![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IRFH4253DPBF 1 www.irf.com ? 2013 international rectifier june 10, 2013 hexfet ? power mosfet base part number package type standard pack orderable part number ? ? form quantity IRFH4253DPBF dual pqfn 5mm x 6mm tape and reel 4000 irfh4253dtrpbf q1 q2 v dss 25 25 v r ds(on) max (@v gs = 4.5v) 4.60 1.45 m ??? qg (typical) 10 ? 31 nc i d (@t c = 25c) 45 ? 45 ? a features benefits control and synchronous mosfets in one package increased power density low charge control mosfet (10nc typical) lower switching losses low r dson synchronous mosfet (<1.45m ? ) results in lower conduction losses rohs compliant, halogen-free environmentally friendlier msl2, industrial qualification increased reliability intrinsic schottky diode with low forward voltage on q2 ? lower switching losses notes ? through ? are on page 12 absolute maximum ratings ?? parameter q1 max. q2 max. units v gs gate-to-source voltage 20 ? v i d @ t c = 25c continuous drain current, v gs @ 4.5v 64 ?? 145 ?? a i d @ t c = 70c continuous drain current, v gs @ 4.5v 51 ?? 116 ?? i d @ t c = 25c continuous drain current, v gs @ 4.5v (source bonding technology limited) 45 ? 45 ? i dm pulsed drain current 120 580 ? p d @t c = 25c power dissipation 31 50 w p d @t c = 70c power dissipation 20 32 linear derating factor 0.25 0.40 w/c t j operating junction and c t stg storage temperature range -55 to + 150 applications ?? control and synchronous mosfets for synchronous buck converters ? ? dual pqfn 5x6 mm ? ??? parameter q1 max. q2 max. units r ? jc (bottom) junction-to-case ? 4.0 2.5 r ? jc (top) junction-to-case ? 20 13 c/w r ? ja junction-to-ambient ? 34 38 r ? ja (<10s) junction-to-ambient ? 24 24 thermal resistance
? IRFH4253DPBF 2 www.irf.com ? 2013 international rectifier june 10, 2013 static @ t j = 25c (unless otherwise specified) ???? ? parameter min. typ. max. units conditions bv dss drain-to-source breakdown voltage q1 25 ??? ??? v v gs = 0v, i d = 250a q2 25 ??? ??? v gs = 0v, i d = 1.0ma ? bv dss / ? t j breakdown voltage temp. coefficient q1 ??? 22 ??? mv/c reference to 25c, i d = 1.0ma q2 ??? 22 ??? reference to 25c, i d = 10ma q1 ??? 2.50 3.20 v gs = 10v, i d = 30a ? r ds(on) static drain-to-source on-resistance q2 ??? 0.90 1.10 m ? v gs = 10v, i d = 30a ? q1 ??? 3.70 4.60 v gs = 4.5v, i d = 30a ? q2 ??? 1.15 1.45 v gs = 4.5v, i d = 30a ? v gs(th) gate threshold voltage q1 1.1 1.6 2.1 v q1: v ds = v gs , i d = 35a q2 1.1 1.6 2.1 q2: v ds = v gs , i d = 100a ? v gs(th) / ? t j gate threshold voltage coefficient q1 ??? -5.7 ??? mv/c q1: v ds = v gs , i d = 35a q2 ??? -8.9 ??? q2: v ds = v gs , i d = 100a i dss drain-to-source leakage current q1/q2 ??? ??? 1.0 a v ds = 20v, v gs = 0v q1/q2 ??? ??? 250 v ds = 20v, v gs = 0v i gss gate-to-source forward leakage q1/q2 ??? ??? 100 na v gs = 20v gate-to-source reverse leakage q1/q2 ??? ??? -100 v gs = -20v gfs forward transconductance q1 131 ??? ??? s v ds = 10v, i d = 30a q2 164 ??? ??? v ds = 10v, i d = 30a q g total gate charge q1 ??? 10 15 q2 ??? 31 47 q gs1 pre-vth gate-to-source charge q1 ??? 2.5 ??? q1 q2 ??? 4.9 ??? v ds = 13v q gs2 post-vth gate-to-source charge q1 ??? 1.6 ??? v gs = 4.5v, i d = 30a q2 ??? 5.4 ??? nc q gd gate-to-drain charge q1 ??? 3.8 ??? q2 q2 ??? 12 ??? v ds = 13v q godr gate charge overdrive q1 ??? 2.1 ??? v gs = 4.5v, i d = 30a q2 ??? 8.7 ??? q sw switch charge (q gs2 + q gd ) q1 ??? 5.4 ??? q2 ??? 17.4 ??? q oss output charge q1 ??? 10 ??? nc v ds = 16v, v gs = 0v q2 ??? 31 ??? r g gate resistance q1 ??? 2.4 ??? ?? q2 ??? 1.1 ??? t d(on) turn-on delay time q1 ??? 10 ??? q1 q2 ??? 16 ??? v ds = 13v v gs = 4.5v t r rise time q1 ??? 61 ??? i d = 30a, rg = 1.8 ? q2 ??? 98 ??? ns t d(off) turn-off delay time q1 ??? 13 ??? q2 q2 ??? 26 ??? v ds = 13v v gs = 4.5v t f fall time q1 ??? 15 ??? i d = 30a, rg = 1.8 ? q2 ??? 65 ??? c iss input capacitance q1 ??? 1314 ??? q2 ??? 3756 ??? v gs = 0v c oss output capacitance q1 ??? 365 ??? pf v ds = 13v q2 ??? 