![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
1 ? 2003 integrated device technology, inc. all rights reserved. dsc-6228/4 single channel t1 /e1/j1 long haul/ short haul line interface unit idt82v2081 features: ? single channel t1/e1/j1 long haul/short haul line interfaces ? supports hps (hitless protection switching) for 1+1 protection without external relays ? receiver sensitivity exceeds -36 db@772khz and -43 db@1024 khz ? programmable t1/e1/j1 switchab ility allowing one bill of ma- terial for any line condition ? single 3.3 v power supply with 5 v tolerance on digital interfaces ? meets or exceeds specifications in - ansi t1.102, t1.403 and t1.408 - itu i.431, g.703,g.736, g.775 and g.823 - etsi 300-166, 300-233 and tbr12/13 - at&t pub 62411 ? software programmable or hardware selectable on: - wave-shaping templates for short haul and long haul lbo (line build out) - line terminating impedance (t1:100 ? , j1:110 ?, e1:75 ?/ 120 ?) - adjustment of arbitrary pulse shape - ja (jitter attenuator) position (receive path or transmit path) - single rail/dual rail system interfaces - b8zs/hdb3/ami line encoding/decoding industrial temperature ranges july 2004 the idt logo is a registered trademark of integrated device technology, inc. description: the idt82v2081 can be configured as a single channel t1, e1 or j1 line interface unit. in receive path, an adaptive equalizer is integrated to remove the distortion introduced by the cable attenuation. the idt82v2081 also performs clock/data recovery , ami/b8zs/hdb3 line decoding and detects and reports the los conditions. in transmit path, there is an ami/ b8zs/hdb3 encoder, waveform shaper and lbos. there is one jitter attenuator, which can be placed in eit her the receive path or the transmit path. the jitter attenuator can also be disabled. the idt82v2081 supports both single rail and dual rail system in terfaces. to facilitate the network maintenance, a prbs/qrss generation/ detection circuit is integrated in the chip, and different types of loopbacks can be set according to the appli- cations. four different kinds of line terminating impedance, 75 ? , 100 ?, 110 ? and 120 ? are selectable. the chip also provides driver short-circuit protection and internal protection diode. the chip can be controlled by either software or hardware. the idt82v2081 can be used in lan, wan, routers, wireless base stations, iads, imas, imaps, gate ways, frame relay access devices, csu/dsu equipment, etc. - active edge of transmit clock (tclk) and receive clock (rclk) - active level of transmit data (tdata) and receive data (rdata) - receiver or transmitter power down - high impedance setting for line drivers - prbs (pseudo random bit sequence) generation and detection with 2 15 -1 prbs polynomials for e1 - qrss (quasi random sequence signals) generation and detection with 2 20 -1 qrss polynomials for t1/j1 - 16-bit bpv (bipolar pulse violat ion) /excess zero/prbs or qrss error counter - analog loopback, digital loopback, remote loopback and inband loopback ? cable attenuation indication ? adaptive receive sensitivity ? short circuit protection and intern al protection diode for line driv- ers ? los (loss of signal) & ais (ala rm indication signal) detection ? supports serial control interface, motorola and intel multiplexed interfaces and hardware control mode ? package: idt82v2081: 44-pin tqfp
2 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit functional block diagram figure-1 block diagram los rclk rd/rdp cv/rdn rtip rring tclk td/tdp tdn ttip tring jitter attenuator prbs generator iblc generator taos prbs detector iblc detector data and clock recovery data slicer adaptive equalizer los/ais detector b8zs/ hdb3/ami decoder digital loopback remote loopback jitter attenuator b8zs/ hdb3/ami decoder waveform shaper/lbo line driver analog loopback receiver internal termination transmitter internal termination clock generator register files software control interface pin control mode[1:0] term rxtxm[1:0] puls[3:0] eq patt[1:0] ja[1:0] mont lp[1:0] thz rclke rpd rst vddio vddd vdda vddt mclk int cs sdo / ack / rdy sclk/ale/as rd / ds / sclke sdi/ wr /r/ w ad[7:0] 3 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit table of contents 1 idt82v2081 pin configurations ................. ................ ................. .............. .............. ............ 8 2 pin description ...... ................ ................. ................ .............. .............. .............. ............. ......... 9 3 functional description ............... ................ ................ ............... .............. .............. .......... 15 3.1 control mode selection ......... ................ ................ ................. ................ ............. 15 3.2 t1/e1/j1 mode selection ................ ................. ................ ................. .............. .......... 15 3.3 transmit path ............ ................ ................. ................ ................. ................ ............... 1 5 3.3.1 transmit path system interf ace.............. .............. .............. ............ ........ 15 3.3.2 encoder .......... ................ ................ .............. ............... .............. .............. .......... 15 3.3.3 pulse shaper ............ ................. ................ ................. .............. .............. .......... 15 3.3.3.1 preset pulse templates .... ................ ................. .............. .............. ......... 15 3.3.3.2 lbo (line build out) ...... ................. ................ ................. .............. ......... 16 3.3.3.3 user-programmable arbitrary waveform .. ............. .............. ............ ....... 16 3.3.4 transmit path line interfac e................ ............... .............. .............. .......... 20 3.3.5 transmit path power down .. ................. ............... .............. .............. .......... 20 3.4 receive path .............. ................ ................. ................ ................. ................ ............... 21 3.4.1 receive internal terminatio n.................. .............. .............. .............. ........ 21 3.4.2 line monitor ............ ................ ................. ................ ................. .............. .......... 22 3.4.3 adaptive equalizer.... ................ ................ ............... .............. .............. .......... 22 3.4.4 receive sensitivity ............. ................ ................. ................ ................. .......... 22 3.4.5 data slicer .............. ................ ................. ................ ................. .............. .......... 22 3.4.6 cdr (clock & data recovery)... ............... ................ ................. ................ ............. 22 3.4.7 decoder ........... ................ ................ .............. ............... .............. .............. .......... 22 3.4.8 receive path system interface ................ .............. .............. ............ ........ 23 3.4.9 receive path power down.... ................ ................. .............. .............. .......... 23 3.5 jitter attenuator ........ ................ ................ ................. ................ ................. .......... 23 3.5.1 jitter attenuation functi on description ............... ................ ............. 23 3.5.2 jitter attenuator performa nce ............... ................. ................ ............. 23 3.6 los and ais detection ............ .............. .............. ............... .............. .............. .......... 24 3.6.1 los detection ......... ................ ................. ................ ................. .............. .......... 24 3.6.2 ais detection .......... ................ ................. ................ ................. .............. .......... 25 3.7 transmit and detect internal patterns ...... .............. .............. .............. ........ 26 3.7.1 transmit all ones ... ................. ................ ................. .............. .............. .......... 26 3.7.2 transmit all zeros.... ................ ................ ............... .............. .............. .......... 26 3.7.3 prbs/qrss generation and detection..... ............. .............. ............ ........ 26 3.8 loopback ............ ................ ................ .............. .............. ............... .............. .............. ... 26 3.8.1 analog loopback ....... ................ ................ ............... .............. .............. .......... 26 3.8.2 digital loopback ..... ................. ................ ................. .............. .............. .......... 26 3.8.3 remote loopback....... ................ ................ ............... .............. .............. .......... 26 3.8.4 inband loopback...... ................. ................ ................. .............. .............. .......... 28 3.8.4.1 transmit activate/deacti vate loopback code.... .............. .............. ......... 28 3.8.4.2 receive activate/deact ivate loopback code..... .............. .............. ......... 28 3.8.4.3 automatic remote loopback .............. ............... .............. .............. ......... 28 table of contents 4 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 3.9 error detection/counting and insertion ........... ................ ................. .......... 29 3.9.1 definition of line coding error .......... ............... .............. .............. .......... 29 3.9.2 error detection and counti ng ................ .............. .............. ............ ........ 29 3.9.3 bipolar violation and prbs error insertion ......... ................ ............. 30 3.10 line driver failure mo nitoring ........... .............. .............. .............. .............. ........ 30 3.11 mclk and tclk ..... ................ ................. ................ .............. .............. .............. ............. 31 3.11.1 master clock (mclk) .......... ................ ................. ................ ................. .......... 31 3.11.2 transmit clock (tclk)........ ................ ................. ................ ................. .......... 31 3.12 microcontroller interfaces .. ............... ................. ................ ................. .......... 32 3.12.1 parallel microcontroller interface............. .............. .............. .......... 32 3.12.2 serial microcontroller interface .......... ................. ................ ............. 32 3.13 interrupt handling ... ................. ................ ................ ................. ................ ............. 33 3.14 5v tolerant i/o pins ............. ................ ................ ............... .............. .............. .......... 33 3.15 reset operation ......... ................. ................ ................ ................. ................ ............. 33 3.16 power supply ............ ................ ................. ................ ................. ................ ............... 3 3 4 programming information ............. .............. .............. ............... .............. .............. .......... 34 4.1 register list and map .. ............... ................ ................. ................ ................. .......... 34 4.2 register description .... ................ ................. ................ ................. .............. .......... 35 4.2.1 control registers.... ................ ................ ............... .............. .............. .......... 35 4.2.2 transmit path control regi sters................ ................ ................. .......... 36 4.2.3 receive path control regi sters ............. .............. .............. ............ ........ 38 4.2.4 network diagnost ics control registers ................ ................. .......... 40 4.2.5 interrupt control registers .............. ............... .............. .............. .......... 43 4.2.6 line status registers ....... ................ ................. ................ ................. .......... 46 4.2.7 interrupt status registers . ................ ............... .............. .............. .......... 48 4.2.8 counter registers ... ................ ................ ............... .............. .............. .......... 49 5 hardware control pin summary ...... ................ ................. ................ ................. .......... 50 6 test specifications ......... ................ ................ ................. ................ ................. ............... .. 52 7 microcontroller interface timi ng characteristics ............ ................ ............. 63 7.1 serial interface timing ......... .............. .............. ............... .............. .............. .......... 63 7.2 parallel interface timing ....... ................ ................ ................. ................ ............. 64 5 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit list of tables table-1 pin description ....... ................ ................. ................ ................. ................ ................ ....... 9 table-2 transmit wavefo rm value for e1 75 ? ................ ................ ................. .............. ......... 17 table-3 transmit wavefo rm value for e1 120 ? ................ ................. .............. .............. ......... 17 table-4 transmit waveform value for t1 0~133 ft........... ................ ................. .............. ......... 17 table-5 transmit waveform value for t1 133~266 ft.............. .............. .............. .............. ....... 18 table-6 transmit waveform value for t1 266~399 ft.............. .............. .............. .............. ....... 18 table-7 transmit waveform value for t1 399~533 ft.............. .............. .............. .............. ....... 18 table-8 transmit waveform value for t1 533~655 ft.............. .............. .............. .............. ....... 18 table-9 transmit waveform value for j1 0~655 ft .................. .............. .............. .............. ....... 19 table-10 transmit waveform value for ds 1 0 db lbo............... .............. .............. ............ ....... 19 table-11 transmit waveform value for ds 1 -7.5 db lbo .......... .............. .............. ............ ....... 