = 50 33? 33? 71? 10pf 3.3v 1 1752-036 figure 135 . differential cm l sample clock adc clk+ clk? 0.1f 0.1f 0.1f 0.1f 50? 1 50? 1 100? clock input lvds driver clk+ clk? 1 50 resistors are optional. clock input 1 1752-037 figure 136 . differential lvds sample clock clock duty cycle considerations typical high speed adcs use both clock edges to generate a variety of internal timing signals. as a result, these adcs may be sensitive to clock duty cycle. commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance charac teristics. in applications where the clock duty cycle cannot be guaranteed to be 50%, a higher multiple frequency clock can be supplied to the device. the ad9680 can be clocked at 2 ghz with the i nternal clock divider set to 2. the output of the divider offers a 50% duty cycle, high slew rate (fast edge) clock signal to the internal adc. see the memory map sec tion for more details on using this feature. input clock divider the ad9680 contains an input clock divider with the ability to divide the nyquist input clock by 1, 2, 4, and 8. the divider ratio s can be selected using register 0x10b. this is shown in figure 137. the maximum frequency at the clk inputs is 4 ghz. this is the limit of the divider. in applicatio ns where the clock input is a multiple of the sample clock, care must be taken to program the appropriate divider ratio into the clock divider before applying the clock signal. this ensures that the current transients during device startup are controlled. clk+ clk? 2 4 reg 0x10b 8 1 1752-038 figure 137 . clock divider circuit the ad9680 clock divider can be synchronized using the external sysref input. a valid sysref causes the clock divider to reset to a p rogrammable state. this synchronization feature allows multiple devices to have their clock dividers aligned to guarantee simultaneous input sampling. see the multichip synchronization section for more information. input clock divider ? period delay adjust the input clock divider inside the ad9680 provides phase delay in increments of ? the input clock cycle. register 0x10c can be programmed to enable this delay independently for each channel. changing this register does not affect the stability of the jesd204b link. clock fine delay adjust the ad9680 sampling edge instant can be adjusted by writing to register 0x117 and register 0x118. setting bit 0 of register 0x117 enables the feature, and bits[7:0] of register 0x118 set the value of the delay. this value can be programmed individually for each channel. the clock delay can be adjusted from ?151.7 ps to +150 ps in ~1.7 ps increments. the clock delay adjust takes effect immediately when it is enabled via spi writes. enabling the clock fine delay adjust in register 0x117 causes a datapath reset. however, the contents of register 0x118 can be changed without affecting the stability of the jesd204b link. clock jitter considerations high speed, high resolution adcs are sensitive to the quality o f the clock input. the degradation in snr at a given input frequency ( f a ) due only to aperture jitter ( t j ) can be calculated by snr = 20 log 10 (2 f a t j ) in this equation, the rms aperture jitter represents the root mean square of all jitter sour ces, including the clock input, analog input signal, and adc aperture jitter specifications. p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 43 of 97 if undersampling applications are particularly sensitive to jitter (see figure 138). 1 1752-039 130 120 110 100 90 80 70 60 50 40 30 10 100 1000 10000 snr (db) analog input frequency (mhz) 12.5 f s 25 f s 50 f s 100 f s 200 f s 400 f s 800 f s figure 138 . ideal snr vs. input frequency and jitter treat the clock input as an analog signal in cases where aperture jitter may affect the dynamic range of the ad9680 . separate power supplies for clock drivers from the adc output driver supplies to avoid modulating the clock signal with digital noise. if the clock is generated from another type of source ( by gating, dividing, or other methods), retime the clock by the original clock at the last step. refer to the an - 501 application note and the an - 756 application note for more in - depth information about jitter performance as it relates to adcs. figure 139 shows the estimated snr of the ad9680 - 1000 across input frequency for different clock induced jitter values. the snr can be estimated by using