Part Number Hot Search : 
MH46TBG HA17339A R1005250 02000 TLE42 SB320H CM400 72045
Product Description
Full Text Search
 

To Download MJB18004D2T4-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  high speed, high gain bipolar npn power transistor with integrated collector-emitter diode and built-in efficient antisaturation network d2pak for surface mount the mjb18004d2t4 is stateofart high speed high gain bipolar transistor (h2bip). high dynamic characteristics and lot to lot minimum spread ( 150 ns on storage time) make it ideally suitable for light ballast applications. therefore, there is no need to guarantee an h fe window. main features: ? low base drive requirement ? high peak dc current gain (55 typical) @ i c = 100 ma ? extremely low storage time min/max guarantees due to the h2bip structure which minimizes the spread ? integrated collectoremitter free wheeling diode ? fully characterized and guaranteed dynamic v ce(sat) ? a6 sigmao process providing tight and reproductible parameter spreads it's characteristics make it also suitable for pfc application. on semiconductor  ? semiconductor components industries, llc, 2001 june, 2001 rev. 0 1 publication order number: mjb18004d2t4/d mjb18004d2t4 power transistors 5 amperes 1000 volts 75 watts d 2 pak case 418b style 1 marking diagram y = year ww = work week yww mjb 18004d2
mjb18004d2t4 http://onsemi.com 2 ????????????????????????????????? ????????????????????????????????? maximum ratings ????????????????? ????????????????? rating ??????? ??????? symbol ???????? ???????? value ???? ???? unit ????????????????? ????????????????? collectoremitter sustaining voltage ??????? ??????? v ceo ???????? ???????? 450 ???? ???? vdc ????????????????? ????????????????? collectorbase breakdown voltage ??????? ??????? v cbo ???????? ???????? 1000 ???? ???? vdc ????????????????? ????????????????? collectoremitter breakdown voltage ??????? ??????? v ces ???????? ???????? 1000 ???? ???? vdc ????????????????? ????????????????? emitterbase voltage ??????? ??????? v ebo ???????? ???????? 12 ???? ???? vdc ????????????????? ? ??????????????? ? ????????????????? collector current e continuous collector current e peak (1) ??????? ? ????? ? ??????? i c i cm ???????? ? ?????? ? ???????? 5 10 ???? ? ?? ? ???? adc ????????????????? ????????????????? base current e continuous base current e peak (1) ??????? ??????? i b i bm ???????? ???????? 2 4 ???? ???? adc ????????????????? ? ??????????????? ? ????????????????? *total device dissipation @ t c = 25  c *derate above 25 c ??????? ? ????? ? ??????? p d ???????? ? ?????? ? ???????? 75 0.6 ???? ? ?? ? ???? watt w/  c ????????????????? ????????????????? operating and storage temperature ??????? ??????? t j , t stg ???????? ???????? 65 to 150 ???? ????  c ????????????????????????????????? ????????????????????????????????? thermal characteristics ????????????????? ? ??????????????? ? ????????????????? thermal resistance e junction to case thermal resistance e junction to ambient ??????? ? ????? ? ??????? r q jc r q ja ???????? ? ?????? ? ???????? 1.65 62.5 ???? ? ?? ? ????  c/w ????????????????? ? ??????????????? ? ????????????????? junction to ambient, when mounted with the minimun recommended pad size. ??????? ? ????? ? ??????? r q ja ???????? ? ?????? ? ???????? 50 ???? ? ?? ? ????  c/w ????????????????? ????????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ??????? ??????? t l ???????? ???????? 260 ???? ????  c (1) pulse test: pulse width = 5 ms, duty cycle 10%.
