Part Number Hot Search : 
A2099 76L15 RT8026 167BZXI 4511B 50SQ100G PE44405 C4696
Product Description
Full Text Search
 

To Download APA203709 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . 3w stereo fully differential audio power amplifier a p a 2 0 3 7 t h e a p a 2 0 3 7 i s a s t e r e o , f u l l y d i f f e r e n t i a l c l a s s - a b a u d i o a m p l i f i e r w h i c h c a n o p e r a t e w i t h s u p p l y v o l t a g e f r o m 2 . 4 v t o 5 v a n d i s a v a i l a b l e i n a t q f n 5 x 5 - 2 0 a p a c k a g e . t h e b u i l t - i n f e e d b a c k r e s i s t o r s c a n m i n i m i z e t h e e x t e r n a l c o m p o n e n t c o u n t s a n d s a v e t h e p c b s p a c e . h i g h p s r r a n d f u l l y d i f f e r e n t i a l a r c h i t e c t u r e i n c r e a s e i m m u n i t y t o n o i s e a n d r f r e c t i f i c a t i o n . i n a d d i t i o n t o t h e s e f e a t u r e s , a s h o r t s t a r t - u p t i m e a n d s m a l l p a c k a g e s i z e m a k e t h e a p a 2 0 3 7 i s a n i d e a l c h o i c e f o r l c d t v s a n d n o t e b o o k p c s a n d p o r t a b l e d e v i c e s . t h e a p a 2 0 3 7 a l s o i n t e g r a t e s t h e d e - p o p c i r c u i t r y t h a t r e - d u c e s t h e p o p s a n d c l i c k n o i s e s d u r i n g p o w e r o n / o f f a n d s h u t d o w n m o d e o p e r a t i o n . b o t h t h e r m a l a n d o v e r - c u r - r e n t p r o t e c t i o n s a r e i n t e g r a t e d t o a v o i d t h e i c b e i n g d e - s t r o y e d b y o v e r t e m p e r a t u r e a n d s h o r t - c i r c u i t . t h e a p a 2 0 3 7 i s c a p a b l e o f d r i v i n g 3 w a t 5 v i n t o 3 w s p e a k e r . f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s lcd tvs notebook, pcs portable devices o p e r a t i n g v o l t a g e : 2 . 4 v ~ 5 . 5 v fully differential class-ab amplifier high psrr and excellent rf rectification immunity low crosstalk 3w per channel output power into 3 w l o a d a t v d d = 5 v t h e r m a l a n d o v e r - c u r r e n t p r o t e c t i o n s b u i l t - i n f e e d b a c k r e s i s t o r s e l i m i n a t e e x t e r n a l c o m p o n e n t s c o u n t s space saving package ? t q f n 5 x 5 - 2 0 a l e a d f r e e a n d g r e e n d e v i c e s a v a i l a b l e ( r o h s c o m p l i a n t ) s i m p l i f i e d a p p l i c a t i o n c i r c u i t apa2037 left channel input right channel input left channel speaker right channel speaker linn linp rinp rinn loutp loutn routn routp p i n c o n f i g u r a t i o n r o u t p 1 g n d 2 r o u t n 3 l o u t p 4 g n d 5 6 l o u t n 7 lvdd 8 nc 9 lsd 10 nc 1 1 l b y p a s s 1 2 l i n p 1 3 l i n n 1 4 r s d 1 5 r b y p a s s r i n p 1 6 r i n n 1 7 n c 1 8 r v d d 1 9 n c 2 0 tqfn5x5-20a top view =thermal pad (connected the thermal pad to gnd plane for better heat dissipation)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 a p a 2 0 3 7 symbol parameter rating unit v dd supply voltage (lvdd, rvdd to gnd) - 0.3 to 6 v v in input voltage (linn, linp, rinn, rinp, lsd, rsd to gnd) - 0.3 to v dd +0.3 v t j maximum junction temperature 150 o c t stg storage temperature range - 65 to +150 o c t s dr maximum lead soldering temperature, 10 seconds 260 o c p d power dissipation internally limited w o r d e r i n g a n d m a r k i n g i n f o r m a t i o n a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) ( o v e r o p e r a t i n g f r e e - a i r t e m p e r a t u r e r a n g e u n l e s s o t h e r w i s e n o t e d . ) note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient (note 2 ) tqfn5x5 - 20a 40 o c /w q jc thermal resistance - junction to case (note 3 ) tqfn5x5 - 20a 8 o c /w note 2: please refer to ? layout recommendation?, the thermal pad on the bottom of the ic should soldered directly to the pcb?s thermalpad area that with several thermal vias connect to the ground plan, and the pcb is a 2-layer, 5-inch square area with 2oz copper thickness . note 3: the case temperature is measured at the center of the thermal pad on the underside of the tqfn5x5-20a package. apa2037 handling code temperature range package code package code qb : tqfn5x5-20a operating ambient temperature range i : -40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device xxxxx - date code assembly material apa2037 qb : apa2037 xxxxx