the following equation: ? ? ? ? ? ? ? ? + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 10 10 10 10 10log (dbfs) jitter adc snr snr snr 1 1752-526 snr (dbfs) input frequency (mhz) 45 50 55 60 65 70 10 100 1k 10k 25f s 50f s 75f s 100f s 125f s 150f s 175f s 200f s figure 139 . estimated snr degradation for the ad9680 - 1000 vs. input frequency and rms jitter power - down/standby mode the ad9680 has a pdwn/stby pin that can be used to configure the device in power - down or standby mode. the default operation is pdwn. the pdwn/stby pin is a logic high pin. when in power - down mode, the jesd204b link is disrupted. the power - down option can also be se t via register 0x03f and register 0x040. in standby mode, the jesd204b link is not disrupted and transmits zeros for all converter samples. this can be changed using register 0x571, bit 7 to select /k/ characters. temperature diode the ad9680 contains a diode - based temperature sensor for measuring the temperature of the die. this diode can output a voltage and serve as a coarse temperature sensor to monitor the internal die temperature. the tempera ture diode voltage can be output to the fd_a pin using the spi. use register 0x028, bit 0 to enable or disable the diode. register 0x028 is a local register. channel a must be selected in the device index register (0x008) to enable the temperature diode re adout. configure the fd_a pin to output the diode voltage by programming register 0x040[2:0]. see table 36 for more information. the voltage response of the temperatu re diode (spivdd = 1.8 v) is shown in figure 140. diode voltage (v) temperature (c) 0.60 0.65 0.70 0.75 0.80 0.85 0.90 11752-353 ?55 ?45 ?35 ?25 ?15 ?5 5 15 25 35 45 55 65 75 85 95 105 115 125 figure 140 . temperature diode voltage vs. temperature p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 44 of 97 adc overrange and fa st detect in receiver applications, it is desirable to have a mechanism to reliably determine when the converter is about to be clipped. the standard overrange bit in the jesd204b outputs provides information on the state of the analog input that is of limited usefulness. therefore, it is helpful to have a programmable threshold below full scale that allows time to reduce the gain before the clip actually occurs. in additi on, because input signals can have significant slew rates, the latency of this function is of major concern. highly pipelined converters can have significant latency. the ad9680 contains fast dete ct circuitry for individual channels to monitor the threshold and assert the fd_a and fd_b pins. adc overrange the adc overrange indicator is asserted when an overrange is detected on the input of the adc. the overrange indicator can be embedded within the jesd204b link as a control bit (when csb > 0). the latency of this overrange indicator matches the sample latency. the ad9680 also records any overrange condition in any of the eight virtual conv erters. for more information on the virtual converters, refer to figure 146 . the overrange status of each virtual converter is registered as a sticky bit in register 0x563. the contents of register 0x563 can be cleared using register 0x562, by toggling the bits corre sponding to the virtual converter to set and reset position. fast threshold detec tion (fd_a and fd_b) the fd bit is immediately set whenever the absolute value of the input signal exceeds the programmable upper threshold level. the fd bit is only cleared w hen the absolute value of the input signal drops below the lower threshold level for greater than the programmable dwell time. this feature provides hysteresis and prevents the fd bit from excessively toggling. the operation of the upper threshold and lower threshold registers, along with the dwell time registers, is shown in figure 141. the fd indicator is asserted if the input magnitude exceeds the value programmed in the fast detect upper threshold registers, located at register 0x247 and register 0x248. the selected threshold register is compared with the signal magnitude at the output of the adc. the fast upper threshol d detection has a latency of 28 clock cycles (maximum). the approximate upper threshold magnitude is defined by upper threshold magnitude (dbfs) = 20 log ( threshold magnitude /2 13 ) the fd indicators are not cleared until the signal drops below the lower th reshold for the programmed