mjb18004d2t4 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ??? ??? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) ????? ? ??? ? ????? v ceo(sus) ??? ? ? ? ??? 450 ???? ? ?? ? ???? 547 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ??????????????????? collectorbase breakdown voltage (i cbo = 1 ma) ????? ????? v cbo ??? ??? 1000 ???? ???? 1100 ???? ???? ??? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i ebo = 1 ma) ????? ? ??? ? ????? v ebo ??? ? ? ? ??? 12 ???? ? ?? ? ???? 14 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ????? ? ??? ? ????? i ceo ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ??????????????? ? ????????????? ? ??????????????? collector cutoff current (v ce = rated v ces , v eb = 0) collector cutoff current (v ce = 500 v, v eb = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c @ t c = 125 c ????? ? ??? ? ????? i ces ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 500 100 ??? ? ? ? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emittercutoff current (v eb = 10 vdc, i c = 0) ????? ? ??? ? ????? i ebo ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????? ? ????????????? ? ??????????????? baseemitter saturation voltage (i c = 0.8 adc, i b = 80 madc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v be(sat) ??? ? ? ? ??? ???? ? ?? ? ???? 0.8 0.7 ???? ? ?? ? ???? 1 0.9 ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 2 adc, i b = 0.4 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.9 0.8 ???? ? ?? ? ???? 1 0.9 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? collectoremitter saturation voltage (i c = 0.8 adc, i b = 80 madc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v ce(sat) ??? ? ? ? ??? ???? ? ?? ? ???? 0.38 0.55 ???? ? ?? ? ???? 0.5 0.75 ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 2 adc, i b = 0.4 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.45 0.75 ???? ? ?? ? ???? 0.75 1 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? (i c = 0.8 adc, i b = 40 madc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.9 1.6 ???? ? ?? ? ???? 1.5 ??? ? ? ? ??? ??????????????? ??????????????? (i c = 1 adc, i b = 0.2 adc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? ???? ???? 0.25 0.28 ???? ???? 0.5 0.6 ??? ??? ??????????????? ? ????????????? ? ? ????????????? ? ??????????????? dc current gain (i c = 0.8 adc, v ce = 1 vdc) ????? ? ??? ? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ? ??? ? ????? h fe ??? ? ? ? ? ? ? ??? 15 10 ???? ? ?? ? ? ?? ? ???? 28 14 ???? ? ?? ? ? ?? ? ???? ??? ? ? ? ? ? ? ??? e ??????????????? ??????????????? (i c = 2 adc, v ce = 1 vdc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? 6 4 ???? ???? 8 6 ???? ???? ??? ??? ??????????????? ? ????????????? ? ??????????????? (i c = 1 adc, v ce = 2.5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? 18 14 ???? ? ?? ? ???? 28 20 ???? ? ?? ? ???? ??? ? ? ? ??? ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ? ?????? ? ???????? d y namic saturation ????? ? ??? ? ????? i c = 1 adc i b1 = 100 ma ???? ? ?? ? ???? @ 1 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v ce(dsat) ??? ? ? ? ??? ???? ? ?? ? ???? 9 16 ???? ? ?? ? ???? ??? ? ? ? ??? v ???????? ? ?????? ? ???????? dynamic saturation voltage: determined 1 m s and 3 m s res p ectively ????? ? ??? ? ????? i b1 = 100 ma v cc = 300 v ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 3.1 9 ???? ? ?? ? ???? ??? ? ? ? ??? ???????? ???????? 3 m s respectively after rising i b1 reaches 90% of final ????? ????? i c = 2 adc i b1 =04a ???? ???? @ 1 m s ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? ???? ???? 11 18 ???? ???? ??? ??? ???????? ? ?????? ? ???????? i b1 ????? ? ??? ? ????? i b1 = 0.4 a v cc = 300 v ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 1.4 8 ???? ? ?? ? ???? ??? ? ? ? ???