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 3 a p a 2 0 3 7 symbol parameter range unit v dd supply voltage 2 . 4 ~ 5.5 v v ih high level threshold voltage l sd , rsd 1 .8 ~v dd v v il low level threshold voltage l sd , rsd 0 ~ 0. 35 v v i c common mode input voltage 0.5 ~ v dd - 0.5 v operating ambient temperature range - 40 ~ 85 o c operating junction temperature range - 40 ~ 125 o c speaker resistance 3 ~ w apa2037 symbol parameter test conditions min. typ. max. unit i dd supply current - 6 12 ma i sd shutdown current l sd = rsd = 0v - 1 5 m a i i input current lsd, rsd - 0. 1 - m a gain r l =4 w 36k w ri 40k w ri 44k w ri v/v t start - up start - up time from end of shutdown c b1 =c b2 = 0.22 m f - 65 - ms r sd resistance from shutdown to gnd 90 100 110 k w v dd =5v, t a =25 x c r l = 3 w - 2.4 - r l = 4 w - 2.1 - thd +n = 1% r l = 8 w 1 1.3 - r l = 3 w - 3 - r l = 4 w - 2.6 - p o output power thd +n = 1 0 % f in = 1 k hz r l = 8 w - 1.6 - w r l = 4 w p o = 1.5 w - 0.05 - thd+n total harmonic distortion pulse noise f in = 1 k hz r l = 8 w p o = 0.9 w - 0.035 - % crosstalk channel separation p o =130mw, r l =8 w , f in = 1khz - 105 - psrr power supply reje ction ratio c b1 = c b2 = 0.22 m f , r l = 8 w , v rr =0.2v pp , f in = 217 hz - 80 - cmrr common - mode rejection ratio c b1 = c b2 = 0.22 m f, r l = 8 w , v ic =0.2v pp , f in = 217 hz - 60 - db s/n signal to noise ratio w ith a - weight ing filter p o = 1.3 w, r l = 8 w - 105 - db v os output offset voltage r l = 8 w - 5 20 mv vn noise output voltage c b1 = c b2 = 0.22 m f, w ith a - weight ing filter - 15 - m v (rms) r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s e l e c t r i c a l c h a r a c t e r i s t i c s v d d = 5 v , g n d = 0 v , t a = 2 5 o c ( u n l e s s o t h e r w i s e n o t e d )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 4 a p a 2 0 3 7 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) v d d = 5 v , g n d = 0 v , t a = 2 5 o c ( u n l e s s o t h e r w i s e n o t e d ) apa2037 symbol parameter test conditions min. typ. max. unit v dd = 3.6 v, t a =25 x c r l = 3 w - 1.2 - r l = 4 w - 1 - thd +n = 1% r l = 8 w - 0.65 - r l = 3 w - 1.5 - r l = 4 w - 1.3 - p o output power thd +n = 1 0 % f in = 1khz r l = 8 w - 0 .8 - w r l = 4 w p o = 0.7 w - 0.07 - thd+n total harmonic distortion pulse noise f in = 1khz r l = 8 w p o = 0.45 w - 0.05 - % crosstalk channel separation p o =65mw, r l =8 w , f in =1khz - 105 - psrr power supply rejection ratio c b1 = c b2 = 0.22 m f, r l = 8 w , v rr =0.2v pp , f in = 217 hz - 78 - cmrr common - mode rejection ratio c b1 = c b2 = 0.22 m f, r l = 8 w , v ic =0.2v pp , f in = 217 hz - 60 - s/n signal to noise ratio w ith a - weight ing filter p o = 0.65 w, r l = 8 w - 103 - db v os output offset voltage r l = 8 w - 5 20 mv vn noise output voltage c b1 = c b2 = 0.22 m f, w ith a - weight ing filter - 15 - m v (rms) v dd = 2.4 v, t a =25 x c r l = 3 w - 0. 5 - r l = 4 w - 0.45 - thd +n = 1% r l = 8 w - 0.3 - r l = 3 w - 0.7 - r l = 4 w - 0.6 - p o output power thd +n = 1 0 % f in = 1 k hz r l = 8 w - 0.35 - w r l = 4 w , p o = 0.3 w - 0.1 - thd+n total harmonic distortion pulse noise f in = 1khz r l = 8 w , p o = 0.2 w - 0.08 - % crosstalk channel separation p o =30mw, r l =8 w , f in =1khz - 105 - psrr power supply rejection ratio c b1 = c b2 = 0.22 m f, r l = 8 w , v rr =0.2v pp , f in = 217 hz - 75 - cmrr common - mode rejection ratio c b1 = c b2 = 0.22 m f, r l = 8 w , v ic =0.2v pp , f in = 217 hz - 60 - s/n signal to noise ratio w ith a - weight ing filter p o = 0.3 w, r l = 8 w - 100 - db v os output offset voltage r l = 8 w - 5 20 mv vn noise output voltage c b1 = c b2 = 0.22 m f, w ith a - weight ing filter - 15 - m v (rms)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 5 a p a 2 0 3 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s 0.01 10 0.1 1 10m 5 100m 1 t h d + n ( % ) output power (w) thd+n vs. output power v dd =2.4v v dd =3.6v v dd =5.0v r l =3 w f in =1khz c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 10m 5 100m 1 t h d + n ( % ) output power (w) thd+n vs. output power v dd =2.4v v dd =3.6v v dd =5.0v r l =4 w f in =1khz c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 10m 3 100m 1 t h d + n ( % ) output power (w) thd+n vs. output power v dd =2.4v v dd =3.6v v dd =5.0v r l =8 w f in =1khz c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) v dd =5.0v r l =3 w c i =0.22 m f a v =12db bw<80khz t h d + n ( % ) p o =1.7w p o =1w 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) v dd =5.0v r l =4 w c i =0.22 m f a v =12db bw<80khz t h d + n ( % ) p o =1.5w p o =1w 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.9w p o =0.5w v dd =5.0v r l =8 w c i =0.22 m f a v =12db bw<80khz