dwell time. the lower threshold is programmed in the fast detect lower threshold registers, located at register 0x249 and register 0x24a. the fast detect lower threshold register is a 13 - bit register that is compared with the sig nal magnitude at the output of the adc. this comparison is subject to the adc pipeline latency, but is accurate in terms of converter resolution. the lower threshold magnitude is defined by lower threshold magnitude (dbfs) = 20 log ( threshold magnitude /2 1 3 ) for example, to set an upper threshold of ?6 dbfs, write 0xfff to register 0x247 and register 0x248. to set a lower threshold of ?10 dbfs, write 0xa1d to register 0x249 and register 0x24a. the dwell time can be programmed from 1 to 65,535 sample clock cycles by placing the desired value in the fast detect dwell time registers, located at register 0x24b and register 0x24c. see the memory map section (register 0x040, and register 0x245 to register 0x24c in table 36 ) for more details. upper threshold lower threshold fd_a or fd_b midscale dwell time timer reset by rise above lower threshold timer completes before signal rises above lower threshold dwell time 1 1752-040 figure 141 . threshold settings for fd_a and fd_b signals pr o duct overview o nline documentation design resources discussion sample & buy data sheet ad9680 rev. c | page 45 of 97 signal monitor the signal monitor block provides additional information about the signal being digitized by the adc. the signal monitor computes the peak magnitude of the digitized signal. this information can be used to drive an agc loop to optimize the range of the adc in the presence of real-world signals. the results of the signal monitor block can be obtained either by reading back the internal values from the spi port or by embedding the signal monitoring information into the jesd204b interface as special control bits. a global, 24-bit programmable period controls the duration of the measurement. figure 142 shows the simplified block diagram of the signal monitor block. from memory map down counter is count = 1? magnitude storage register from input signal monitor holding register load clear compare a > b load load to sport over jesd204b and memory map signal monitor period register (smpr) 0x271, 0x272, 0x273 11752-087 figure 142. signal monitor block the peak detector captures the largest signal within the observation period. the detector only observes the magnitude of the signal. the resolution of the peak detector is a 13-bit value, and the observation period is 24 bits and represents converter output samples. the peak magnitude can be derived by using the following equation: peak magnitude (dbfs) = 20log( peak detector value /2 13 ) the magnitude of the input port signal is monitored over a programmable time period, which is determined by the signal monitor period register (smpr). the peak detector function is enabled by setting bit 1 of register 0x270 in the signal monitor control register. the 24-bit smpr must be programmed before activating this mode. after enabling peak detection mode, the value in the smpr is loaded into a monitor period timer, which decrements at the decimated clock rate. the magnitude of the input signal is compared with the value in the internal magnitude storage register (not accessible to the user), and the greater of the two is updated as the current peak level. the initial value of the magnitude storage register is set to the current adc input signal magnitude. this comparison continues until the monitor period timer reaches a count of 1. when the monitor period timer reaches a count of 1, the 13-bit peak level value is transferred to the signal monitor holding register, which can be read through the memory map or output through the sport over the jesd204b interface. the monitor period timer is reloaded with the value in the smpr, and the countdown restarts. in addition, the magnitude of the first input sample is updated in the magnitude storage register, and the comparison and update procedure, as explained previously, continues. