Part Number Hot Search : 
00TTS MMBZ5240 LH4002 MHW1345N SS133 AK2360A FOD07 BAV20
Product Description
Full Text Search
 

To Download 10-F106NIA150SA-M136F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-F106NIA150SA-M136F flownpc 1 600v/150a neutral-point-clamped inverter compact flow1 housing low inductance layout ups motor drive solar inverters 10-F106NIA150SA-M136F tj=25c, unless otherwise specified parameter symbol value unit buck igbt t h =80c 109 t c =80 c 144 t h =80 c 166 t c =8 0 c 251 t sc t j 150 c 6 s v cc v ge = 15v 360 v t j 150 c v ce <=v c es buck diode t h =80c 62 t c =80 c 82 t h =80 c 74 t c =80 c 112 a t j =t j ma x t j =t j max t p limited by t j max t j =25c t j =t j max 300 600 c t j max 600 v 175 w c ollector-emitter break down voltage pulsed collector current dc collector current v ce i cpulse i c maximum junction temperature i frm power dissipation per diode p tot maximum ratings condition flow1 housing targe t applications schematic types features v 20 w a a 450 c v 175 v rrm maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings peak repetitive reverse voltage gate-emitter peak voltage t j =t j max t p limited by t j max a i f t c =100c 450 tur n off safe operating area dc forward current a repetitive peak forward current 1 revi sion: 5 copyright by vincotech
10-F106NIA150SA-M136F tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost igbt t h =80c 100 t c =80 c 134 t h =80 c 151 t c =8 0 c 228 t sc t j 150 c 6 s v cc v ge = 15v 360 v t j 150 c v ce <=v c es boost inverse diode t h =80c 91 t c =80 c 121 t h =80 c 123 t c =80 c 187 boost diode t j =25c t h =80c 98 t c =80 c 129 t h =80 c 135 t c =80 c 205 thermal properties insulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm turn off safe operating area 300 a v rrm dc forward current p tot 600 powe r dissipation per diode t j =t j max t c =25c maxim um junction temperature v a v c w a t p limited by t j max gate - emitter peak voltage v ce collector-emitter break down voltage i cpuls short circuit ratings dc co l lector current power dissipation per igbt i c pulsed collector current a a t j =t j max t p limited by t j max t j =t j max w a w v c v a 175 6 0 0 t j =t j max t j max p tot power dissipation per diode p tot t j =t j max t j =t j max dc f o rward current v rrm peak repetitive reverse voltage v ge i f i f repetitive peak forward current i frm maximum junction temperature t j max peak repetitive reverse voltage c maximum junction temperature t j max 175 - 4 0+(tjmax - 25) c storage temperature t stg -40+125 c 300 re petitive peak forward current i frm t p limited by t j max clear ance insulation voltage creepage distance t op operation temperature under switching condition 175 600 4 50 20 300 2 revi sion: 5 copyright by vincotech
10-F106NIA150SA-M136F parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 5 5,8 6,5 tj=150c tj=25c 1,05 1,57 1,85 tj=150c 1,73 tj=25c 60 tj=150c tj=25c 1,4 tj=150c tj=25c 161 tj=150c 162 tj=25c 24 tj=150c 28 tj=25c 221 tj=150c 249 tj=25c 82 tj=150c 114 tj=25c 1,01 tj=150c 1,75 tj=25c 4,10 tj=150c 5,92 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,574 k/ w tj=25c 1,2 1,69 1,9 tj=150c 1,75 tj=25c 150 tj=150c 178 tj=25c 119 tj=150c 148 tj=25c 8,6 tj=150c 13,7 di(rec)max tj=25c 4704 /dt tj=150c 3013 tj=25c 2,30 tj=150c 3,63 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 1,288 k/ w note: all characteristic values are related to gates of p aralell igbts connected together tj=25c tj=25 c 350 480 150 150 350 150 150 0 600 15 0 vce=vge c ies q rr t rr t r t d(off) f=1mhz rgoff=4 ? i ges t f rgon=4 ? c oss i rrm c rss v f q gate rgoff=4 ? i ces r gint erec e on e off t d(on) reverse transfer capacitance diode forward voltage reverse recovery time peak rate of fall of recovery current gate charge reverse recovered energy