mjb18004d2t4 http://onsemi.com 4 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? diode characteristics ??????????????? ? ????????????? ? ??????????????? forward diode voltage (i ec = 1 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? v ec ???? ? ?? ? ???? ???? ? ?? ? ???? 0.96 0.72 ???? ? ?? ? ???? 1.5 ??? ? ? ? ??? v ??????????????? ? ????????????? ? ??????????????? (i ec = 2 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 1.15 0.8 ???? ? ?? ? ???? 1.7 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? forward recovery time (i f = 0.4 adc, di/dt = 10 a/ m s) ????? ? ??? ? ????? @ t c = 25 c ???? ? ?? ? ???? t fr ???? ? ?? ? ???? ???? ? ?? ? ???? 440 ???? ? ?? ? ???? ??? ? ? ? ??? ns ??????????????? ??????????????? (i f = 1 adc, di/dt = 10 a/ m s) ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 335 ???? ???? ??? ??? ??????????????? ??????????????? (i f = 2 adc, di/dt = 10 a/ m s) ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 335 ???? ???? ??? ??? ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ??????????????????? current gain bandwidth (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ???? ???? f t ???? ???? ???? ???? 13 ???? ???? ??? ??? mhz ??????????????????? ? ????????????????? ? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ???? ? ?? ? ???? c ob ???? ? ?? ? ???? ???? ? ?? ? ???? 60 ???? ? ?? ? ???? 100 ??? ? ? ? ??? pf ??????????????????? ? ????????????????? ? ??????????????????? input capacitance (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ???? ? ?? ? ???? c ib ???? ? ?? ? ???? ???? ? ?? ? ???? 450 ???? ? ?? ? ???? 750 ??? ? ? ? ??? pf ????????????????????????????????? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 40 m s) ???????? ???????? turnon time ???????? ???????? i c = 2.5 adc, i b1 = 0.5 adc i b2 = 1 adc ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 500 ???? ???? 750 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 1 adc v cc = 250 vdc ????? ????? @ t c = 25 c ???? ???? t off ???? ???? 1.1 ???? ???? ???? ???? 1.4 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 = 1 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 100 150 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 1 adc v cc = 300 vdc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t off ???? ???? ???? ???? 1.15 1.6 ???? ???? 1.3 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 2.5 adc, i b1 = 0.5 adc i b2 =05adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 120 500 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 0.5 adc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? 1.85 ???? ? ?? ? ???? 2.6 ???? ? ?? ? ???? 2.15 ??? ? ? ? ??? m s ????????????????????????????????? ????????????????????????????????? switching characteristics: inductive load (v cc = 15 v) ???????? ???????? fall time ???????? ???????? i c = 2.5 adc i 500 ad ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 130 300 ???? ???? 175 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? c i b1 = 500 madc i b2 = 500 madc v z = 350 v ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 2.12 2.6 ???? ? ?? ? ???? 2.4 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? v z = 350 v l c = 300 m h ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 355 750 ???? ? ?? ? ???? 500 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? i c = 2 adc i 400 ad ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 95 230 ???? ???? 150 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? c i b1 = 400 madc i b2 = 400 madc v z = 300 v ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? 2.1 ???? ? ?? ? ???? 2.9 ???? ? ?? ? ???? 2.4 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? v z = 300 v l c = 200 m h ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 300 700 ???? ? ?? ? ???? 450 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? i c = 1 adc i 100 ad ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 70 100 ???? ???? 90 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? c i b1 = 100 madc i b2 = 500 madc v z = 300 v ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 0.7 1.05 ???? ? ?? ? ???? 0.9 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? v z = 300 v l c = 200 m h ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 75 160 ???? ? ?? ? ???? 120 ??? ? ? ? ??? ns
mjb18004d2t4 http://onsemi.com 5 typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.01 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 1 v figure 2. dc current gain @ 5 volt 100 10 1 10 1 0.1 0.01 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 5 v figure 3. collector saturation region 3 2 0 10 1 0.1 0.01 i b , base current (ma) i c = 500 ma figure 4. collectoremitter saturation voltage 10 1 0.1 10 1 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 v ce , voltage (volts) v ce , voltage (volts) 1 t j = 25 c 1 a 5 a figure 5. collectoremitter saturation voltage 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 6. collectoremitter saturation voltage 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = -20 c v ce , voltage (volts) v ce , voltage (volts) 1 i c /i b = 10 t j = 125 c t j = -20 c i c /i b = 20 4 a 3 a 2 a t j = 25 c t j = 25 c t j = 25 c 1