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 46 of 97 sport over jesd204b the signal moni tor data can also be serialized and sent over the jesd204b interface as control bits. these control bits must be deserialized from the samples to reconstruct the statistical data. the signal control monitor function is enabled by setting bits[1:0] of regis ter 0x279 and bit 1 of register 0x27a. figure 143 shows two different example configurations for the signal monitor control bit locations inside the jesd204b samples. a maximum of three control bits can be inserted into the jesd204b samples; however, only one control bit is required for the signal monito r. control bits are inserted from msb to lsb. if only one control bit is to be inserted (cs = 1), only the most significant control bit is used (see example configuration 1 and example configuration 2 in figure 143 ). to select the sport over jesd204b option, program register 0x559, register 0x55a, and register 0x58f. see table 36 for more information on setting these bits. figure 144 shows the 25 - bit frame data that encapsulates the peak detector v alue. the frame data is transmitted msb first with five 5 - bit subframes. each subframe contains a start bit that can be used by a receiver to validate the deserialized data. figure 145 shows the sport over jesd204b signal monitor data with a monitor period timer set to 80 samples. 15 14-bit converter resolution (n = 14) tail x 1 control bit (cs = 1) 1-bit control bit (cs = 1) 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 tail bit serialized signal monitor frame data example configuration 1 (n' = 16, n = 15, cs = 1) example configuration 2 (n' = 16, n = 14, cs = 1) serialized signal monitor frame data 16-bit jesd204b sample size (n' = 16) s[13] x s[12] x s[11] x s[10] x s[9] x s[8] x s[7] x s[6] x s[5] x s[4] x s[3] x s[2] x s[1] x s[0] x ctrl [bit 2] x ctrl [bit 2] x s[14] x s[13] x s[12] x s[11] x s[10] x s[9] x s[8] x s[7] x s[6] x s[5] x s[4] x s[3] x s[2] x s[1] x s[0] x 15-bit converter resolution (n = 15) 16-bit jesd204b sample size (n' = 16) 1 1752-088 figure 143 . signal monitor control bit locations 25-bit frame 5-bit idle sub-frame (optional) 5-bit identifier sub-frame 5-bit data msb sub-frame 5-bit data sub-frame 5-bit data sub-frame 5-bit data lsb sub-frame 5-bit sub-frames p[] = peak magnitude value idle 1 idle 1 idle 1 idle 1 idle 1 start 0 p[0] 0 0 0 start 0 p[4] p[3] p[2] p1] start 0 p[8] p[7] p[6] p5] start 0 p[12] p[11] p[10] p[9] start 0 id[3] 0 id[2] 0 id[1] 0 id[0] 1 1 1752-089 figure 144 . sport over jesd204b signal monitor frame data p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 47 of 97 payload #3 25-bit frame (n) payload #3 25-bit frame (n + 1) payload #3 25-bit frame (n + 2) idle idle idle idle idle idle idle idle idle idle idle ident. data msb data data data lsb idle idle idle idle idle idle idle idle idle idle idle ident. data msb data data data lsb idle idle idle idle idle idle idle idle idle idle idle ident. data msb data data data lsb smpr = 80 samples (0x271 = 0x50; 0x272 = 0x00; 0x273 = 0x00) 80 sample period 80 sample period 80 sample period 1 1752-090 figure 145 . sport over jesd204b signal monitor example with period = 80 samples p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 48 of 97 digital downconverte r (ddc) the ad9680 includes four digital downconverters (ddc 0 to ddc 3) that provide filtering and reduce the output data rate. this digital processing section includes an nco, a half - band decimating filter, a n fir filter, a gain stage, and a complex - real conversion stage. each of these processing blocks has control lines that allow it to be independently enabled and disabled to provide the desired processing function. the digital downconverter can be configure d to output either real data or complex output data. the ddcs output a 16 - bit stream. to enable this operation, the converter number of bits, n, is set to a default value of 16, even though the analog core only outputs 14 bits. in full bandwidth operation, the adc outputs are the 14 - bit word followed by two zeros, unless the tail bits are enabled. ddc i/q input select ion the ad9680 has two adc channels and four ddc channels. each ddc channel has tw o input ports that can be paired to support both real or complex inputs through the i/q crossbar mux. for real signals, both ddc input ports must select the same adc channel (for example, ddc input port i = adc channel a, and input port q = adc channel a). for complex signals, each ddc input port must select different adc channels (for example, ddc input port i = adc channel a, and input port q = adc channel b). the inputs to each ddc are controlled by the ddc input