fall time turn-off delay time turn-on delay time rise time collector-emitter saturation voltage v ge(th) v ce(sat) value conditions characteristic values v v integ rated gate resistor buck igbt gate emitter threshold voltage collect or-emitter cut-off current incl. diode gate-emitter leakage current 15 15 150 0,0024 0 20 turn-on energy loss per pulse reverse recovered charge buck diode input capacitance outpu t capacitance turn-off energy loss per pulse peak reverse recovery current 15 25 940 9240 mws nc pf c mws a/s a v a ? ns ns 576 274 a none 3 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c ondit ions characteristic values tj=25c 5 5,8 6,5 tj=150c tj=25c 1,05 1,57 1,85 tj=150c 1,73 tj=25c 60 tj=150c tj=25c 1,4 tj=150c tj=25c 160 tj=150c 159 tj=25c 27 tj=150c 30 tj=25c 224 tj=150c 248 tj=25c 75 tj=150c 99 tj=25c 1,08 tj=150c 1,68 tj=25c 4,35 tj=150c 5,94 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,630 k/ w tj=25c 1,2 1,68 1,9 tj=125c 1,68 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,771 k/ w tj=25c 1,2 1,68 1,9 tj=150c 1,68 tj=25c 60 tj=150c tj=25c 131 tj=150c 166 tj=25c 121 tj=150c 151 tj=25c 7,6 tj=150c 14,4 di(rec)max tj=25c 3810 /dt tj=150c 1668 tj=25c 2,20 tj=150c 4,14 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 0,81 w/mk 0,701 k/ w v ns mws ? pf mws c v a n s a /s a % 2 2 000 ? 150 boost inverse diode gate charge input capacitance output capacitance c rss c oss c ies reverse transfer capacitance turn-off energy loss per pulse q gate e off turn-on energy loss per pulse boost igbt gate-emitter leakage current fall t ime turn-on delay time rise time integrated gate resistor gate emitter threshold voltage e on turn-off delay time v ce(sat) boost diode diode forward voltage v f collector-emitter saturation voltage collector-emitter cut-off incl diode v ce =v ge 0 t d(off) t r t d(on) t f r gint i ces nc mw/k tj=25c 2 5 -5 0 274 tj=25c 150 p mw 200 rated resistance power dissipation constant deviation of r100 power dissipation r ? r/r r100=1486 ? 350 rgoff = 4 ? 15 15 480 i ges v ge(th) 15 0 a a 20 v v i rrm reverse recovery energy t rr q rr e rec reverse recovery time peak rate of fall of recovery current peak reverse recovery current reverse recovered charge diode forward voltage reverse leakage current v f i r thermistor f=1mhz rgon= 4 ? 150 rgon= 4 ? 150 150 15 1 5 0 0,0024 600 600 350 25 t=25c t=25c t=100c 576 9240 940 none b-value b(25/50) tol. 3% t=25c 3950 k t=25c k vincotech ntc reference b-value b(25/100) tol. 3% t=25c 3996 b 4 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) 10-f10 6nia150sa-m136f at at t p = 250 s t p = 2 50 s t j = 2 5 c t j = 150 c v g e from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v buc k typical output characteristics 0 100 200 300 400 0 1 2 3 4 5 v ce (v) i c (a) 0 25 50 75 100 125 0,00 2,00 4,00 6,00 8,00 10,00 12,00 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0,00 100,00 200,00 300,00 400,00 0,00 0,50 1,00 1,50 2,00 2,50 3,00 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 0 1 2 3 4 5 v ce (v) i c (a) 5 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 175 v v ce = 1 75 v v ge = 15 v v ge = 15 v r go n = 4 ? i c = 150 a r go ff = 4 ? figure 7 f red figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 175 v v ce = 1 75 v v ge = 15 v v ge = 15 v r go n = 4 ? i c = 150 a bu ck e on high t e off high t e on low t e off low t 0 2 4 6 8 10 0 50 100 1 50 200 250 300 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 4 8 12 16 20 r g ( ? ) e (mws) e rec high t e rec low t 0 1 2 3 4 5 0 50 100 1 50 200 250 300 i c (a) e (mws) e rec high t e rec low t 0 1 2 3 4 5 0 4 8 12 16 20 r g ( ? ) e (mws) 6 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v c e = 175 v v ce = 1 75 v v ge = 15 v v ge = 15 v r go n = 4 ? i c = 150 a r go ff = 4 ? figure 1 1 