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 6 a p a 2 0 3 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.1w p o =0.7w p o =0.5w v dd =3.6v r l =4 w c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.1w p o =0.45w p o =0.25w v dd =3.6v r l =8 w c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.3w p o =0.1w v dd =2.4v r l =4 w c i =0.22 m f a v =12db bw<80khz 0.01 10 0.1 1 20 20k 100 1k 10k thd+n vs. frequency frequency (hz) t h d + n ( % ) p o =0.2w p o =0.1w v dd =2.4v r l =8 w c i =0.22 m f a v =12db bw<80khz 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 3 8 13 18 23 28 32 output power vs. load resistance o u t p u t p o w e r ( w ) load resistance ( w ) f in =1khz a v =12db mono v dd =2.4v ,thd+n=10% v dd =2.4v ,thd+n=1% v dd =3.6v,thd+n=1% v dd =3.6v,thd+n=10% v dd =5v,thd+n=1% v dd =5v,thd+n=10% r l =8 w ,thd+n=10% r l =3 w ,thd+n=1% r l =4 w ,thd+n=10% r l =3 w ,thd+n=10% r l =8 w ,thd+n=1% 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2.4 3.0 3.5 4.0 4.5 5.0 o u t p u t p o w e r ( w ) output power vs. supply voltage f in =1khz a v =12db mono r l =4 w ,thd+n=1% supply v oltage (v)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 7 a p a 2 0 3 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t t t t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =5.0v r l =3 w a v =12db c i =0.22 m f p o =240mw -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =5.0v r l =4 w a v =12db c i =0.22 m f p o =210mw power dissipation vs. output power output power (w) p o w e r d i s s i p a t i o n ( w ) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v dd =5v f in =1khz a v =12db mono r l =3 w r l =4 w r l =8 w 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 power dissipation vs. output power v dd =3.6v f in =1khz a v =12db mono r l =3 w r l =4 w r l =8 w output power (w) p o w e r d i s s i p a t i o n ( w ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v dd =5v f in =1khz a v =12db mono r l =8 w r l =4 w r l =3 w supply current vs. output power s u p p l y c u r r e n t ( a ) output power (w) 0.2 0.4 0.6 0.8 0.0 0.3 0.6 0.9 1.2 1.5 1.8 r l =8 w r l =4 w r l =3 w supply current vs. output power s u p p l y c u r r e n t ( a ) output power (w) 0.0 v dd =3.6v f in =1khz av=12db mono
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 8 a p a 2 0 3 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t t t t t t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =3.6v r l =8 w a v =12db c i =0.22 m f p o =65mw -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t t t t t t t t t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =2.4v r l =4 w a v =12db c i =0.22 m f p o =45mw -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t t t t t t t t t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =2.4v r l =8 w a v =12db c i =0.22 m f p o =30mw -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =5.0v r l =8 w a v =12db c i =0.22 m f p o =130mw -140 +0 -120 -100 -80 -60 -40 -20 20 20k 100 1k 10k t t t t t t t crosstalk vs. frequency c r o s s t a l k ( d b ) frequency (hz) left to right right to left v dd =3.6v r l =4 w a v =12db c i =0.22 m f p o =100mw 1 m 50 m 10 m 20 m 20 20k 100 1k 10k output noise voltage vs. frequency o u t p u t n o i s e v o l t a g e ( v r m s ) frequency (hz) left channel right channel v dd =5.0v r l =8 w a v =12db c i =0.22 m f a-weighting
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 9 a p a 2 0 3 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 1u 50u 10u 20u 20 20k 100 1k 10k output noise voltage vs. frequency o u t p u t n o i s e v o l t a g e ( v r m s ) frequency (hz) left channel right channel v dd =3.6v r l =8 w a v =12db c i =0.22 m f a-weighting -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k frequency (hz) psrr vs. frequency p o w e r s u p p l y r e j e c t i o n r a t i o ( d b ) v dd =3.6v r l =8 w a v =12db c i =0.22 m f v rr =0.2v rms c b =0.47 m f c b =0.1 m f c b =0.01 m f c b =1 m f -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k frequency (hz) psrr vs. frequency p o w e r s u p p l y r e j e c t i o n r a t i o ( d b ) r l =8 w a v =12db c b =0.22 m f c i =0.22 m f v rr =0.2v rms v dd =2.4v v dd =3.6v v dd =5.0v -80 +0 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k cmrr vs. frequency c o m m o n m o d e r e j e c t i o n r a t i o ( d b ) frequency (hz) r l =8 w a v =12db v in =0.2v pp c i =0.22 m f v dd =2.4v v dd =3.6v v dd =5.0v -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 1 5 2 3 4 cmrr vs. common mode input voltage c o m m o n m o d e r e j e c t i o n r a t i o ( d b ) common mode input voltage (vrms) r l =8 w a v =12db f in =1khz c i =0.22 m f v dd =2.4v v dd =3.6v v dd =5.0v 1 m 50 m 10 m 20 m 20 20k 100 1k 10k output noise voltage vs. frequency o u t p u t n o i s e v o l t a g e ( v r m s ) frequency (hz) left channel right channel v dd =2.4v r l =8 w a v =12db c i =0.22 m f a-weighting
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 0 a p a 2 0 3 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) -160 +0 -120 -80 -40 0 2k 400 800 1.2k 1.6k -160 +0 -120 -80 -40 s u p p l y v o l t a g e ( d b v ) o u t p u t v o l t a g e ( d b v ) frequency (hz) gsm power supply rejection vs. frequency +60 +260 +100 +140 +180 +220 +4 +14 +6 +8 +10 +12 10 200k 100 1k 10k frequency response frequency (hz) g a i n ( d b ) p h a s e ( d e g ) v dd =5.0v a v =12db r l =8 w c i =0.22 m f gain phase +60 +260 +100 +140 +180 +220 +4 +14 +6 +8 +10 +12 10 200k 100 1k 10k frequency response frequency (hz) g a i n ( d b ) p h a s e ( d e g ) gain phase v dd =3.6v a v =12db r l =8 w c i =0.22 m f +60 +260 +100 +140 +180 +220 +4 +14 +6 +8 +10 +12 10 200k 100 1k 10k frequency response frequency (hz) g a i n ( d b ) p h a s e ( d e g ) gain phase v dd =2.4v a v =12db r l =8 w c i =0.22 m f 2 4 6 8 10 0 2.4 3.0 3.5 4.0 4.5 5.0 5.5 supply voltage (v) s u p p l y c u r r e n t ( m a ) a v =12db no load supply current vs. supply voltage 0 50 100 150 200 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 bypass capacitor ( m f) s t a r t - u p t i m e ( m s ) start-up time vs. bypass capacitor v dd =5.0v a v =12db no load
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 1 a p a 2 0 3 7 o p e r a t i n g w a v e f o r m s 1 2 v dd ch1: v dd , 2v/div, dc ch2: v rout , 50mv/div, dc time: 20 ms/div v rout power on 1 2 ch1: v dd , 2v/div, dc ch2: v rout , 50mv/div, dc time: 50 ms/div v rout v dd power off 1 2 ch1: v rsd , 2v/div, dc ch2: v routn , 2v/div, dc time: 20 ms/div v routn v rsd shutdown release 1 2 ch1: v dd , 100mv/div, dc ch2: v rout , 20mv/div, dc voltage offset = 5.0v v dd v rout time: 2 ms/div gsm power supply rejection vs. time
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 2 a p a 2 0 3 7 o p e r a t i n g w a v e f o r m s ( c o n t . ) 1 2 ch1: v rsd , 2v/div, dc ch2: v routn , 2v/div, dc time: 20 ms/div v routn v rsd shutdown p i n d e s c r i p t i o n pin no. name i/o/p f unction 1 routp o the right channel positive output terminal of speaker amplifier. 2,5 gnd p ground connection for circuitry. 3 routn o the right channel negative output terminal of speaker amplifier 4 loutp o the left channel po sitive output terminal of speaker amplifier. 6 loutn o the left channel negative output terminal of speaker amplifier. 7 lvdd p left channel supply voltage input pin. 8,10,18,20 nc - no connection. 9 lsd i left channel s hutdown mode control signal in put pin , place left channel speaker amplifier in shutdown mode when held low. 11 lbypass p left channel bypass voltage input pin. 12 linp i t he non - inverting input of left channel amplifier . l in p is connected to ground (gnd node) via a capacitor for sing le - end ( se) input signal. 13 linn i t he inverting input of left channel amplifier . l in n is used as audio input terminal, typically. 14 rsd i right channel s hutdown mode control signal input pin , place left channel speaker amplifier in shutdown mode whe n held low. 15 rbypass p right channel bypass voltage input pin. 16 rinp i t he non - inverting input of right channel amplifier . r in p is connected to ground (gnd node) via a capacitor for single - end ( se) input signal. 17 rinn i t he inverting input of righ t channel amplifier . r in n is used as audio input terminal, typically. 19 rvdd p right channel supply voltage input pin