selection registers (register 0x311, regi ster 0x331, register 0x351, and register 0x371). see table 36 for information on how to configure the ddcs. ddc i/q output selec tion each ddc channel has two output ports that can be paired to support both real or complex outputs. for real output signals, only the ddc output port i is used (the ddc output port q is invalid). for complex i/q output signals, both ddc output port i and ddc output port q are used. the i/q outputs to each ddc channel are controlled by the ddc complex to real enable bit (bit 3) in the ddc control registers (register 0x310, register 0x330, register 0x350, and register 0x370). the chip q ignore bit (bit 5) in the chip application mode register (register 0x200) controls the chip output muxing of all the ddc channels. when all ddc channels use real outputs, this bit must be set high to ignore all ddc q output ports. when any of the ddc channels are set to use complex i/q outputs, the user must cl ear this bit to use both ddc output port i and ddc output port q. for more information, see figure 154. ddc general descript ion the four ddc blocks are used to extrac t a portion of the full digital spectrum captured by the adc(s). they are intended for if sampling or oversampled baseband radios requiring wide bandwidth input signals. each ddc block contains the fol lowing signal processing stages. frequency translation stage (optional) the frequency translation stage consists of a 12 - bit complex nco and quadrature mixers that can be used for frequency translation of both real or complex input signals. this stage shifts a portion of the available digital spectrum down to baseband. filtering stage after shifting down to baseband, the filtering stage decimates the frequency spectrum using a chain of up to four half - b and low - pass filters for rate conversion. the decimation process lowers the output data rate, which in turn reduces the output interface rate. gain stage (optional) due to losses associated with mixing a real input signal down to baseband, the gain stage c ompensates by adding an additional 0 db or 6 db of gain. complex to real conversion stage (optional) when real outputs are necessary, the complex to real conversion stage converts the complex outputs back to real by performing an f s /4 mixing operation plus a filter to remove the complex component of the signal. figure 146 shows the detailed block diagram of the ddcs implemented in the ad9680 . p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 49 of 97 nco + mixer (optional) complex to real conversion (optional) hb4 fir dcm = bypass or 2 hb3 fir dcm = bypass or 2 hb2 fir dcm = bypass or 2 hb1 fir dcm = 2 gain = 0db or 6db ddc 3 sysref real/i real/q real/i converter 6 q converter 7 i q nco + mixer (optional) complex to real conversion (optional) hb4 fir dcm = bypass or 2 hb3 fir dcm = bypass or 2 hb2 fir dcm = bypass or 2 hb1 fir dcm = 2 gain = 0db or 6db ddc 0 sysref real/i real/q real/i converter 0 q converter 1 i q nco + mixer (optional) complex to real conversion (optional) hb4 fir dcm = bypass or 2 hb3 fir dcm = bypass or 2 hb2 fir dcm = bypass or 2 hb1 fir dcm = 2 gain = 0db or 6db ddc 1 sysref real/i real/q real/i converter 2 q converter 3 i q nco + mixer (optional) complex to real conversion (optional) hb4 fir dcm = bypass or 2 hb3 fir dcm = bypass or 2 hb2 fir dcm = bypass or 2 hb1 fir dcm = 2 gain = 0db or 6db ddc 2 sysref real/i real/q real/i converter 4 q converter 5 i q output interface i/q crossbar mux adc sampling at f s real/i adc sampling at f s real/i synchronization control circuits sysref 1 1752-041 figure 146 . ddc detailed block diagram figure 147 shows an example usage of one of the four ddc blocks with a real input signal and four half - band filters (hb4, hb3, hb2, an d hb1). it shows both complex (decimate by 16) and real (decimate by 8) output options. when ddcs have different decimation ratios, the chip decimation ratio (register 0x201) must be set to the lowest decimation ratio of all the ddc blocks. in this scenari o, samples of higher decimation ratio ddcs are repeated to match the chip decimation ratio sample rate. whenever the nco frequency is set or changed, the ddc soft reset must be issued. if the ddc soft reset is not issued, the output may potentially show am plitude variations. table 11, table 12, table 13, table 14 , and table 15 show the ddc samples when the chip decimation ratio is set to 1, 2, 4, 8, or 16, respectively. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 50 of 97 cos(t) 0 90 i q real bandwidth of interest bandwidth of interest image digital filter response dc dc adc sampling at f s real real half- band filter hb4 fir 2 half- band filter hb3 fir 2 half- band filter hb2 fir 2 half- band filter hb1 fir i i half- band filter hb4 fir 2 half- band filter hb3 fir 2 half- band filter hb2 fir 2 2 2 half- band filter hb1 fir q q adc real input?sampled at f s filtering stage 4 digital half-band filters (hb4 + hb3 + hb2 + hb1) frequency translation stage (optional) digital mixer + nco for f s /3 tuning, the frequency tuning word = round (( f s /3)/ f s 4096) = +1365 (0x555) nco tunes center of bandwidth of interest to baseband bandwidth of interest image (?6db loss due to nco + mixer) bandwidth of interest (?6db loss due to nco + mixer) ? f s /2 ? f s /3 ? f s /4 ? f s /8 f s /16 f s /8 f s /4 f s /3 f s /2 ? f s /16 ? f s /32 f s /32 ? f s /2 ? f s /3 ? f s /4 ? f s /8 f s /16 f s /8 f s /4 f s /3 f s /2 ? f s /16 ? f s /32 f s /32 Csin(t) 12-bit nco dc digital filter response dc dc i q i q 2 2 i q real/i complex to real i q gain stage (optional) 0db or 6db gain complex (i/q) outputs decimate by 16 gain stage (optional) 0db or 6db gain real (i) outputs decimate by 8 complex to real conversion stage (optional) f s /4 mixing + complex filter to remove q ? f s /8 f s /16 f s /8 ? f s /16 ? f s /32 f s /32 ? f s /8 f s /16 f s /8 ? f s /16 ? f s /32 f s /32 f s /16 ? f s /16 ? f s /32 f s /32 6db gain to compensate for nco + mixer loss 6db gain to compensate for nco + mixer loss downsample by 2 +6db +6db +6db +6db 11752-042 figure 147 . ddc theory of operation example (real input decimate by 16) p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 51 of 97 table 11 . ddc samples, chip decimation ratio = 1 real (i) output (complex to real enabled) complex (i/q) outputs (complex to real disabled) hb1 fir (dcm 1 = 1) hb2 fir + hb1 fir (dcm 1 = 2) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 4) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb1 fir (dcm 1 = 2) hb2 fir + hb1 fir (dcm 1 = 4) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 16) n n n n n n n n n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 2 n n n n n n n n + 3 n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 4 n + 2 n n n + 2 n n n n + 5 n + 3 n + 1 n + 1 n + 3 n + 1 n + 1 n + 1 n + 6 n + 2 n n n + 2 n n n n + 7 n + 3 n + 1 n + 1 n + 3 n + 1 n + 1 n + 1 n + 8 n + 4 n + 2 n n + 4 n + 2 n n n + 9 n + 5 n + 3 n + 1 n + 5 n + 3 n + 1 n + 1 n + 10 n + 4 n + 2 n n + 4 n + 2 n n n + 11 n + 5 n + 3 n + 1 n + 5 n + 3 n + 1 n + 1 n + 12 n + 6 n + 2 n n + 6 n + 2 n n n + 13 n + 7 n + 3 n + 1 n + 7 n + 3 n + 1 n + 1 n + 14 n + 6 n + 2 n n + 6 n + 2 n n n + 15 n + 7 n + 3 n + 1 n + 7 n + 3 n + 1 n + 1 n + 16 n + 8 n + 4 n + 2 n + 8 n + 4 n + 2 n n + 17 n + 9 n + 5 n + 3 n + 9 n + 5 n + 3 n + 1 n + 18 n + 8 n + 4 n + 2 n + 8 n + 4 n + 2 n n + 19 n + 9 n + 5 n + 3 n + 9 n + 5 n + 3 n + 1 n + 20 n + 10 n + 4 n + 2 n + 10 n + 4 n + 2 n n + 21 n + 11 n + 5 n + 3 n + 11 n + 5 n + 3 n + 1 n + 22 n + 10 n + 4 n + 2 n + 10 n + 4 n + 2 n n + 23 n + 11 n + 5 n + 3 n + 11 n + 5 n + 3 n + 1 n + 24 n + 12 n + 6 n + 2 n + 12 n + 6 n + 2 n n + 25 n + 13 n + 7 n + 3 n + 13 n + 7 n + 3 n + 1 n + 26 n + 12 n + 6 n + 2 n + 12 n + 6 n + 2 n n + 27 n + 13 n + 7 n + 3 n + 13 n + 7 n + 3 n + 1 n + 28 n + 14 n + 6 n + 2 n + 14 n + 6 n + 2 n n + 29 n + 15 n + 7 n + 3 n + 15 n + 7 n + 3 n + 1 n + 30 n + 14 n + 6 n + 2 n + 14 n + 6 n + 2 n n + 31 n + 15 n + 7 n + 3 n + 15 n + 7 n + 3 n + 1 1 dcm means decimation. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 52 of 97 table 12 . ddc samples, chip decimation ratio = 2 real (i) output (complex to real enabled) complex (i/q) outputs (complex to real disabled) hb2 fir + hb1 fir (dcm 1 = 2) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 4) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb1 fir (dcm 1 = 2) hb2 fir + hb1 fir (dcm 1 = 4) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 16) n n n n n n n n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 2 n n n + 2 n n n n + 3 n + 1 n + 1 n + 3 n + 1 n + 1 n + 1 n + 4 n + 2 n n + 4 n + 2 n n n + 5 n + 3 n + 1 n + 5 n + 3 n + 1 n + 1 n + 6 n + 2 n n + 6 n + 2 n n n + 7 n + 3 n + 1 n + 7 n + 