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 175 v v r = 17 5 v v ge = 15 v i f = 15 0 a r go n = 4 ? v ge = 15 v bu ck t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 50 100 150 200 250 300 i c (a) t (ms) t rr high t t rr low t 0,0 0,1 0,2 0 ,3 0,4 0 4 8 12 16 20 r gon ( ? ) t rr (ms) t doff t f t don t r 0,00 0,01 0, 10 1,00 0 4 8 12 16 20 r g ( ? ) t (ms) t rr high t t rr low t 0,00 0,05 0, 10 0,15 0,20 0 50 100 150 200 250 300 i c (a) t rr (ms) 7 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 175 v v r = 17 5 v v ge = 15 v i f = 15 0 a r go n = 4 ? v ge = 15 v figur e 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 175 v v r = 17 5 v v ge = 15 v i f = 15 0 a r go n = 4 ? v ge = 15 v bu ck i rrm high t i rrm low t 0,00 50,00 1 00,00 150,00 200,00 0 4 8 12 16 20 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 5 10 15 20 0 4 8 12 16 20 r gon ( w ) q rr (mc) i rrm high t i rrm low t 0,00 50,00 1 00,00 150,00 200,00 250,00 0 50 100 150 200 250 300 i c (a) i rrm (a) q rr high t q rr low t 0 5 10 15 20 0 5 0 1 00 150 200 250 300 i c (a) q rr (mc) 8 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 17 fred figure 18 fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 175 v v r = 17 5 v v ge = 15 v i f = 15 0 a r go n = 4 ? v ge = 15 v figur e 19 igbt figure 20 fred igbt transient thermal impedance fred t ransient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,574 k/w r thjh = 1,288 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,05 4,5e+00 0,07 4,9e+00 0,10 1,0e+00 0,20 1,0e+00 0,26 2,0e-01 0,60 2,3e-01 0,10 6,1e-02 0,28 8,0e-02 0,05 1,3e-02 0,12 1,6e-02 0,01 1,8e-03 0,03 1,8e-03 buck t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di 0 /dt t 0,00 2000 , 00 4000,00 6000,00 8000,00 10000,00 12000,00 0 4 8 12 16 20 r gon ( ? ) di rec / dt (a/ms) di rec /dt t di o /dt t 0,00 1500 , 00 3000,00 4500,00 6000,00 7500,00 9000,00 0 50 100 150 200 250 300 i c (a) di rec / dt (a/ms) 9 rev ision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 21 igbt figure 22 igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v g e = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c b uck 0 50 100 150 200 250 300 350 0,00 50,00 100,00 150,00 200,00 t h ( o c) p tot (w) 0 25 50 75 100 125 150 175 0,00 50,00 100,00 150,00 200,00 t h ( o c) i c (a) 0 40 80 120 160 0,00 50,00 100,00 150,00 200,00 t h ( o c) p tot (w) 0 20 40 60 80 100 0,00 50,00 100,00 150,00 200,00 t h ( o c) i f (a) 10 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 25 igbt figure 26 igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) at at d = s ingle pulse i c = 150 a th = 80 oc v ge = 15 v t j = t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 200 400 600 800 1000 q g (nc) v ge (v) 120v 480v 11 revision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 150 c v ge from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v boo st 0 100 200 300 400 0 1 2 3 4 5 v ce (v) i c (a) 0,00 25,00 50,00 75,00 100,00 125,00 0,00 2,00 4,00 6,00 8,00 10,00 12,00 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 0 1 2 3 4 5 v ce (v) i c (a) 12 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 4 ? i c = 149 a r go ff = 4 ? figure 7 i gbt figure 8 igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 4 ? i c = 149 a bo ost e rec high t e rec low t 0,00 1,00 2, 00 3,00 4,00 5,00 0 50 100 150 200 250 300 i c (a) e (mws) e rec high t e rec low t 0,00 1,00 2, 00 3,00 4,00 5,00 0 4 8 12 16 20 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0,00 2,00 4 , 00 6,00 8,00 10,00 0 50 100 150 200 250 300 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,00 2,00 4 , 00 6,00 8,00 10,00 0 4 8 12 16 20 r g ( w ww w ) e (mws) 13 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v c e = 350 v v ce = 3 50 v v ge = 15 v v ge = 15 v r go n = 4 ? i c = 149 a r go ff = 4 ? figure 1 1 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 14 9 a r go n = 4 ? v ge = 15 v bo ost t doff t f t don t r 0,00 0,01 0, 10 1,00 0 50 100 150 200 250 300 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 4 8 12 16 20 r g ( w ww w ) t ( m s) t rr high t t rr low t 0,0 0,1 0,2 0 ,3 0,4 0 4 8 12 16 20 r gon ( ? ) t rr (ms) t rr high t t rr low t 0,00 0,05 0, 10 0,15 0,20 0 50 100 150 200 250 300 i c (a) t rr (ms) 14 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 14 9 a r go n = 4 ? v ge = 15 v figur e 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 14 9 a r go n = 4 ? v ge = 15 v bo ost i rrm high t i rrm low t 0,00 50,00 1 00,00 150,00 200,00 0 4 8 12 16 20 r gon ( ? ) i rrm (a) q rr high t q rr low t 0,00 4,00 8,00 12,00 16,00 20,00 0 4 8 12 16 20 r gon ( ? ) q rr (mc) i rrm high t i rrm low t 0,00 50,00 1 00,00 150,00 200,00 0 50 100 150 200 250 300 i c (a) i rrm (a) q rr high t q rr low t 0 4 8 12 16 20 0 5 0 1 00 150 200 250 300 i c (a) q rr (mc) 15 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 17 fred figure 18 fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt, di rec /dt = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 350 v v r = 35 0 v v ge = 15 v i f = 14 9 a r go n = 4 ? v ge = 15 v figur e 19 igbt figure 20 fred igbt transient thermal impedance fred t ransient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,63 0 k/w r thjh = 0,701 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,06 4,3e+00 0,07 3,3e+00 0,10 1,1e+00 0,17 4,3e-01 0,31 2,2e-01 0,34 9,8e-02 0,10 6,2e-02 0,10 1,4e-02 0,05 1,2e-02 0,03 1,2e-03 0,02 1,3e-03 boost t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di 0 /dt t 0,00 2000 , 00 4000,00 6000,00 8000,00 10000,00 0 4 8 12 16 20 r gon ( ? ) di rec / dt (a/ms) di 0 /dt t di rec /dt t 0,00 2000 , 00 4000,00 6000,00 8000,00 10000,00 0 50 100 150 200 250 300 i c (a) di rec / dt (a/ms) 16 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 21 igbt figure 22 igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 o c t j = 175 oc v g e = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b oost 0 50 100 150 200 250 300 0,00 50,00 100,00 150,00 200,00 t h ( o c) p tot (w) 0 25 50 75 100 125 150 175 0,00 50,00 100,00 150,00 200,00 t h ( o c) i c (a) 0 40 80 120 160 200 240 280 0,00 50,00 100,00 150,00 200,00 th ( o c) p tot (w) 0 25 50 75 100 125 150 0,00 50,00 100,00 150,00 200,00 th ( o c) i f (a) 17 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 s d = tp / t r thjh = 0,771 k/w figure 27 boost inverse diode figure 28 boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b oost 0,00 100,00 200,00 300,00 400,00 0,00 0,50 1,00 1,50 2,00 2,50 3,00 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 50 100 150 200 250 0,00 50,00 100,00 150,00 200,00 th ( o c) p tot (w) 0 25 50 75 100 125 150 0,00 50,00 100,00 150,00 200,00 th ( o c) i f (a) 18 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 1 0 000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 11 25 )( tt b ertr 19 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F t j 150 c r gon 4 ? r goff 4 ? figure 1 1 0-f106 nia150sa-m136f output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 150 a i c ( 100%) = 150 a t do ff = 0,25 s t do n = 0,16 s t eo ff = 0,63 s t eo n = 0,36 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 150 a i c ( 100%) = 150 a t f = 0 ,11 s t r = 0 ,03 s sw itching definitions buck igbt general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c10% v ge 10% t don v ce 3% -50 0 50 100 15 0 200 250 2,8 3 3,2 3,4 3,6 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0,1 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c10% i c 90% -50 0 50 100 15 0 200 250 3 3,1 3,2 3,3 3,4 time(us) % t r v ce i c 20 rev i sion: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 