19 table-12 transmit waveform value for ds1 -15.0 db lbo ........ .............. .............. ............ ....... 19 table-13 transmit waveform value for ds1 -22.5 db lbo ........ .............. .............. ............ ....... 20 table-14 impedance matching for transmit ter ............... ................ ................. ................ ............ 20 table-15 impedance matching for receiver .............. .............. ............... .............. .............. ......... 21 table-16 criteria of starting speed adjustment....... ................ ............... .............. .............. ......... 23 table-17 los declare and clear criteria for short haul mode .. .............. .............. .............. ....... 24 table-18 los declare and clear criteria for long haul mode..... .............. .............. ............ ....... 25 table-19 ais condition ......... ................ ................. ................ ................. ................ ............... ...... 25 table-20 criteria for setting/clearing the prbs_s bit ..... ................. ................ ................. ......... 26 table-21 exz definition ........ ................ ................. ................ ................. ................ ............... ...... 29 table-22 interrupt event................. ................. .............. .............. .............. .............. .............. ....... 33 table-23 register list and ma p ................. ................ ................. ................ ................. ............... . 34 table-24 id: device revision register ............... ................. ................ ................. .............. ......... 35 table-25 rst: reset register ... ................ ................ ................. ................ ................. ............... . 35 table-26 gcf: global conf iguration register .... ................. ................ ................. .............. ......... 35 table-27 term: transmit and receive termination configuration regist er ................ .............. 35 table-28 jacf: jitter attenua tion configuration register ................. ................ ................. ......... 36 table-29 tcf0: transmitter configuratio n register 0 ............. ............... .............. .............. ......... 36 table-30 tcf1: transmitter configuratio n register 1 ............. ............... .............. .............. ......... 37 table-31 tcf2: transmitter configuratio n register 2 ............. ............... .............. .............. ......... 37 table-32 tcf3: transmitter configuratio n register 3 ............. ............... .............. .............. ......... 38 table-33 tcf4: transmitter configuratio n register 4 ............. ............... .............. .............. ......... 38 table-34 rcf0: receiver configuration register 0................. ............... .............. .............. ......... 38 table-35 rcf1: receiver configuration register 1................. ............... .............. .............. ......... 39 table-36 rcf2: receiver configuration register 2................. ............... .............. .............. ......... 40 table-37 maint0: maintenance function control register 0..... .............. .............. .............. ....... 40 table-38 maint1: maintenance function control register 1..... .............. .............. .............. ....... 41 table-39 maint2: maintenance function control register 2..... .............. .............. .............. ....... 41 table-40 maint3: maintenance function control register 3..... .............. .............. .............. ....... 41 table-41 maint4: maintenance function control register 4..... .............. .............. .............. ....... 42 table-42 maint5: maintenance function control register 5..... .............. .............. .............. ....... 42 table-43 maint6: maintenance function control register 6..... .............. .............. .............. ....... 42 table-44 intm0: interrupt mask register 0 ............... .............. ............... .............. .............. ......... 43 table-45 intm1: interrupt masked regist er 1 ................ ................ ................. ................ ............ 44 table-46 intes: interrupt tr igger edge select register .. ................. ................ ................. ......... 45 6 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit table-47 stat0: line status register 0 (real time status m onitor)............ .............. ............ ....... 46 table-48 stat1: line status register 1 (real time status m onitor)............ .............. ............ ....... 47 table-49 ints0: interrupt status regist er 0 ................. .............. .............. .............. .............. ....... 48 table-50 ints1: interrupt status regist er 1 ................. .............. .............. .............. .............. ....... 49 table-51 cnt0: error count er l-byte register 0....... .............. ............... .............. .............. ......... 49 table-52 cnt1: error counter h- byte register 1 ........... ................ ................. ................ ............ 49 table-53 hardware control pin summary .. ............... .............. ............... .............. .............. ......... 50 table-54 absolute maximum rating ........ ................ ................ ............... .............. .............. ......... 52 table-55 recommended operation conditions ................ ................. ................ ................. ......... 52 table-56 power consumption.... ................ ................ ................. ................ ................. ................ 53 table-57 dc characteristics ............... ................ .............. .............. ............... .............. ............. ... 53 table-58 e1 receiver electric al characteristics ............. ................ ................. ................ ............ 54 table-59 t1/j1 receiver electrical char acteristics................ ................. .............. .............. ......... 55 table-60 e1 transmitter electr ical characteristics ......... ................ ................. ................ ............ 56 table-61 t1/j1 transmitter electrical characteristics..... ................ ................. ................ ............ 57 table-62 transmitter and receiver timing char acteristics ............ ................. ................ ............ 58 table-63 jitter tolerance ...... ................ ................. ................ ................. ................ ............... ...... 59 table-64 jitter attenuator char acteristics ........... ................. ................ ................. .............. ......... 6 1 table-65 serial interface timing charac teristics ....... .............. ............... .............. .............. ......... 63 table-66 multiplexed motorola read ti ming characteristics...... .............. .............. .............. ....... 64 table-67 multiplexed motorola write timing characteristics ... ............... .............. .............. ......... 