mjb18004d2t4 http://onsemi.com 6 typical static characteristics figure 7. baseemitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 8. baseemitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = -20 c v be , voltage (volts) v be , voltage (volts) 1 t j = 125 c t j = 25 c t j = -20 c i c /i b = 10 1 i c /i b = 5 figure 9. baseemitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 10. forward diode voltage 10 1 0.1 10 0.1 0.01 reverse emitter-collector current (amps) 125 c 25 c v be , voltage (volts) forward diode voltage (volts) t j = 125 c t j = -20 c 1 i c /i b = 20 figure 11. capacitance 1000 10 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 100 c ib (pf) c ob t j = 25 c f (test) = 1 mhz figure 12. bvcer = f(r be ) 1200 600 1000 100 10 base-emitter resistor ( w ) collector emitter voltage (volts) t c = 25 c bvcer @ icer = 10 ma 1000 800 bvcer(sus) @ icer = 200 ma, lc = 25 mh 1 t j = 25 c t j = 25 c
mjb18004d2t4 http://onsemi.com 7 typical switching characteristics figure 13. resistive switch time, t on 3200 0 4 2 1 i c , collector current (amps) 3 t, time (ns) 2400 1600 800 t j = 125 c t j = 25 c i c /i b = 10 i c /i b = 5 i bon = i boff v cc = 300 v pw = 20 m s figure 14. resistive switch time, t off 5 2 0 4 3 1 i c , collector current (amps) figure 15. inductive storage time, t si @ i c /i b = 5 4 2 0 4 1 0 i c , collector current (amps) 3 3 1 3 t, time (s) m t, time (s) m 4 1 t j = 125 c t j = 25 c i c /i b = 10 i c /i b = 5 i bon = i boff v cc = 300 v pw = 20 m s 2 t j = 125 c t j = 25 c i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h figure 16. inductive storage time, t si @ i c /i b = 10 2 i c /i b = 5 4 2 0 4 1 0 i c , collector current (amps) 3 3 1 t, time (s) m 2 t j = 125 c t j = 25 c i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h i c /i b = 10 figure 17. inductive switching time, t c and t fi @ i c /i b = 5 1000 0 4 1 0 i c , collector current (amps) 3 t, time (ns) 800 600 200 t j = 125 c t j = 25 c 400 2 i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h i c /i b = 5 figure 18. inductive switching time, t fi @ i c /i b = 10 1000 0 4 1 0 i c , collector current (amps) 3 t, time (ns) 800 600 200 t j = 125 c t j = 25 c 400 2 i boff = i bon v cc = 15 v v z = 300 v l c = 200 m h i c /i b = 10 t c t fi
mjb18004d2t4 http://onsemi.com 8 , storage time ( t si m s) typical switching characteristics figure 19. inductive switching, t c @ i c /i b = 10 1600 800 0 4 2 0 i c , collector current (amps) t, time (ns) 1200 t j = 125 c t j = 25 c 400 13 i c /i b = 10 i boff = i bon v cc = 15 v v z = 300 v l c = 200 m h figure 20. inductive storage time 5 2 20 0 h fe , forced gain 4 3 51015 t j = 125 c t j = 25 c i c = 2 a i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h i c = 1 a figure 21. inductive fall time 1000 0 20 8 2 h fe , forced gain figure 22. inductive crossover time 2000 500 0 20 8 2 h fe , forced gain 1500 1000 600 t fi , fall time (ns) t c , crossover time (ns) 800 400 200 4 6 10 12 t j = 125 c t j = 25 c i boff = i bon v cc = 15 v v z = 300 v l c = 200 m h 14 i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h t j = 125 c t j = 25 c 14 16 18 i c = 1 a i c = 2 a i c = 2 a i c = 1 a figure 23. inductive storage time, t si 4 2 1 4 0.5 i c , collector current (amps) 1.5 1 i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h 3 t, time (s) m 2 2.5 3 3.5 i b = 50 ma i b = 100 ma i b = 200 ma i b = 500 ma i b = 1 a figure 24. forward recovery time, t fr 420 300 2 1 0.5 0 i f , forward current (amp) di/dt = 10 a/ m s t c = 25 c 1.5 t fr , forward recovery time (ns) 380 340
mjb18004d2t4 http://onsemi.com 9 10 4 0 8 2 06 8 6 2 4 9 7 5 3 1 13 5 7 i b i c v clamp t si t c t fi 90% i c 10% i c 90% i b1 10% v clamp v ce 0 v i b 90% i b 1 m s 3 m s dyn 1 m s dyn 3 m s figure 25. dynamic saturation voltage measurements time volts figure 26. inductive switching measurements typical switching characteristics figure 27. t fr measurements 0 10 6 0 v f i f 28 4 v fr (1.1 v f unless otherwise specified) v frm t fr v f 0.1 v f 10% i f time
mjb18004d2t4 http://onsemi.com 10 typical switching characteristics table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh rb2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h rb2 = 0 v cc = 15 volts rb1 selected for desired ib1 rbsoa l = 500 m h rb2 = 0 v cc = 15 volts rb1 selected for desired ib1 +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a 1 m f r b2 r b1 i c peak v ce peak v ce i b i b 1 i b 2 typical characteristics figure 28. forward bias safe operating area 100 0.01 1000 10 v ce , collector-emitter voltage (volts) figure 29. reverse bias safe operating area 6 2 0 1000 200 v ce , collector-emitter voltage (volts) 4 100 600 1 0.1 i c , collector current (amps) i c , collector current (amps) dc 5 ms 1 ms 10 m s 1 m s extended soa 3 1 0 v -1.5 v -5 v t c 125 c gain 5 l c = 2 mh 10 5 400 800
