bfr 106 oct-26-1999 1 npn silicon rf transistor for low noise, high-gain amplifiers for linear broadband amplifiers special application: antenna amplifiers complementary type: bfr 194 (pnp) 1 2 3 vps05161 esd : e lectro s tatic d ischarge sensitive device, observe handling precaution! type marking pin configuration package bfr 106 r7s 1 = b 2 = e 3 = c sot-23 maximum ratings parameter symbol unit value collector-emitter voltage 15 v ceo v collector-emitter voltage v ces 20 collector-base voltage 20 v cbo 3 v ebo emitter-base voltage collector current i c 100 ma base current i b 12 total power dissipation , t s 73 c 1) p tot 700 mw junction temperature t j 150 c ambient temperature t a -65 ... 150 storage temperature t stg -65 ... 150 thermal resistance junction - soldering point r thjs 110 k/w 1 t s is measured on the collector lead at the soldering point to the pcb
bfr 106 oct-26-1999 2 electrical characteristics at t a = 25c, unless otherwise specified. parameter symbol values unit min. typ. max. dc characteristics collector-emitter breakdown voltage i c = 1 ma, i b = 0 v (br)ceo 15 - - v collector-emitter cutoff current v ce = 20 v, v be = 0 i ces - - 100 a collector-base cutoff current v cb = 10 v, i e = 0 i cbo - - 100 na emitter-base cutoff current v eb = 2 v, i c = 0 i ebo - - 10 a dc current gain i c = 70 ma, v ce = 8 v h fe 40 100 220 -
bfr 106 oct-26-1999 3 electrical characteristics at t a = 25c, unless otherwise specified. parameter symbol values unit min. typ. max. ac characteristics (verified by random sampling) transition frequency i c = 70 ma, v ce = 8 v, f = 500 mhz f t 3.5 5 - ghz collector-base capacitance v cb = 10 v, f = 1 mhz c cb - 0.95 1.5 pf collector-emitter capacitance v ce = 10 v, f = 1 mhz c ce - 0.25 - emitter-base capacitance v eb = 0.5 v, f = 1 mhz c eb - 4.4 - noise figure i c = 20 ma, v ce = 8 v, z s = z sopt , f = 900 mhz f = 1.8 ghz f - - 2.5 4 - - db power gain, maximum available 1) i c = 70 ma, v ce = 8 v, z s = z sopt , z l = z lopt , f = 900 mhz f = 1.8 ghz g ma - - 12.5 7.5 - - transducer gain i c = 70 ma, v ce = 8 v, z s = z l = 50 , f = 900 mhz f = 1.8 ghz | s 21e | 2 - - 10.5 5 - - 1 g ma = | s 21 / s 12 | (k-(k 2 -1) 1/2 )
bfr 106 oct-26-1999 4 spice parameters (gummel-poon model, berkley-spice 2g.6 syntax) : transistor chip data is = 1.8998 fa vaf = 15 v ne = 1.3235 - var = 4.1613 v nc = 1.4602 - rbm = 1.0893 cje = 5.0933 ff tf = 35.78 ps itf = 62.059 ma vjc = 0.81533 v tr = 1.2466 ns mjs = 0- xti = 3 - bf = 132.75 - ikf = 0.44125 a br = 11.407 - ikr = 0.010016 a rb = 1.2652 re = 1.1351 vje = 0.85909 v xtf = 0.44444 - ptf = 0 deg mjc = 0.46849 - cjs = 0ff xtb = 0- fc = 0.92887 - nf = 0.89608 - ise = 71.424 fa nr = 0.91008 - isc = 2.0992 fa irb = 0.028135 ma rc = 0.27485 mje = 0.69062 - vtf = 0.10681 v cjc = 2327.8 ff xcjc = 0.14496 - vjs = 0.75 v eg = 1.11 ev tnom 300 k all parameters are ready to use, no scalling is necessary. extracted on behalf of siemens small signal semiconductors by: institut fr mobil-und satellitentechnik (imst) 1996 siemens ag package equivalent circuit: l bi = 0.85 nh l bo = 0.51 nh l ei = 0.69 nh l eo = 0.61 nh l ci = 0nh l co = 0.43 nh c be = 73 ff c cb = 84 ff c ce = 165 ff valid up to 6ghz for examples and ready to use parameters please contact your local infineon technologies distributor or sales office to obtain a infineon technologies cd-rom or see internet: http://www.infineon.com/products/discrete/index.htm
bfr 106 oct-26-1999 5 total power dissipation p tot = f ( t a *, t s ) * package mounted on epoxy 0 20 40 60 80 100 120 c 150 t a ,t s 0 100 200 300 400 500 600 mw 800 p tot t s t a permissible pulse load r thjs = f ( t p ) 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0 s t p 0 10 1 10 2 10 3 10 k/w r thjs 0.5 0.2 0.1 0.05 0.02 0.01 0.005 permissible pulse load p totmax / p totdc = f ( t p ) 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0 s t p 0 10 1 10 2 10 - p totmax / p totdc d = 0 0.005 0.01 0.02 0.05 0.1 0.2 0.5
bfr 106 oct-26-1999 6 collector-base capacitance c cb = f ( v cb ) f = 1mhz 0 4 8 12 16 v 22 v cb 0.0 0.4 0.8 1.2 1.6 2.0 2.4 pf 3.2 c cb transition frequency f t = f ( i c ) v ce = parameter 0 20 40 60 80 ma 120 i c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ghz 6.0 f t 5v 3v 2v 1v 0.7v power gain g ma , g ms = f ( i c ) f = 0.9ghz v ce = parameter 0 20 40 60 80 ma 120 i c 0 2 4 6 8 10 db 14 g 10v 5v 3v 2v 1v 0.7v power gain g ma , g ms = f ( i c ) f = 1.8ghz v ce = parameter 0 20 40 60 80 ma 120 i c 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 db 9.0 g 5v 3v 2v 1v 0.7v
bfr 106 oct-26-1999 7 intermodulation intercept point ip 3 = f ( i c ) (3rd order, output, z s = z l =50 ) v ce = parameter, f = 900mhz 0 10 20 30 40 50 60 70 80 ma 100 i c 14 16 18 20 22 24 26 28 30 32 dbm 36 ip 3 8v 5v 3v 2v 1v power gain g ma , g ms = f ( v ce ):_____ | s 21 | 2 = f ( v ce ):--------- f = parameter 0 2 4 6 8 v 12 v ce 0 2 4 6 8 10 db 14 g 0.9ghz 1.8ghz 0.9ghz 1.8ghz i c =70ma power gain | s 21 | 2 = f ( f ) v ce = parameter 0.0 0.5 1.0 1.5 2.0 2.5 ghz 3.5 f -5 0 5 10 15 20 25 30 db 40 s 21 10v 1v 0.7v i c =70ma power gain g ma , g ms = f ( f ) v ce = parameter 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ghz 4.0 f -5 0 5 10 15 20 25 30 35 db 45 g 10v 1v 0.7v i c =70ma
|