65 table-68 multiplexed intel read timing characteristics .......... ............... .............. .............. ......... 66 table-69 multiplexed intel write timing characteristics .......... ............... .............. .............. ......... 67 7 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit list of figures figure-1 block diagram ....... ................ ................. ................ ................. ................ ................ ........ 2 figure-2 idt82v2081 tqfp44 package pin assignment ............ ................. ................ ............... 8 figure-3 e1 waveform template diagram ............... .............. ............... .............. .............. .......... 15 figure-4 e1 pulse template test circuit .............. ................ ................. .............. .............. .......... 16 figure-5 dsx-1 waveform template ..... ................ ................ ............... .............. .............. .......... 16 figure-6 t1 pulse template te st circuit ........... ................. ................ ................. .............. .......... 16 figure-7 receive path function block dia gram .............. ................. ................ ................. .......... 21 figure-8 transmit/receive line circuit .. ................ ................ ............... .............. .............. .......... 21 figure-9 monitoring receive line in anot her chip ................. ............... .............. .............. .......... 22 figure-10 monitor transmit line in another chip ... ................ ................. .............. .............. .......... 22 figure-11 jitter attenuator ... ................ ................ ................. ................ ................. ............... ......... 23 figure-12 los declare and clear ......... ................. .............. .............. .............. .............. .............. .24 figure-13 analog loopback ......... ................ ................. ................ ................. .............. ............. .... 27 figure-14 digital loopback .... ................ ................. ................ ................. ................ ............... ....... 27 figure-15 remote loopback ...... ................ ................ ................. ................ ................. .............. ... 27 figure-16 auto report mode ............... ................ .............. .............. ............... .............. ............. .... 29 figure-17 manual report mode ................ .............. .............. .............. .............. .............. ............. .. 30 figure-18 tclk operation flowchart .... ................. ................ .............. .............. .............. ............. 3 1 figure-19 serial microcontroller interf ace function timing ...... ............... .............. .............. .......... 32 figure-20 transmit system interface ti ming .................. ................ ................. ................ ............. 59 figure-21 receive system interface timi ng .............. .............. ............... .............. .............. .......... 59 figure-22 e1 jitter tolerance performanc e ............... .............. ............... .............. .............. .......... 60 figure-23 t1/j1 jitter tolera nce performance ....... ................ ................. .............. .............. .......... 60 figure-24 e1 jitter transfer performance ........... ................. ................ ................. .............. .......... 62 figure-25 t1/j1 jitter transfe r performance ......... ................ ................. .............. .............. .......... 62 figure-26 serial interface write timing ............... ................. .............. .............. .............. .............. .63 figure-27 serial interface read timing with sclke=1 ........... ............... .............. .............. .......... 63 figure-28 serial interface read timing with sclke=0 ........... ............... .............. .............. .......... 63 figure-29 multiplexed motorola read ti ming ............. .............. ............... .............. .............. .......... 64 figure-30 multiplexed motorola write ti ming .................. ................ ................. ................ ............. 65 figure-31 multiplexed intel read timing ................ ................ .............. .............. .............. ............. 6 6 figure-32 multiplexed intel write timing ................ ................ .............. .............. .............. ............. 67 8 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 1 idt82v2081 pin configurations figure-2 idt82v2081 tqfp44 package pin assignment tclk tdp / td tdn rclk rdp / rd rdn / cv los vddd mclk gndd rclke idt82v2081 1 2 3 4 5 6 7 8 9 10 11 14 12 13 15 18 16 17 19 22 20 21 44 41 43 42 40 37 39 38 36 35 34 ad7 / puls3 ad6 / puls2 ad5 / puls1 ad4 / puls0 ad3 / eq ad2 / rpd ad1 / patt1 ad0 / patt0 ale / as / sclk/ lp1 wr / r/ w / sdi / lp0 rdy / ack / sdo / term ic vddt tring ttip gndt gnda rring rtip vdda ref ic 33 32 31 30 29 28 27 26 25 24 23 rd / ds / sclke / mont cs / rxtxm1 int / rxtxm0 vddio gndio mode1 mode0 ja1 ja0 thz rst 9 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit notes: 1. tclk missing: the state of tclk continues to be high level or low level over 70 mclk cycles. 2 pin description table-1 pin description name type pin no. description ttip tring analog output 37 36 ttip/tring: transmit bipolar tip/ring these pins are the differential line driver outputs. they will be in high impedance state under the following conditions: ? thz pin is high; ? thz bit is set to 1; ? loss of mclk; ? loss of tclk (exceptions: remote loopback; transmit internal pattern by mclk); ? transmit path power down; ? after software reset; pin reset and power on. rtip rring analog input 41 40 rtip/rring: receive bipolar tip/ring these signals are the differential receiver inputs. td/tdp tdn i2 3 td: transmit data when the device is in single rail mode, the nrz data to be transmitted is input on this pin. data on td pin is sampled into the device on the active edge of tclk and is encoded by ami, hdb3 or b8zs line code rules before being transmitted. in this mode, tdn should be connected to ground. tdp/tdn: positive/negative transmit data when the device is in dual rail mode, the nrz data to be transmitted for positive/negative pulse is input on these pins. data on tdp/tdn pin is sampled into the device on the active edge of tclk. the line code in dual rail mode is as follows: tclk i 1 tclk: transmit clock input this pin inputs 1.544 mhz for t1/j1 mode or 2.048 mhz for e1 mode transmit clock. the transmit data at td/tdp or tdn is sampled into the device on the active edge of tclk. if tclk is missing 1 and the tclk missing interrupt is not masked, an inter- rupt will be generated. rd/rdp cv/rdn o5 6 rd: receive data output in single rail mode, this pin outputs nrz data. the data is decoded according to ami, hdb3 or b8zs line code rules. cv: code violation indication in single rail mode, the bpv/cv code violation will be reported by driving the cv pin to high level for a full clock cycle. b8z s/ hdb3 line code violation can be