mjb18004d2t4 http://onsemi.com 11 typical characteristics power derating factor figure 30. forward bias power derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 28 is based on t c = 25 c; t j (pk) is variable de- pending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 28 may be found at any case temperature by using the appropriate curve on figure 30. t j (pk) may be calculated from the data in figure 31. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limita- tions imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turnoff with the basetoemitter junction reverse biased. the safe level is specified as a reversebiased safe operating area (figure 29). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. t c , case temperature ( c) 1.0 0.8 0.6 0.4 0.2 0 160 140 120 100 80 60 40 20 second breakdown derating thermal derating figure 31. typical thermal response (z q jc(t) ) for mjb18004d2t4 typical thermal response 1 0.01 10 0.1 0.01 t, time (ms) 0.1 1 100 1000 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 2.5 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.05 single pulse 0.5 0.2 0.1 0.02
mjb18004d2t4 http://onsemi.com 12 information for using the d 2 pak surface mount package recommended footprint for surface mounted applications surface mount board layout is a critical portion of the total design. the footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. with the correct pad geometry, the packages will self align when subjected to a solder reflow process. mm inches 0.33 8.38 0.08 2.032 0.04 1.016 0.63 17.02 0.42 10.66 0.12 3.05 0.24 6.096 power dissipation for a surface mount device the power dissipation for a surface mount device is a function of the collector pad size. these can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. power dissipation for a surface mount device is determined by t j(max) , the maximum rated junction temperature of the die, r q ja , the thermal resistance from the device junction to ambient, and the operating temperature, t a . using the values provided on the data sheet, p d can be calculated as follows: p d = t j(max) t a r q ja the values for the equation are found in the maximum ratings table on the data sheet. substituting these values into the equation for an ambient temperature t a of 25 c, one can calculate the power dissipation of the device. for a d 2 pak device, p d is calculated as follows. p d = 150 c 25 c 50 c/w = 2.5 watts the 50 c/w for the d 2 pak package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 2.5 w atts. there are other alternatives to achieving higher power dissipation from the surface mount packages. one is to increase the area of the collector pad. by increasing the area of the collection pad, the power dissipation can be increased. although one can almost double the power dissipation with this method, one will be giving up area on the printed circuit board which can defeat the purpose of using surface mount technology. for example, a graph of r q ja versus collector pad area is shown in figure 32 figure 32. thermal resistance versus collector pad area for the d 2 pak package (typical) 2.5 watts a, area (square inches) board material = 0.0625 g-10/fr-4, 2 oz copper t a = 25 c r , thermal resistance, junctionto ambient (c/w) q ja 60 70 50 40 30 20 16 14 12 10 8 6 4 2 0 3.5 watts 5 watts another alternative would be to use a ceramic substrate or an aluminum core board such as thermal clad ? . using a board material such as thermal clad, an aluminum core board, the power dissipation can be doubled using the same footprint.
mjb18004d2t4 http://onsemi.com 13 solder stencil guidelines prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. solder stencils are used to screen the optimum amount. these stencils are typically 0.008 inches thick and may be made of brass or stainless steel. for packages such as the sc59, sc70/sot323, sod123, sot23, sot143, sot223, so8, so14, so16, and smb/smc diode packages, the stencil opening should be the same as the pad size or a 1:1 registration. this is not the case with the dpak and d 2 pak packages. if one uses a 1:1 opening to screen solder onto the collector pad, misalignment and/or atombstoningo may occur due to an excess of solder. for these two packages, the opening in the stencil for the paste should be approximately 50% of the tab area. the opening for the leads is still a 1:1 registration. figure 33 shows a typical stencil for the dpak and d 2 pak packages. the pattern of the opening in the stencil for the collector pad is not critical as long as it allows approximately 50% of the pad to be covered with paste. ?? ?? ?? ?? ?? ??? ??? ??? ??? ??? ??? ??? ??? ?? ?? figure 33. typical stencil for dpak and d 2 pak packages solder paste openings stencil soldering precautions the melting temperature of solder is higher than the rated temperature of the device. when the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. ? always preheat the device. ? the delta temperature between the preheat and soldering should be 100 c or less.* ? when preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. when using infrared heating with the reflow soldering method, the difference shall be a maximum of 10 c. ? the soldering temperature and time shall not exceed 260 c for more than 10 seconds. ? when shifting from preheating to soldering, the maximum temperature gradient shall be 5 c or less. ? after soldering has been completed, the device should be allowed to cool naturally for at least three minutes. gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. ? mechanical stress or shock should not be applied during cooling. * * soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. * * due to shadowing and the inability to set the wave height to incorporate other surface mount components, the d 2 pak is not recommended for wave soldering.