3 n + 1 n + 1 n + 8 n + 4 n + 2 n + 8 n + 4 n + 2 n n + 9 n + 5 n + 3 n + 9 n + 5 n + 3 n + 1 n + 10 n + 4 n + 2 n + 10 n + 4 n + 2 n n + 11 n + 5 n + 3 n + 11 n + 5 n + 3 n + 1 n + 12 n + 6 n + 2 n + 12 n + 6 n + 2 n n + 13 n + 7 n + 3 n + 13 n + 7 n + 3 n + 1 n + 14 n + 6 n + 2 n + 14 n + 6 n + 2 n n + 15 n + 7 n + 3 n + 15 n + 7 n + 3 n + 1 1 dcm means decimation. table 13 . ddc samples, chip decimation ratio = 4 real (i) output (complex to real enabled) complex (i/q) outputs (complex to real disabled) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 4) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb2 fir + hb1 fir (dcm 1 = 4) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 16) n n n n n n + 1 n + 1 n + 1 n + 1 n + 1 n + 2 n n + 2 n n n + 3 n + 1 n + 3 n + 1 n + 1 n + 4 n + 2 n + 4 n + 2 n n + 5 n + 3 n + 5 n + 3 n + 1 n + 6 n + 2 n + 6 n + 2 n n + 7 n + 3 n + 7 n + 3 n + 1 1 dcm means decimation. table 14 . ddc samples, chip decimation ratio = 8 real (i) output (complex to real enabled) complex (i/q) outputs (complex to real disabled) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb3 fir + hb2 fir + hb1 fir (dcm 1 = 8) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 16) n n n n + 1 n + 1 n + 1 n + 2 n + 2 n n + 3 n + 3 n + 1 n + 4 n + 4 n + 2 n + 5 n + 5 n + 3 n + 6 n + 6 n + 2 n + 7 n + 7 n + 3 1 dcm means decimation. p r o duc t o v er vi e w o nline do cume n ta tion design resou r c es d iscussion s ample & buy data sheet ad9680 rev. c | page 53 of 97 table 15 . ddc samples, chip decimation ratio = 16 real (i) output (complex to real enabled) complex (i/q) outputs (complex to real disabled) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 16) hb4 fir + hb3 fir + hb2 fir + hb1 fir (dcm 1 = 16) not applicable n not applicable n + 1 not applicable n + 2 not applicable n + 3 1 dcm means decimation. if the chip decimation ratio is set to decimate by 4, ddc 0 is set to use hb2 + hb1 filters (complex outputs decimate by 4), and ddc 1 is set to use hb4 + hb3 + hb2 + hb1 filters (real outputs decimate by 8), then ddc 1 repeats its output data two times fo r every one ddc 0 output. the resulting output samples are shown in table 16. table 16 . ddc output samples when chip dcm 1 = 4, ddc 0 dcm 1 = 4 (complex), and ddc 1 dcm 1 = 8 (real) ddc 0 ddc 1 ddc input samples output port i output port q output port i output port q n i0 [n] q0 [n] i1 [n] not applicable n + 1 n + 2 n + 3 n + 4 i0 [n + 1] q0 [n + 1] i1 [n + 1] not applicable n + 5 n + 6 n + 7 n + 8 i0 [n + 2] q0 [n + 2] i1 [n] not applicable n + 9 n + 10 n + 11 n + 12 i0 [n + 3] q0 [n + 3] i1 [n + 1] not applicable n + 13 n + 14 n + 15 1 dcm means decimat ion. p r o duc t o v er vi e w o nline d o cume n t a tion design resou r c es d iscussion s ample & buy ad9680 data sheet rev. c | page 54 of 97 frequency translatio n frequency translatio n general description frequency translation is accomplished by using a 12 - bit complex nco along with a digital quadrature mixer. the frequency translation translates either a real or complex input signal from an intermediate frequency ( if) to a baseband complex digital output (carrier frequency = 0 hz). the frequency translation stage of each ddc can be controlled individually and supports four different if modes using bits[5:4] of the ddc control registers (register 0x310, register 0x33 0, register 0x350, and register 0x370). these if modes are ? variable if mode ? 0 hz if (zif) mode ? f s /4 hz if mode ? te st m o de variable if mode nco and mixers are enabled. nco output frequency can be used to digitally tune the if frequency. 0 hz if (zif) mode mixers are bypassed and the nco is disabled. f s /4 hz if mode mixers and nco are enabled in special down mixing by f s /4 mode to save power. test mode input samples are forced to 0.999 to positive full scale. nco is enabled. this test mode allows the ncos to directly drive the decimation filters. figure 148 and figure 149 show exampl es of the frequency translation stage for both real and complex inputs. bandwidth of interest bandwidth of interest image nco frequency tuning word (ftw) selection 12-bit nco ftw = mixing frequency/adc sample rate 4096 adc + digital mixer + nco real input?sampled at f s dc ? f s /2 ? f s /3 ? f s /4 ? f s /8 f s /16 f s /8 f s /4 f s /3 f s /2 ? f s /16 ? f s /32 f s /32 dc ? f s /32 f s /32 dc ? f s /32 f s /32 f r v & |