indicated if the b8zs/hdb3 decoder is enabled. when ami decoder is selected, bipolar vio- lation will be indicated. in hardware control mode, the exz, bpv/cv er rors in received data stre am are always monitored by the cv pin if single rail mode is chosen. rdp/rdn: positive/negative receive data output in dual rail mode, this pin outputs the re-timed nrz data when cdr is enabled, or directly outputs the raw rz slicer data if cd r is bypassed. active edge and level select: data on rdp/rdn or rd is clocked with either the rising or the falling edge of rclk. the active polarity is also selectable. rclk o 4 rclk: receive clock output this pin outputs 1.544 mhz for t1/j1 mode or 2.048 mhz for e1 mode receive clock. under los condition with ais enabled (bit aise=1), rclk is derived from mclk. in clock recovery mode, this signal provides the clock recovered from the rtip/ rring signal. the receive data (rd in single rail mode or rdp and rdn in dual rail mode) is clocked out of the device on the active edge of rclk. if clock recovery is bypassed, rclk is the exclusive or (xor) output of the dual rail slicer data rdp and rdn. this signal can be used in applications with external clock recovery circuitry. tdp tdn output pulse 0 0 space 0 1 positive pulse 1 0 negative pulse 1 1 space 10 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit mclk i 9 mclk: master clock input a built-in clock system that accepts selectable 2.048mhz reference for e1 operating mode and 1.544mhz reference for t1/j1 operating mode. this reference clock is used to generate several internal reference signals: ? timing reference for the integrated clock recovery unit. ? timing reference for the integrated digital jitter attenuator. ? timing reference for micr ocontroller interface. ? generation of rclk signal during a loss of signal condition. ? reference clock to transmit all ones, all zeros, prbs/qrss pattern as well as activate or deactivate inband loopback code if mclk is selected as the reference clock. note that for atao and ais, mclk is always used as the reference clock. ? reference clock during the transmit all ones (tao) condition or sending prbs/qrss in hardware control mode. the loss of mclk will turn ttip/tring into high impedance status. los o 7 los: loss of signal output this is an active high signal used to indicate the loss of received signal. when los pin becomes high, it indicates the loss of received signal. the los pin will become low automatically when valid received signal is detected again. the criteria of loss of signal are described in 3.6 los and ais detection . ref i 43 ref: reference resister an external resistor (3k ? , 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit. mode1 mode0 i17 16 mode[1:0]: operation mode of control interface select the level on this pin determines which control mode is used to control the device as follows: ? the serial microcontroller interface consists of cs , sclk, sclke, sdi, sdo and int pins. sclke is used for the selection of the active edge of sclk. ? the parallel multiplexed microcontroller interface consists of cs , ad[7:0], ds / rd , r/ w / wr , ale/as, ack /rdy and int pins. (refer to 3.12 microcontroller interfaces for details) ? hardware interface consists of puls[3:0], thz, rclke, lp[1:0], patt[1:0], ja[1:0], mont, term, eq, rpd, mode[1:0] and rxtxm[1:0] rclke i 11 rclke: the active edge of rclk select in hardware control mode, this pin selects the active edge of rclk ? l= select the rising edge as the active edge of rclk ? h= select the falling edge as the active edge of rclk in software control mode, this pin should be connected to gndio. cs rxtxm1 i21 cs : chip select in serial or parallel microcontroller interface mode, this is the active low enable signal. a low level on this pin enables ser ial or parallel microcontroller interface. rxtxm[1:0]: receive and transmit path operation mode select in hardware control mode, these pins are used to select the single rail or dual rail operation modes as well as ami or hdb3/ b8zs line coding: ? 00= single rail with hdb3/b8zs coding ? 01= single rail with ami coding ? 10= dual rail interface with cdr enabled ? 11= slicer mode (dual rail interface with cdr disabled) table-1 pin description (continued) name type pin no. description mode[1:0] control interface mode 00 hardware interface 01 serial microcontroller interface 10 parallel ?multiplexed -motorola interface 11 parallel ?multiplexed -intel interface 11 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit int rxtxm0 o i 20 int : interrupt request in software control mode, this pin outputs the general interrupt request for all interrupt sources. these interrupt sources can be masked individually via registers ( intm0, 14h ) and ( intm1, 15h ). the interrupt status is reported via the registers ( ints0, 19h ) and ( ints1, 1ah ). output characteristics of this pin can be defined to be push-pull (active high or active low) or open-drain (active low) by set ting int_pin[1:0] ( gcf, 02h ). rxtxm0 see rxtxm1 above. sclk ale as lp1 i 25 sclk: shift clock in serial microcontroller interface mode, this signal is the shift clock for the serial interface. configuration data on sdi pi n is sam- pled on the rising edge of sclk. configuration and status data on sdo pin is clocked out of the device on the falling edge of sclk if sclke pin is high, or on the rising edge of sclk if sclke pin is low. ale: address latch enable in parallel microcontroller interface mode with multiplexed intel interface, the address on ad[7:0] is sampled into the device on the falling edge of ale. as: address strobe in parallel microcontroller interface mode with multiplexed motorola interface, the address on ad[7:0] is latched into the devi ce on the falling edge of as. lp[1:0]: loopback mode select when the chip is configured by hardware, this pin is used to select loopback operation modes (inband loopback is not provided in hardware control mode) ? 00= no loopback ? 01= analog loopback ? 10= digital loopback ? 11= remote loopback sdi wr r/ w lp0 i 24 sdi: serial data input in serial microcontroller interface mode, this signal is the input data to the serial interface. configuration data at sdi pin is sam- pled by the device on the rising edge of sclk. wr : write strobe in intel parallel multiplexed interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. the da ta on ad[7:0] is sampled into the device in a write operation. r/ w : read/write select in motorola parallel multiplexed interface mode, this pin is low for write operation and high for read operation. lp0 see lp1 above. table-1 pin description (continued) name type pin no. description 12 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit sdo ack rdy term o i 23 sdo: serial data output in serial microcontroller interface mode, this signal is the output data of the serial interface. configuration or status data at sdo pin is clocked out of the device on the falling edge of sclk if sclke pin is high, or on the rising edge of sclk if sclke pin is low. ack : acknowledge output in motorola parallel mode interface, the low level on this pin means: ? the valid information is on the data bus during a read operation. ? the write data has been accepted during a write cycle. rdy: ready signal output in intel parallel mode interface, the low level on this pin means a read or write operation is in progress; a high acknowledges a read or write operation has been completed. term: internal or external termination select in hardware mode this pin selects internal or external impedance matching for both receiver and transmitter. ? 