1205 ??? ? = 1.0mhz c rss reverse transfer capacitance q1 ??? 92 ??? q2 ??? 286 ??? ? IRFH4253DPBF 3 www.irf.com ? 2013 international rectifier june 10, 2013 avalanche characteristics ??? parameter q1 max. q2 max. units e as single pulse avalanche energy ? 61 568 mj i ar avalanche current ? 30 60 a typ. ??? ??? diode characteristics ????? ? parameter min. typ. max. units conditions i s continuous source current q1 ??? ??? 45 ? a mosfet symbol (body diode) q2 ??? ??? 45 ? showing the i sm pulsed source current q1 ??? ??? 120 a integral reverse (body diode) q2 ??? ??? 580 ? p-n junction diode. v sd diode forward voltage q1 ??? ??? 1.0 v t j = 25c, i s = 30a, v gs = 0v ? q2 ??? ??? 0.75 t j = 25c, i s = 30a, v gs = 0v ? t rr reverse recovery time q1 ??? 16 ??? ns q1 t j = 25c, i f = 30a q2 ??? 29 ??? v dd = 13v, di/dt = 235a/s ? q rr reverse recovery charge q1 ??? 13 ??? nc q2 t j = 25c, i f = 30a q2 ??? 41 ??? v dd = 13v, di/dt = 250a/s ? ? IRFH4253DPBF 4 www.irf.com ? 2013 international rectifier june 10, 2013 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 3.5v 3.1v 2.9v 2.7v bottom 2.5v ? 60s pulse width tj = 25c 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 150c 2.5v vgs top 10v 5.0v 4.5v 3.5v 3.1v 2.9v 2.7v bottom 2.5v fig 1. typical output characteristics 1.5 2.0 2.5 3.0 3.5 4.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 15v ? 60s pulse width fig 5. typical transfer characteristics fig 3. typical output characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v bottom 2.3v ? 60s pulse width tj = 150c 2.3v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v bottom 2.3v ? 60s pulse width tj = 25c 2.3v fig 2. typical output characteristics q1 - control fet q2 - synchronous fet fig 4. typical output characteristics 1.0 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 15v ? 60s pulse width fig 6. typical transfer characteristics ? IRFH4253DPBF 5 www.irf.com ? 2013 international rectifier june 10, 2013 q1 - control fet q2 - synchronous fet 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 30 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v v ds = 13v i d = 30a fig 7. typical capacitance vs. drain-to-source voltage 0 1020304050607080 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v v ds = 13v i d = 30a 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss fig 8. typical capacitance vs. drain-to-source voltage fig 9. typical gate charge vs . gate-to-source voltage fig 10. typical gate charge vs. gate-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 10msec 1msec operation in this area limited by r ds (on) 100sec dc limited by package fig 11. maximum safe operating area fig 12. maximum safe operating area 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 10msec 1msec operation in this area limited by r ds (on) 100sec dc limited by package ? IRFH4253DPBF 6 www.irf.com ? 2013 international rectifier june 10, 2013 fig 13. normalized on-resistance vs. temperature 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 2 4 6 8 10 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 30a t j = 25c t j = 125c fig 17. typical on-resistance vs. gate voltage -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 4.5v 0.4 0.5 0.6 0.7 0.8 0.9 1.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v fig 15. typical source-drain diode forward voltage q1 - control fet q2 - synchronous fet -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 4.5v 0.2 0.4 0.6 0.8 1.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v fig 14. normalized on-resistance vs. temperature fig 16. typical source-drain diode forward voltage 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 1.0 2.0 3.0 4.0 5.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 30a t j = 25c t j = 125c fig 18. typical on-resistance vs. gate voltage ? IRFH4253DPBF 7 www.irf.com ? 2013 international rectifier june 10, 2013 25 50 75 100 125 150 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 35a fig 19. maximum drain current vs. case temperature 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.7a 12a bottom 30a fig 21. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.0 0.4 0.8 1.2 1.6 2.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100a fig 20. maximum drain current vs. case temperature 25 50 75 100 125 150 starting t j , junction temperature (c) 0 500 1000 1500 2000 2500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.6a 17a bottom 60a fig 22. threshold voltage vs. temperature fig 23. maximum avalanche energy vs. drain current fig 24. maximum avalanche energy vs. drain current q1 - control fet q2 - synchronous fet 25 50 75 100 125 150 t c , case temperature (c) 0 20 40 60 80 100 120 140 160 i d , d r a i n c u r r e n t ( a ) limited by package ? IRFH4253DPBF 8 www.irf.com ? 2013 international rectifier june 10, 2013 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse) 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse) fig 25. typical avalanche current vs. pulse width (q1) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 26. typical avalanche current vs. pulse width (q2) fig 27. maximum effective transient thermal impedance, junction-to-case (q1) ? IRFH4253DPBF 9 www.irf.com ? 2013 international rectifier june 10, 2013 fig 28. maximum effective transient thermal impedance, junction-to-case (q2) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ? IRFH4253DPBF 10 www.irf.com ? 2013 international rectifier june 10, 2013 fig 29. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 32a. gate charge test circuit vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 32b. gate charge waveform fig 30a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as fig 30b. unclamped inductive waveforms fig 31a. switching time test circuit fig 31b. switching time waveforms vdd ? ? IRFH4253DPBF 11 www.irf.com ? 2013 international rectifier june 10, 2013 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ dual pqfn 5x6 outline ?h? package details for more information on board mounting, including footprint and stencil recommendation, please refer to application note an-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf for more information on package inspection techniques, please refer to application note an-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf 0.40 0.80 0.00 minimum 0.78 0.30 4.01 d e2 l2 d2 e e s y m b o l t h i c k n e s s a b a1 dimension table 0.60 maximum 0.05 1.00 0.50 4.26 1.03 6.00 bsc 0.50 1.27 bsc 5.00 bsc 4.16 0.93 nominal 0.02 0.90 v : very thin 0.40 6 note 0.20 k --- --- 2.67 4.66 4.41 2.42 d1 e1 2.57 4.56 1.87 1.77 1.67 l1 a b d e side view 4 index area (d/2xe/2) a1 c seating plane top view bottom view pin#1 id r0.30 d1 e1 e2 e 8x k l1 d2 8x b 7x l2 1.21 1.08 0.48 1.15 0.94 ? IRFH4253DPBF 12 www.irf.com ? 2013 international rectifier june 10, 2013 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ ? qualification standards can be found at international rectifier?s web site http://www.irf.com/product-info/reliability ?? applicable version of jedec standar d at the time of product release. qualification information ? ? qualification level industrial (per jedec jesd47f ?? guidelines ) moisture sensitivity level dual pqfn 5mm x 6mm msl2 (per jedec j-std-020d ??) rohs compliant yes notes: ? repetitive rating; pulse width limited by max. junction temperature. ? starting t j = 25c, q1: l = 0.14mh, r g = 50 ? , i as = 30a; q2: l = 0.32mh, r g = 50 ? , i as = 60a. ? pulse width 400s; duty cycle 2%. ? r ? is measured at t j approximately 90c. ? when mounted on 1 inch square pcb (fr-4). please refer to an-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf ? calculated continuous current based on ma ximum allowable junction temperature. ? current is limited to q1 = 45a & q2 = 45a by source bonding technology. ? pulsed drain current is limited by source bonding technology. dual pqfn 5x6 outline tape and reel note: for the most current drawing please refer to ir website at http://www.irf.com/package/ |
Price & Availability of IRFH4253DPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |