Part Number Hot Search : 
PE2200JP P10N6 Q2686 300CA ADM214 M38C80M1 300CA PT78N
Product Description
Full Text Search
 

To Download IRFL024ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFL024ZPBF hexfet ? power mosfet v dss = 55v r ds(on) = 57.5m ? i d = 5.1a  www.irf.com 1 sot-223 this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 150c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description  advanced process technology  ultra low on-resistance  150c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free features absolute maximum ratings parameter units i d @ t a = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current  p d @t a = 25c power dissipation p d @t a = 25c power dissipation  w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c thermal resistance parameter t y p. max. units r ja junction-to-ambient (pcb mount, steady state) ??? 45 c/w r ja junction-to-ambient (pcb mount, steady state)  ??? 120 -55 to + 150 1.0 0.02 20 max. 5.1 4.1 41 2.8 32 13 see fig.12a, 12b, 15, 16 pd - 95312a

 2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 2.8mh r g = 25 ? , i as = 3.1a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  when mounted on 1 inch square copper board.  when mounted on fr-4 board using minimum recommended footprint. s d g el ec t r i ca l ch arac t er i s ti cs @ t j = 25c ( un l ess o th erw i se spec ifi e d) parameter min. t y p. max. units v (br)dss drain-to-source breakdown voltage 55 ??? ??? v ? ( / ? . 0.0 / ( . . ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 6.2 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 9.1 14 q gs gate-to-source charge ??? 1.9 ??? nc q gd gate-to-drain ("miller") charge ??? 3.9 ??? t d(on) turn-on delay time ??? 7.8 ??? t r rise time ??? 21 ??? ns t d(off) turn-off delay time ??? 30 ??? t f fall time ??? 23 ??? c iss input capacitance ??? 340 ??? c oss output capacitance ??? 68 ??? c rss reverse transfer capacitance ??? 39 ??? pf c oss output capacitance ??? 210 ??? c oss output capacitance ??? 55 ??? c oss eff. effective output capacitance ??? 93 ??? source-drain ratin g s and characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 5.1 (body diode) a i sm pulsed source current ??? ??? 41 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 15 23 ns q rr reverse recovery charge ??? 9.8 15 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 10v  v dd = 28v i d = 3.1a r g = 53 ? t j = 25c, i s = 3.1a, v gs = 0v  t j = 25c, i f = 3.1a, v dd = 28v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 3.1a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 3.1a i d = 3.1a v ds = 44v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 30s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 30s pulse width tj = 150c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4 5 6 7 8 9 10 v gs , gate-to-source voltage (v) 1.0 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 25v 30s pulse width 024681012 i d ,drain-to-source current (a) 0 2 4 6 8 10 12 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 150c v ds = 10v

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0246810 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v v ds = 28v v ds = 11v i d = 3.1a 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec t a = 25c tj = 150c single pulse

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. ambient temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 3.1a v gs = 10v 25 50 75 100 125 150 t a ,ambient temperature (c) 0 1 2 3 4 5 6 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 5.0477 0.000463 19.9479 0.636160 20.0169 21.10000 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri

 6 www.irf.com q g q gs q gd v g charge  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l 25 50 75 100 125 150 starting t j , junction temperature (c) 0 10 20 30 40 50 60 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.77a 0.89a bottom 3.1a -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 tav (sec) 0.01 0.1 1 10 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 starting t j , junction temperature (c) 0 2 4 6 8 10 12 14 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 3.1a

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms

 www.irf.com 9  
        !  
    p = de s i gnat e s l e ad-f r e e product (optional) a = assembly site code top bottom logo 314p axxxx part number int ernat ional rectifier hexfet product marking fl014 this is an irfl014 lot code dat e code (yyww) yy = year ww = week notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

 10 www.irf.com data and specifications subject to change without notice. this product has been designed for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2010  
          ! 4.10 (.161) 3.90 (.154) 1.85 (.072) 1.65 (.065) 2.05 (.080) 1.95 (.077) 12.10 (.475) 11.90 (.469) 7.10 (.279) 6.90 (.272) 1.60 (.062) 1.50 (.059) typ. 7.55 (.297) 7.45 (.294) 7.60 (.299) 7.40 (.292) 2.30 (.090) 2.10 (.083) 16.30 (.641) 15.70 (.619) 0.35 (.013) 0.25 (.010) feed direction tr 13.20 (.519) 12.80 (.504) 50.00 (1.969) min. 330.00 (13.000) max. notes : 1. controlling dimension: millimeter. 2. outline conforms to eia-481 & eia-541. 3. each o330.00 (13.00) reel contains 2,500 devices. 3 notes : 1. outline comforms to eia-418-1. 2. controlling dimension: millimeter.. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. 15.40 (.607) 11.90 (.469) 18.40 (.724) max. 14.40 (.566) 12.40 (.488) 4 4


▲Up To Search▲   

 
Price & Availability of IRFL024ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X