0 = ternary interface with external impedance matching network ? 1 = ternary interface with internal impedance matching network sclke rd ds mont i 22 sclke: serial clock edge select in serial microcontroller interface mode, this signal selects the active edge of sclk for outputting sdo. the output data is va lid after some delay from the active clock edge. it can be sampled on the opposite edge of the clock. the active clock edge which clocks the data out of the device is selected as shown below: rd : read strobe in intel parallel multiplexed interface mode, the data is driven to ad[7:0] by the device during low level of rd in a read operation. ds : data strobe in motorola parallel multiplexed interface mode, this signal is the data strobe of the parallel interface. in a write operation (r/ w = 0), the data on ad[7:0] is sampled into the device. in a read operation (r/ w = 1), the data is driven to ad[7:0] by the device. mont: receive monitor gain select in hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver: 0= 0db 1= 26db ad7 puls3 i/o i 33 ad7: address/data bus bit7 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. puls[3:0]: these pins are used to select the following functions in hardware control mode: ? t1/j1/e1 mode ? transmit pulse template ? internal termination impedance (75 ? /120 ? /100 ? /110 ? ) refer to 5 hardware control pin summary for details. ad6 puls2 i/o i 32 ad6: address/data bus bit6 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. see above. table-1 pin description (continued) name type pin no. description sclke sclk low rising edge is the active edge. high falling edge is the active edge. 13 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit ad5 puls1 i/o i 31 ad5: address/data bus bit5 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. see above. ad4 puls0 i/o i 30 ad4: address/data bus bit4 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. see above. ad3 eq i/o i 29 ad3: address/data bus bit3 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. eq: receive equalizer on/off cont rol in hardware control mode ? 0= short haul (10 db) ? 1= long haul (36 db for t1/j1, 43 db for e1) ad2 rpd i/o i 28 ad2: address/data bus bit2 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. rpd: receiver power down cont rol in hardware control mode ? 0= normal operation ? 1= receiver power down ad1 patt1 i/o i 27 ad1: address/data bus bit1 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. patt[1:0]: transmit pattern select in hardware control mode, this pin selects the transmit pattern ? 00 = normal ? 01= all ones ? 10= prbs ? 11= transmitter power down ad0 patt0 i/o i 26 ad0: address/data bus bit0 in intel/motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontro ller interface. in serial microcontroller interface mode, this pin should be connected to ground through a 10 k ? resistor. see above. ja1 i 15 ja[1:0]: jitter attenuation position, bandwidth and the depth of fifo select (only used for hardware control mode) ? 00 = ja is disabled ? 01 = ja in receiver, broad bandwidth, fifo=64 bits ? 10 = ja in receiver, narrow bandwidth, fifo=128 bits ? 11 = ja in transmitter, narrow bandwidth, fifo=128 bits in software control mode, this pin should be connected to ground. ja0 i 14 see above. rst i12 rst : hardware reset the chip is forced to reset state if a low signal is input on this pin for more than 100ns. table-1 pin description (continued) name type pin no. description 14 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit thz i 13 thz: transmitter driver high impedance enable this signal enables or disables transmitter driver. a low level on this pin enables the driver while a high level on this pin p laces driver in high impedance state. note that the functionality of the internal circuits is not affected by this signal. power supplies and grounds vddio - 19 3.3 v i/o power supply gndio - 18 i/o ground vddt - 35 3.3 v power supply for transmitter driver gndt - 38 analog ground for transmitter driver vdda - 42 3.3 v analog core power supply gnda - 39 analog core ground vddd - 8 digital core power supply gndd - 10 digital core ground others ic - 34 ic: internal connection internal use. this pin should be left open when in normal operation. ic - 44 ic: internal connection internal use. this pin should be connected to ground when in normal operation. table-1 pin description (continued) name type pin no. description 15 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 3 functional description 3.1 control mode selection the idt82v2081 can be configured by software or by hardware. the software control mode supports serial control interface, motorola multi- plexed control interface and intel multiplexed control interface. the con- trol mode is selected by mode1 and mode0 pins as follows: ? the serial microcontroller interface consists of cs , sclk, sclke, sdi, sdo and int pins. sclke is used for the selection of active edge of sclk. ? the parallel multiplexed microcontroller interface consists of cs , ad[7:0], ds / rd , r/ w / wr , ale/as, ack /rdy and int pins. ? hardware interface consists of puls[3:0], thz, rclke, lp[1:0], patt[1:0], ja[1:0], mont, term, eq, rpd, mode[1:0] and rxtxm[1:0]. refer to 5 hardware control pin summary for details about hardware control. 3.2 t1/e1/j1 mode selection when the chip is configured by software, t1/e1/j1 mode is selected by the t1e1 bit ( gcf, 02h ). in e1 application, the t1e1 bit ( gcf, 02h ) should be set to ?0?. in t1/j1 application, the t1e1 bit should be set to ?1?. when the chip is configured by hardware, t1/e1/j1 mode is selected by puls[3:0] pins. these pins also determine transmit pulse template and internal termination impedance. refer to 5 hardware control pin summary for details. 3.3 transmit path the transmit path of idt82v2081 consists of an encoder, an optional jitter attenuator, a waveform shaper, a set of lbos, a line driver and a programmable transmit termination. 3.3.1 transmit path system interface the transmit path system interface c onsists of tclk pin, td/tdp pin and tdn pin. in e1 mode, tclk is a 2.048 mhz clock. in t1/j1 mode, tclk is a 1.544 mhz clock. if tclk is mi ssing for more than 70 mclk cycles, an interrupt will be generated if it is not masked. transmit data is sampled on the td /tdp and tdn pins by the active edge of tclk. the active edge of tclk can be selected by the tclk_sel bit ( tcf0, 05h ). and the active level of the data on td/tdp and tdn can be selected by the td_inv bit ( tcf0, 05h ). in hardware control mode, the falling edge of tclk and the active high of transmit data are always used. the transmit data from the system si de can be provided in two different ways: single rail and dual rail. in si ngle rail mode, only td pin is used for transmitting data and the t_md[1] bit ( tcf0, 05h ) should be set to ?0?. in dual rail mode, both tdp pin a nd tdn pin are used for transmitting data, the t_md[1] bit ( tcf0, 05h ) should be set to ?1?. 