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 3 a p a 2 0 3 7 b l o c k d i a g r a m loutp linp linn rinp rinn loutn routn routp bias and c ontrol c ircuitry s l bypass r bypass l sd r sd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 4 a p a 2 0 3 7 t y p i c a l a p p l i c a t i o n c i r c u i t s single-ended input mode left channel input 0.22 m f 0.22 m f shutdown control v dd 0.1 m f 10 m f gnd c i1 c i2 4 loutp linp 12 linn 13 rinp 16 rinn 17 6 loutn 3 routn 1 routp bias and c ontrol c ircuitry s 11 l bypass 15 r bypass l sd 9 r sd 14 7 lvdd 19 r vdd 5 gnd 2 gnd r f1 r f2 r f3 r f4 r i1 r i2 r i3 r i4 40k w 40k w 40k w 40k w 10k w 10k w 0.22 m f 0.22 m f c i4 c i3 10k w 10k w c b1 0.22 m f c b2 0.22 m f c s1 c s2 right channel input r rsd r lsd 100k w 100k w 4 w 4 w gnd gnd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 5 a p a 2 0 3 7 t y p i c a l a p p l i c a t i o n c i r c u i t s ( c o n t . ) differential input mode left channel input 0.22 m f 0.22 m f shutdown control v dd 0.1 m f 10 m f gnd c i1 c i2 4 loutp linp 12 linn 13 rinp 16 rinn 17 6 loutn 3 routn 1 routp bias and c ontrol c ircuitry s 11 l bypass 15 r bypass l sd 9 r sd 14 7 lvdd 19 r vdd 5 gnd 2 gnd r f1 r f2 r f3 r f4 r i1 r i2 r i3 r i4 40k w 40k w 40k w 40k w 10k w 10k w 0.22 m f 0.22 m f c i4 c i3 10k w 10k w c b1 0.22 m f c b2 0.22 m f c s1 c s2 right channel input r rsd r lsd 100k w 100k w 4 w 4 w gnd gnd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 6 a p a 2 0 3 7 the apa2037 has separated shutdown control for each channel. user can shutdown left channel amplifier by lsd, or shutdown right channel amplifier by rsd. if all the amplifiers are shutdown, apa2037 only consumes 1 m a typical. f u n c t i o n d e s c r i p t i o n f u l l y d i f f e r e n t i a l a m p l i f i e r t h e p o w e r a m p l i f i e r s a r e f u l l y d i f f e r e n t i a l a m p l i f i e r s w i t h d i f f e r e n t i a l i n p u t s a n d o u t p u t s . t h e f u l l y d i f f e r e n t i a l a m p l i - f i e r h a s s o m e a d v a n t a g e s v e r s u s t r a d i t i o n a l a m p l i f i e r s . f i r s t , d o n ? t n e e d t h e i n p u t c o u p l i n g c a p a c i t o r s b e c a u s e t h e c o m m o n - m o d e f e e d b a c k c o m p e n s a t e s t h e i n p u t b i a s . t h e i n p u t s c a n b e b i a s e d f r o m 0 . 5 v t o v d d - 0 . 5 v , a n d t h e o u t p u t s a r e s t i l l b i a s e d a t m i d - s u p p l y o f t h e p o w e r a m p l i f i e r . i f t h e i n p u t s a r e b i a s e d a t o u t o f t h e i n p u t r a n g e , t h e c o u p l i n g c a p a c i t o r s a r e r e q u i r e d . s e c o n d , t h e f u l l y d i f f e r e n t i a l a m p l i f i e r h a s o u t s t a n d i n g i m m u n i t y a g a i n s t s u p p l y v o l t a g e r i p p l e ( 2 1 7 h z ) c u a s e d b y t h e g s m r f t r a n s - m i t t e r s ? s i g n a l w h i c h i s b e t t e r t h a n t h e t y p i c a l a u d i o a m p l i f i e r . s h u t d o w n f u n c t i o n t h e o v e r - t e m p e r a t u r e c i r c u i t l i m i t s t h e j u n c t i o n t e m p e r a - t u r e o f t h e a p a 2 0 3 7 . w h e n t h e j u n c t i o n t e m p e r a t u r e e x - c e e d s t j = + 1 5 0 o c , a t h e r m a l s e n s o r t u r n s o f f t h e a m p l i f i e r s , a l l o w i n g t h e d e v i c e t o c o o l . t h e t h e r m a l s e n - s o r a l l o w s t h e a m p l i f i e r s t o s t a r t - u p a f t e r t h e j u n c t i o n t e m - p e r a t u r e c o o l s d o w n t o a b o u t 1 2 5 o c . t h e t h e r m a l p r o t e c - t i o n i s d e s i g n e d w i t h a 2 5 o c h y s t e r e s i s t o l o w e r t h e a v e r - a g e t j d u r i n g c o n t i n u o u s t h e r m a l o v e r l o a d c o n d i t i o n s , i n c r e a s i n g l i f e t i m e o f t h e i c . mono operation t h e a p a 2 0 3 7 h a s i n d e p e n d e n t s h u t d o w n t o c o n t r o l e a c h c h a n n e l ? s p o w e r a m p l i f i e r , t h i s a l l o w s u s e r s w i t c h i n g a u - d i o a m p l i f i e r t o s t e r e o o r m o n o o p e r a t i o n a n d g i v i n g f l e x - i b l e c o n t r o l a t d e s i g n . t h e r m a l p r o t e c t i o n o v e r - c u r r e n t p r o t e c t i o n the apa2037 monitors the output buffers? current. when the over current occurs, the output buffers? current will be reduced and limited to a fold-back current level. the power amplifier will go back to normal operation until the over-current situation has been removed. in addition, if the over-current period is long enough and the ic?s junction temperature reaches the thermal protection threshold, the ic enters thermal protection mode.