mjb18004d2t4 http://onsemi.com 14 typical solder heating profile for any given circuit board, there will be a group of control settings that will give the desired heat pattern. the operator must set temperatures for several heating zones, and a figure for belt speed. taken together, these control settings make up a heating aprofileo for that particular circuit board. on machines controlled by a computer, the computer remembers these profiles from one operating session to the next. figure 34 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. this profile will vary among soldering systems but it is a good starting point. factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. this profile shows temperature versus time. the line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. the two profiles are based on a high density and a low density board. the vitronics smd310 convection/infrared reflow soldering system was used to generate this profile. the type of solder used was 62/36/2 tin lead silver with a melting point between 177189 c. when this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. the components on the board are then heated by conduction. the circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints. step 1 preheat zone 1 ramp" step 2 vent soak" step 3 heating zones 2 & 5 ramp" step 4 heating zones 3 & 6 soak" step 5 heating zones 4 & 7 spike" step 6 vent step 7 cooling 200 c 150 c 100 c 50 c time (3 to 7 minutes total) t max solder is liquid for 40 to 80 seconds (depending on mass of assembly) 205 to 219 c peak at solder joint desired curve for low mass assemblies 100 c 150 c 160 c 170 c 140 c desired curve for high mass assemblies figure 34. typical solder heating profile
mjb18004d2t4 http://onsemi.com 15 package dimensions d 2 pak case 418b03 issue d notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. style 1: pin 1. base 2. collector 3. emitter 4. collector seating plane s g d t m 0.13 (0.005) t 23 1 4 3 pl k j h v e c a dim min max min max millimeters inches a 0.340 0.380 8.64 9.65 b 0.380 0.405 9.65 10.29 c 0.160 0.190 4.06 4.83 d 0.020 0.035 0.51 0.89 e 0.045 0.055 1.14 1.40 g 0.100 bsc 2.54 bsc h 0.080 0.110 2.03 2.79 j 0.018 0.025 0.46 0.64 k 0.090 0.110 2.29 2.79 s 0.575 0.625 14.60 15.88 v 0.045 0.055 1.14 1.40 b m b
mjb18004d2t4 http://onsemi.com 16 on semiconductor and are trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to make changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scill c data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. publication ordering information central/south america: spanish phone : 3033087143 (monfri 8:00am to 5:00pm mst) email : onlitspanish@hibbertco.com tollfree from mexico: dial 018002882872 for access then dial 8662979322 asia/pacific : ldc for on semiconductor asia support phone : 13036752121 (tuefri 9:00am to 1:00pm, hong kong time) toll free from hong kong & singapore: 00180044223781 email : onlitasia@hibbertco.com japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. mjb18004d2t4/d thermal clad is a registered trademark of the bergquist company north america literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com fax response line: 3036752167 or 8003443810 toll free usa/canada n. american technical support : 8002829855 toll free usa/canada europe: ldc for on semiconductor european support german phone : (+1) 3033087140 (monfri 2:30pm to 7:00pm cet) email : onlitgerman@hibbertco.com french phone : (+1) 3033087141 (monfri 2:00pm to 7:00pm cet) email : onlitfrench@hibbertco.com english phone : (+1) 3033087142 (monfri 12:00pm to 5:00pm gmt) email : onlit@hibbertco.com european tollfree access*: 0080044223781 *available from germany, france, italy, uk, ireland


▲Up To Search▲   

 
Price & Availability of MJB18004D2T4-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X