52,44 kw p on (100%) = 52,44 kw e off (100%) = 5,92 m j e on (100%) = 1,75 m j t eoff = 0,63 s t eo n = 0,36 s figur e 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 350 v v ge on = 15 v i d (1 00%) = 150 a v c ( 100%) = 350 v i rr m (100%) = -178 a i c (100%) = 150 a t rr = 0,15 s q g = 1 585, 43 nc switching definitions buck igbt i c 1% v ge 90% -25 0 25 50 75 10 0 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 10 0 125 2,9 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -200 0 200 400 600 800 1000 1200 1400 1600 1800 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -5 0 0 50 100 150 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted 21 rev i sion: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 150 a p r e c (100%) = 52,44 kw q rr (100%) = 13,73 c e r ec (100%) = 3,63 m j t qrr = 0,30 s t er ec = 0,30 s figur e 11 buck stage switching measurement circuit measurement circuit switching definitions buck igbt 80 150 50 2 3000 40 300 100 40 60 40 1,4 1 30 25 50 40 1,25 1 150 50 50 12 t qrr -150 -100 - 5 0 0 50 100 150 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % i d q rr -25 0 25 50 75 100 125 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % p rec e rec t erec 22 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F t j 150 c r gon 4 ? r goff 4 ? figure 1 1 0-f106 nia150sa-m136f output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 150 a i c ( 100%) = 150 a t do ff = 0,25 s t do n = 0,16 s t eo ff = 0,49 s t eo n = 0,34 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c ( 100%) = 350 v i c ( 100%) = 150 a i c ( 100%) = 150 a t f = 0 ,10 s t r = 0 ,03 s sw itching definitions boost igbt general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 1 00 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 15 0 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 10 0 125 0,1 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 15 0 200 250 3,05 3,1 3,15 3,2 3,25 3,3 3,35 3,4 time(us) % tr v ce ic 23 rev i sion: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 52,38 kw p on (100%) = 52,38 kw e off (100%) = 5,94 m j e on (100%) = 1,68 m j t eoff = 0,49 s t eo n = 0,34 s figur e 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 350 v v ge on = 15 v i d (1 00%) = 150 a v c ( 100%) = 350 v i rr m (100%) = -166 a i c (100%) = 150 a t rr = 0,15 s q g = 1 583, 47 nc switching definitions boost igbt i c 1% v ge90% -20 0 20 40 60 80 1 00 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % p off e off t eoff v ce3% v ge10% -20 0 20 40 60 80 1 00 120 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % p on e on teon -20 -15 -10 -5 0 5 10 15 20 -200 0 200 400 600 800 1000 1200 1400 1600 1800 qg (nc) vge (v) irrm10% irrm90% irrm100% trr -150 -100 -5 0 0 50 100 150 3,1 3,15 3,2 3,25 3,3 3,35 3,4 3,45 time(us) % id vd fitted 24 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 150 a p r e c (100%) = 52,38 kw q rr (100%) = 14,35 c e r ec (100%) = 4,14 m j t qrr = 0,31 s t er ec = 0,31 s figur e 11 boost stage switching measurement circuit measurement circuit switching definitions boost igbt 80 150 50 2 3000 75 40 100 300 100 40 60 40 1 1,4 1 30 25 50 40 1,25 1 150 50 50 12 tqrr -150 -100 - 5 0 0 50 100 150 3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % id qrr -20 0 20 40 60 80 100 120 3,05 3,15 3,25 3,35 3,45 3,55 3,65 time(us) % prec erec tere 25 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-F106NIA150SA-M136F m136f m136f outline pino u t ordering code & marking ordering code and marking - outline - pinout 26 re vision: 5 copyright by vincotech
10-F106NIA150SA-M136F disclaimer life s upport policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 27 rev ision: 5 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-F106NIA150SA-M136F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X