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 7 a p a 2 0 3 7 a p p l i c a t i o n i n f o r m a t i o n i n p u t r e s i s t a n c e ( r i ) the gain for the apa2037 is set by the external input re- sistors (r i ) and internal feedback resistors (r f ). (1) the internal feedback resistors are 40k w typical. for the performance of a fully differential amplifier, it?s better to select matching input resistors r i1 , r i2 , r i3 ,and r i4 . therefore, 1% tolerance resistors are recommended. if the input resistors are not matched, the cmrr and psrr performance are worse than using matching devices. i n p u t c a p a c i t o r ( c i ) w h e n t h e a p a 2 0 3 7 i s d r i v e n b y a d i f f e r e n t i a l i n p u t s o u r c e , t h e i n p u t c a p a c i t o r m a y n o t b e r e q u i r e d . i n t h e s i n g l e - e n d e d i n p u t a p p l i c a t i o n , a n i n p u t c a p a c i t o r , c i , i s r e q u i r e d t o a l l o w t h e a m p l i f i e r t o b i a s t h e i n p u t s i g - n a l t o t h e p r o p e r d c l e v e l f o r o p t i m u m o p e r a t i o n . i n t h i s c a s e , c i a n d t h e i n p u t r e s i s t a n c e r i f o r m a h i g h - p a s s f i l t e r w i t h t h e c o r n e r f r e q u e n c y d e t e r m i n e d i n t h e f o l l o w i n g e q u a t i o n : (2) t h e v a l u e o f c i m u s t b e c o n s i d e r e d c a r e f u l l y b e c a u s e i t d i r e c t l y a f f e c t s t h e l o w f r e q u e n c y p e r f o r m a n c e o f t h e c i r c u i t . c o n s i d e r t h e e x a m p l e w h e r e r i i s 1 0 k w a n d t h e s p e c i f i - c a t i o n t h a t c a l l s f o r a f l a t b a s s r e s p o n s e d o w n t o 1 0 0 h z . t h e e q u a t i o n i s r e c o n f i g u r e d b e l o w : c i i f r 2 1 c p = (3) c o n s i d e r t h e i n p u t r e s i s t a n c e v a r i a t i o n , t h e c i s h o u l d b e 0 . 1 6 m f . t h e r e f o r e , a v a l u e i n t h e r a n g e o f 0 . 2 2 m f t o 0 . 4 7 m f w o u l d b e c h o s e n . a f u r t h e r c o n s i d e r a t i o n f o r t h i s c a p a c i t o r i s t h e l e a k a g e p a t h f r o m t h e i n p u t s o u r c e t h r o u g h t h e i n p u t n e t w o r k ( r i + r f , c i ) t o t h e l o a d . t h i s l e a k a g e c u r r e n t c r e a t e s a d c o f f s e t v o l t a g e a t t h e i n p u t o f t h e a m p l i f i e r . t h e o f f s e t r e d u c e s u s e f u l h e a d r o o m , e s p e c i a l l y i n h i g h g a i n a p p l i c a t i o n s . f o r t h i s r e a s o n , a l o w - l e a k a g e t a n t a l u m o r c e r a m i c c a p a c i t o r i s t h e b e s t c h o i c e . w h e n p o l a r i z e d c a p a c i t o r s a r e u s e d , t h e p o s i t i v e s i d e o f t h e c a p a c i t o r s h o u l d f a c e t h e a m p l i f i e r i n p u t i n m o s t a p p l i c a t i o n s b e c a u s e t h e d c l e v e l o f t h e a m p l i f i e r s ? i n p u t s a r e h e l d a t v d d / 2 . p l e a s e n o t e t h a t i t i s i f v r r a = i i ) c(highpass c r 2 1 f p = i m p o r t a n t t o c o n f i r m t h e c a p a c i t o r p o l a r i t y i n t h e a p p l i c a t i o n . e f f e c t i v e b y p a s s c a p a c i t o r ( c b y p a s s ) t h e b y p a s s p i n s e t s t h e v d d / 2 f o r i n t e r n a l r e f e r e n c e b y v o l t a g e d i v i d e r . a d d i n g c a p a c i t o r s a t t h i s p i n t o f i l t e r t h e n o i s e a n d r e g u l a t o r t h e m i d - s u p p l y r a i l w i l l i n c r e a s e t h e p s r r a n d n o i s e p e r f o r m a n c e . t h e c a p a c i t o r s s h o u l d b e a s c l o s e t o t h e d e v i c e a s p o s s i b l e . t h e e f f e c t o f a l a r g e r b y p a s s c a p a c i t o r w i l l i m - p r o v e p s r r d u e t o i n c r e a s e d s u p p l y s t a b i l i t y . t h e b y p a s s c a p a c i t a n c e a l s o a f f e c t s t o t h e s t a r t t i m e . t h e l a r g e c a p a c i t o r s w i l l i n c r e a s e t h e s t a r t t i m e w h e n d e v i c e e x i s t s s h u t d o w n . optimizing depop circuitry c i r c u i t r y h a s b e e n i n c l u d e d i n t h e a p a 2 0 3 7 t o m i n i m i z e t h e a m o u n t o f p o p p i n g n o i s e a t p o w e r - u p a n d w h e n c o m - i n g o u t o f s h u t d o w n m o d e . p o p p i n g o c c u r s w h e n e v e r a v o l t a g e s t e p i s a p p l i e d t o t h e s p e a k e r . i n o r d e r t o e l i m i - n a t e c l i c k s a n d p o p s , a l l c a p a c i t o r s m u s t b e f u l l y d i s - c h a r g e d b e f o r e t u r n - o n . r a p i d o n / o f f s w i t c h i n g o f t h e d e - v i c e o r t h e s h u t d o w n f u n c t i o n w i l l c a u s e t h e c l i c k a n d p o p c i r c u i t r y . t h e v a l u e o f c i w i l l a l s o a f f e c t t u r n - o n p o p s . t h e b y p a s s v o l t a g e r a m p u p s h o u l d b e s l o w e r t h a n i n p u t b i a s v o l t a g e . although the bypass pin current source cannot be modified, the size of c bypass can be changed to alter the device turn-on time and the amount of clicks and pops. by increasing the value of c bypass , turn-on pop can be reduced. however, the tradeoff for using a larger bypass capacitor is to increase the turn-on time for this device. there is a linear relationship between the size of c bypass and the turn-on time. a h i g h g a i n a m p l i f i e r i n t e n s i f i e s t h e p r o b l e m a s t h e s m a l l d e l t a i n v o l t a g e i s m u l t i p l i e d b y t h e g a i n . h e n c e , i t i s a d - v a n t a g e o u s t o u s e l o w - g a i n c o n f i g u r a t i o n s . p o w e r s u p p l y d e c o u p l i n g c a p a c i t o r ( c s ) t h e a p a 2 0 3 7 i s a h i g h - p e r f o r m a n c e c m o s a u d i o a m p l i - f i e r t h a t r e q u i r e s a d e q u a t e p o w e r s u p p l y d e c o u p l i n g t o e n s u r e t h e o u t p u t t o t a l h a r m o n i c d i s t o r t i o n ( t h d + n ) i s a s l o w a s p o s s i b l e . p o w e r s u p p l y d e c o u p l i n g a l s o p r e - v e n t s t h e o s c i l l a t i o n s c a u s e d b y l o n g l e a d l e n g t h b e t w e e n t h e a m p l i f i e r a n d t h e s p e a k e r .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 8 a p a 2 0 3 7 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) t h e o p t i m u m d e c o u p l i n g i s a c h i e v e d b y u s i n g t w o d i f f e r - e n t t y p e s o f c a p a c i t o r s t h a t t a r g e t o n d i f f e r e n t t y p e s o f n o i s e s o n t h e p o w e r s u p p l y l e a d s . f o r h i g h e r f r e q u e n c y t r a n s i e n t s , s p i k e s , o r d i g i t a l h a s h o n t h e l i n e , a g o o d l o w e q u i v a l e n t - s e r i e s - r e s i s t a n c e ( e s r ) c e r a m i c c a p a c i t o r , t y p i c a l l y 0 . 1 m f , i s p l a c e d a s c l o s e a s p o s s i b l e t o t h e d e - v i c e v d d l e a d w o r k s b e s t . f o r f i l t e r i n g l o w e r f r e q u e n c y n o i s e s i g n a l s , a l a r g e a l u m i n u m e l e c t r o l y t i c c a p a c i t o r o f 1 0 m f o r g r e a t e r p l a c e d n e a r t h e a u d i o p o w e r a m p l i f i e r i s r e c o m m e n d e d . f u l l y d i f f e r e n t i a l a m p l i f i e r e f f i c i e n c y t h e t r a d i t i o n a l c l a s s a b p o w e r a m p l i f i e r e f f i c i e n c y c a n b e c a l c u l a t e d s t a r t s o u t a s b e i n g e q u a l t o t h e r a t i o o f p o w e r f r o m t h e p o w e r s u p p l y t o t h e p o w e r d e l i v e r e d t o t h e l o a d . t h e f o l l o w i n g e q u a t i o n s a r e t h e b a s i s f o r c a l c u l a t i n g a m p l i f i e r e f f i c i e n c y . sup o p p ) ( efficiency = h where: 2 v v p orms = l pp dd avg dd dd sup r v 2v xi v p p = ? ?^ ?] l p avg) dd r 2v i p = ?] so the efficiency ( h ) is: dd l o dd p 4v r 2p 4v v ) ( efficiency p p = h ? (6) table 1 calculates efficiencies for four different output power levels. note that the efficiency of the amplifier is quite low for lower power levels and rises sharply as power to the load is increased resulting in nearly flat in- ternal power dissipation over the normal operating range. note that the internal dissipation at full output power is less than in the half power range. calculating the effi- ciency for a specific system is the key to proper power supply design. for a stereo 1w audio system with 8 w loads and a 5v supply, the maximum draw on the power supply is almost 1.63w. p o w e r s u p p l y d e c o u p l i n g c a p a c i t o r ( c s ) ( c o n t . ) l p l orms o r 2 v r v p 2 2 = = (5) (4) r l ( w ) p o (w) efficiency (%) i dd (a) p d (w) p sup (w) 0.25 30.1 0.17 0.58 0.83 0.50 43.1 0.23 0.66 1.16 1 61.5 0.33 0.63 1.63 8 1.6 77.7 0.43 0.46 2.06 0.4 27.5 0.29 1.06 1.46 1.2 48.1 0.51 1.30 2.50 2 62.4 0.66 1.21 3.21 4 2.6 74.1 0.70 0.9 1 3.51 0.5 27.5 0.37 1.32 1.82 1 38.7 0.52 1.58 2.58 2 55.1 0.74 1.63 3.63 3 3 66.8 0.92 1.49 4.49 a f i n a l p o i n t t o r e m e m b e r a b o u t l i n e a r a m p l i f i e r s ( e i t h e r s e o r d i f f e r e n t i a l ) i s h o w t o m a n i p u l a t e t h e t e r m s i n t h e e f f i c i e n c y e q u a t i o n t o t h e u t m o s t a d v a n t a g e w h e n p o s s i b l e . n o t e t h a t i n e q u a t i o n , v d d i s i n t h e d e n o m i n a t o r . t h i s i n d i c a t e s t h a t a s v d d g o e s d o w n , e f f i c i e n c y g o e s u p . i n o t h e r w o r d s , u s e t h e e f f i c i e n c y a n a l y s i s t o c h o o s e t h e c o r r e c t s u p p l y v o l t a g e a n d s p e a k e r i m p e d a n c e f o r t h e a p p l i c a t i o n . table 1: efficiency vs. output power in 5-v differential amplifier syetems l a y o u t r e c o m m e n d a t i o n f i g u r e 1 . t q f n 5 x 5 - 2 0 a l a n d p a t t e r n r e c o m m e n d a t i o n 0.65mm 0.49mm 3.1mm ground plane for thermal pad thermalvi a diameter 0.3mm x 9 4 . 8 m m 5 . 8 m m 1mm solder mask to prevent short circuit
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 1 9 a p a 2 0 3 7 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) 1 . a l l c o m p o n e n t s s h o u l d b e p l a c e d c l o s e t o t h e a p a 2 0 3 7 . f o r e x a m p l e , t h e i n p u t c a p a c i t o r ( c i ) s h o u l d b e c l o s e t o a p a 2 0 3 7 ? s i n p u t p i n s t o a v o i d c a u s i n g n o i s e c o u p l i n g t o a p a 2 0 3 7 ? s h i g h i m p e d a n c e i n p u t s ; t h e d e c o u p l i n g c a p a c i t o r ( c s ) s h o u l d b e p l a c e d b y t h e a p a 2 0 3 7 ? s p o w e r p i n t o d e c o u p l e t h e p o w e r r a i l n o i s e . 2 . t h e o u t p u t t r a c e s s h o u l d b e s h o r t , w i d e ( > 5 0 m i l ) , a n d s y m m e t r i c . 3 . t h e i n p u t t r a c e s h o u l d b e s h o r t a n d s y m m e t r i c . 4 . t h e p o w e r t r a c e w i d t h s h o u l d g r e a t e r t h a n 5 0 m i l . 5 . t h e t q f n 5 x 5 - 2 0 a t h e r m a l p a d s h o u l d b e s o l d e r e d o n p c b , a n d t h e g r o u n d p l a n e n e e d s s o l d e r e d m a s k ( t o a v o i d s h o r t c i r c u i t ) e x c e p t t h e t h e r m a l p a d a r e a . l a y o u t r e c o m m e n d a t i o n ( c o n t . )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 0 a p a 2 0 3 7 p a c k a g e i n f o r m a t i o n t q f n 5 x 5 - 2 0 a d e pin 1 a a1 a3 b d2 e 2 l e pin 1 corner k s y m b o l min. max. 0.80 0.00 0.25 0.35 3.00 3.40 0.05 3.00 a a1 b d d2 e e2 e l millimeters a3 0.20 ref tqfn5x5-20a 0.45 0.65 3.40 0.008 ref min. max. inches 0.031 0.000 0.010 0.014 0.118 0.134 0.118 0.018 0.026 0.70 0.134 0.028 0.002 0.65 bsc 0.026 bsc 0.20 0.008 k 4.90 5.10 0.193 0.201 4.90 5.10 0.193 0.201
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 1 a p a 2 0 3 7 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tqfn5x5 - 20a 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 5.30 ? 0.20 5.30 ? 0.20 1.30 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s package type unit quantity tqfn5x5 - 20a tape & reel 2500 d e v i c e s p e r u n i t a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 2 a p a 2 0 3 7 t a p i n g d i r e c t i o n i n f o r m a t i o n t q f n 5 x 5 - 2 0 a user direction of feed c l a s s i f i c a t i o n p r o f i l e
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 3 a p a 2 0 3 7 profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spec ified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined a s a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. c l a s s i f i c a t i o n r e f l o w p r o f i l e s table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c r e l i a b i l i t y t e s t p r o g r a m test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ 125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a115 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - a u g . , 2 0 0 9 w w w . a n p e c . c o m . t w 2 4 a p a 2 0 3 7 c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APA203709

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X