3.3.2 encoder in single rail mode, when t1/j1 mode is selected, the encoder can be selected to be a b8zs encoder or an ami encoder by setting t_md[0] bit ( tcf0, 05h ). in single rail mode, when e1 mode is selected, the encoder can be con- figured to be a hdb3 encoder or an ami encoder by setting t_md[0] bit ( tcf0, 05h ). in both t1/j1 mode and e1 mode, when dual rail mode is selected (bit t_md[1] is ?1?), the encoder is by-pass ed. in dual rail mode, a logic ?1? on the tdp pin and a logic ?0? on the tdn pin results in a negative pulse on the ttip/tring; a logic ?0? on tdp pin and a logic ?1? on tdn pin results in a positive pulse on the ttip/tring. if both tdp and tdn are high or low, the ttip/tring outputs a space (refer to td/tdp, tdn pin description ). in hardware control mode, the operation mode of receive and transmit path can be selected by setting rxtxm1 and rxtxm0 pins. refer to 5 hardware control pin summary for details. 3.3.3 pulse shaper the idt82v2081 provides three wa ys of manipulating the pulse shape before sending it. the first is to use preset pulse templates for short haul application, the second is to use lb o (line build out) for long haul appli- cation and the other way is to use user-programmable arbitrary waveform template. in software control mode, the pulse shape can be selected by setting the related registers. in hardware control mode, the pulse shape can be selected by setting puls[3:0] pins. refer to 5 hardware control pin summary for details. 3.3.3.1 preset pulse templates for e1 applications, the pulse shape is shown in figure-3 according to the g.703 and the measuring diagram is shown in figure-4 . in internal impedance matching mode, if the cable impedance is 75 ? , the puls[3:0] bits ( tcf1, 06h ) should be set to ?0000?; if the cable impedance is 120 ? , the puls[3:0] bits ( tcf1, 06h ) should be set to ?0001?. in external imped- ance matching mode, for both e1/75 ? and e1/120 ? cable impedance, puls[3:0] should be set to ?0001?. figure-3 e1 waveform template diagram control interface mode 00 hardware interface 01 serial microcontroller interface. 10 parallel ?multiplexed -motorola interface 11 parallel ?multiplexed -intel interface -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 tim e in u nit intervals normalized amplitude 16 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit figure-4 e1 pulse template test circuit for t1 applications, the pulse shape is shown in figure-5 according to the t1.102 and the measuring diagram is shown in figure-6 . this also meets the requirement of g.703, 2001. the cable length is divided into five grades, and there are five pulse templa tes used for each of the cable length. the pulse template is selected by puls[3:0] bits ( tcf1, 06h ). figure-5 dsx-1 waveform template figure-6 t1 pulse template test circuit for j1 applications, the puls[3:0] ( tcf1, 06h ) should be set to ?0111?. table-14 lists these values. 3.3.3.2 lbo (line build out) to prevent the cross-talk at the fa r end, the output of ttip/tring could be attenuated before transmission for l ong haul applications. the fcc part 68 regulations specifies four grades of attenuation with a step of 7.5 db. three lbos are used to implement the pulse attenuation. the puls[3:0] bits ( tcf1, 06h ) are used to select the attenuation grade. both table-14 and table-15 list these values. 3.3.3.3 user-programmable arbitrary waveform when the puls[3:0] bits are set to ?11xx?, user-programmable arbitrary waveform generator mode can be used. this allows the transmitter perfor- mance to be tuned for a wide variety of line condition or special application. each pulse shape can extend up to 4 uis (unit interval), addressed by ui[1:0] bits ( tcf3, 08h ) and each ui is divided into 16 sub-phases, addressed by the samp[3:0] bits ( tcf3, 08h ). the pulse amplitude of each phase is represented by a binary byte, within the range from +63 to -63, stored in wdat[6:0] bits ( tcf4, 09h ) in signed magnitude form. the most positive number +63 (d) represents the positive maximum amplitude of the transmit pulse while the most negativ e number -63 (d) represents the max- imum negative amplitude of the transmi t pulse. therefore, up to 64 bytes are used. there are twelve standard templa tes which are stored in an on-chip rom. user can select one of them as reference and make some changes to get the desired waveform. user can change the wave shape and the amplitude to get the desired pulse shape. in order to do this, firstl y, users can choose a set of waveform value from the following twelve tables , which is the most similar to the desired pulse shape. table-2 , table-3 , table-4 , table-5 , table-6 , table-7 , table-8 , table-9 , table-10 , table-11 , table-12 and table-13 list the sample data and scaling data of each of the twelve templates. then modify the cor- responding sample data to get the desired transmit pulse shape. secondly, through the value of sc al[5:0] bits increased or decreased by 1, the pulse amplitude can be scale d up or down at the percentage ratio against the standard pulse amplitude if needed. for different pulse shapes, the value of scal[5:0] bits and the scaling percentage ratio are different. the following twelve tables list these values. do the followings step by step, the desired waveform can be pro- grammed, based on the selected waveform template: (1).select the ui by ui[1:0] bits ( tcf3, 08h ) (2).specify the sample address in the selected ui by samp [3:0] bits ( tcf3, 08h ) (3).write sample data to wdat[6:0] bits ( tcf4, 09h ). it contains the data to be stored in the ram, addressed by the selected ui and the corresponding sample address. (4).set the rw bit ( tcf3, 08h ) to ?0? to implement writing data to ram, or to ?1? to implement read data from ram (5).implement the read from ram/write to ram by setting the done bit ( tcf3, 08h ) repeat the above steps until all the sa mple data are written to or read from the internal ram. (6).write the scaling data to scal[5:0] bits ( tcf2, 07h ) to scale the amplitude of the waveform based on the selected standard pulse amplitude when more than one ui is used to compose the pulse template, the over- lap of two consecutive pulses coul d make the pulse amplitude overflow (exceed the maximum limitation) if t he pulse amplitude is not set properly. this overflow is captured by dac_ov_is bit ( ints1, 1ah ), and, if enabled by the dac_ov_im bit ( intm1, 15h ), an interrupt will be generated. the following tables give all the sample data based on the preset pulse templates and lbos in detail for reference. for preset pulse templates and lbos, scaling up/down against the pul se amplitude is not supported. idt82v2081 v out r load ttip tring note: 1. for r load = 75 ? (nom), v out (peak)=2.37v (nom) 2. for r load =120 ? (nom), v out (peak)=3.00v (nom) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 0 250 500 750 1000 1250 time (ns) normalized amplitude idt82v2081 ttip tring cable r load v out note: r load = 100 ? 5% 17 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 1. table-2 transmit waveform value for e1 75 ? 2. table-3 transmit waveform value for e1 120 ? 3. table-4 transmit waveform value for t1 0~133 ft 4. table-5 transmit waveform value for t1 133~266 ft 5. table-6 transmit waveform value for t1 266~399 ft 6. table-7 transmit waveform value for t1 399~533 ft 7. table-8 transmit waveform value for t1 533~655 ft 8. table-9 transmit waveform value for j1 0~655 ft 9. table-10 transmit waveform value for ds1 0 db lbo 10. table-11 transmit waveform value for ds1 -7.5 db lbo 11. table-12 transmit waveform value for ds1 -15.0 db lbo 12. table-13 transmit waveform value for ds1 -22.5 db lbo table-2 transmit waveform value for e1 75 ? sample ui 1 ui 2 ui 3 ui 4 1 0000000 0000000 0000000 0000000 2 0000000 0000000 0000000 0000000 3 0000000 0000000 0000000 0000000 4 0001100 0000000 0000000 0000000 5 0110000 0000000 0000000 0000000 6 0110000 0000000 0000000 0000000 7 0110000 0000000 0000000 0000000 8 0110000 0000000 0000000 0000000 9 0110000 0000000 0000000 0000000 10 0110000 0000000 0000000 0000000 11 0110000 0000000 0000000 0000000 12 0110000 0000000 0000000 0000000 13 0000000 0000000 0000000 0000000 14 0000000 0000000 0000000 0000000 15 0000000 0000000 0000000 0000000 16 0000000 0000000 0000000 0000000 scal[5:0] = 100001 (default), one step change of this value of scal[5:0] results in 3% scaling up/down against the pulse amplitude. table-3 transmit waveform value for e1 120 ? sample ui 1 ui 2 ui 3 ui 4 1 0000000 0000000 0000000 0000000 2 0000000 0000000 0000000 0000000 3 0000000 0000000 0000000 0000000 4 0001111 0000000 0000000 0000000 5 0111100 0000000 0000000 0000000 6 0111100 0000000 0000000 0000000 7 0111100 0000000 0000000 0000000 8 0111100 0000000 0000000 0000000 9 0111100 0000000 0000000 0000000 10 0111100 0000000 0000000 0000000 11 0111100 0000000 0000000 0000000 12 0111100 0000000 0000000 0000000 13 0000000 0000000 0000000 0000000 14 0000000 0000000 0000000 0000000 15 0000000 0000000 0000000 0000000 16 0000000 0000000 0000000 0000000 scal[5:0] = 100001 (default), one step change of this value of scal[5:0] results in 3% scaling up/down against the pulse amplitude. table-4 transmit waveform value for t1 0~133 ft sample ui 1 ui 2 ui 3 ui 4 1 0010111 1000010 0000000 0000000 2 0100111 1000001 0000000 0000000 3 0100111 0000000 0000000 0000000 4 0100110 0000000 0000000 0000000 5 0100101 0000000 0000000 0000000 6 0100101 0000000 0000000 0000000 7 0100101 0000000 0000000 0000000 8 0100100 0000000 0000000 0000000 9 0100011 0000000 0000000 0000000 10 1001010 0000000 0000000 0000000 11 1001010 0000000 0000000 0000000 12 1001001 0000000 0000000 0000000 13 1000111 0000000 0000000 0000000 14 1000101 0000000 0000000 0000000 15 1000100 0000000 0000000 0000000 16 1000011 0000000 0000000 0000000 scal[5:0] = 110110 1 (default), one step change of this value of scal[5:0] results in 2% scaling up/down against the pulse amplitude. 1. in t1 mode, when arbitrary pulse for short haul application is configured, users should write ?110110? to scal[5:0] bits if no scaling is required. 18 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit table-5 transmit waveform value for t1 133~266 ft sample ui 1 ui 2 ui 3 ui 4 1 0011011 1000011 0000000 0000000 2 0101110 1000010 0000000 0000000 3 0101100 1000001 0000000 0000000 4 0101010 0000000 0000000 0000000 5 0101001 0000000 0000000 0000000 6 0101000 0000000 0000000 0000000 7 0100111 0000000 0000000 0000000 8 0100110 0000000 0000000 0000000 9 0100101 0000000 0000000 0000000 10 1010000 0000000 0000000 0000000 11 1001111 0000000 0000000 0000000 12 1001101 0000000 0000000 0000000 13 1001010 0000000 0000000 0000000 14 1001000 0000000 0000000 0000000 15 1000110 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 see table-4 table-6 transmit waveform value for t1 266~399 ft sample ui 1 ui 2 ui 3 ui 4 1 0011111 1000011 0000000 0000000 2 0110100 1000010 0000000 0000000 3 0101111 1000001 0000000 0000000 4 0101100 0000000 0000000 0000000 5 0101011 0000000 0000000 0000000 6 0101010 0000000 0000000 0000000 7 0101001 0000000 0000000 0000000 8 0101000 0000000 0000000 0000000 9 0100101 0000000 0000000 0000000 10 1010111 0000000 0000000 0000000 11 1010011 0000000 0000000 0000000 12 1010000 0000000 0000000 0000000 13 1001011 0000000 0000000 0000000 14 1001000 0000000 0000000 0000000 15 1000110 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 see table-4 table-7 transmit waveform value for t1 399~533 ft sample ui 1 ui 2 ui 3 ui 4 1 0100000 1000011 0000000 0000000 2 0111011 1000010 0000000 0000000 3 0110101 1000001 0000000 0000000 4 0101111 0000000 0000000 0000000 5 0101110 0000000 0000000 0000000 6 0101101 0000000 0000000 0000000 7 0101100 0000000 0000000 0000000 8 0101010 0000000 0000000 0000000 9 0101000 0000000 0000000 0000000 10 1011000 0000000 0000000 0000000 11 1011000 0000000 0000000 0000000 12 1010011 0000000 0000000 0000000 13 1001100 0000000 0000000 0000000 14 1001000 0000000 0000000 0000000 15 1000110 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 see table-4 table-8 transmit waveform value for t1 533~655 ft sample ui 1 ui 2 ui 3 ui 4 1 0100000 1000011 0000000 0000000 2 0111111 1000010 0000000 0000000 3 0111000 1000001 0000000 0000000 4 0110011 0000000 0000000 0000000 5 0101111 0000000 0000000 0000000 6 0101110 0000000 0000000 0000000 7 0101101 0000000 0000000 0000000 8 0101100 0000000 0000000 0000000 9 0101001 0000000 0000000 0000000 10 1011111 0000000 0000000 0000000 11 1011110 0000000 0000000 0000000 12 1010111 0000000 0000000 0000000 13 1001111 0000000 0000000 0000000 14 1001001 0000000 0000000 0000000 15 1000111 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 see table-4 19 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit table-9 transmit waveform value for j1 0~655 ft sample ui 1 ui 2 ui 3 ui 4 1 0010111 1000010 0000000 0000000 2 0100111 1000001 0000000 0000000 3 0100111 0000000 0000000 0000000 4 0100110 0000000 0000000 0000000 5 0100101 0000000 0000000 0000000 6 0100101 0000000 0000000 0000000 7 0100101 0000000 0000000 0000000 8 0100100 0000000 0000000 0000000 9 0100011 0000000 0000000 0000000 10 1001010 0000000 0000000 0000000 11 1001010 0000000 0000000 0000000 12 1001001 0000000 0000000 0000000 13 1000111 0000000 0000000 0000000 14 1000101 0000000 0000000 0000000 15 1000100 0000000 0000000 0000000 16 1000011 0000000 0000000 0000000 scal[5:0] = 110110 (default), one step change of this value of scal[5:0] results in 2% scaling up/down against the pulse amplitude. table-10 transmit waveform value for ds1 0 db lbo sample ui 1 ui 2 ui 3 ui 4 1 0010111 1000010 0000000 0000000 2 0100111 1000001 0000000 0000000 3 0100111 0000000 0000000 0000000 4 0100110 0000000 0000000 0000000 5 0100101 0000000 0000000 0000000 6 0100101 0000000 0000000 0000000 7 0100101 0000000 0000000 0000000 8 0100100 0000000 0000000 0000000 9 0100011 0000000 0000000 0000000 10 1001010 0000000 0000000 0000000 11 1001010 0000000 0000000 0000000 12 1001001 0000000 0000000 0000000 13 1000111 0000000 0000000 0000000 14 1000101 0000000 0000000 0000000 15 1000100 0000000 0000000 0000000 16 1000011 0000000 0000000 0000000 scal[5:0] = 110110 (default), one step change of this value results in 2% scaling up/down against the pulse amplitude. table-11 transmit waveform value for ds1 -7.5 db lbo sample ui 1 ui 2 ui 3 ui 4 1 0000000 0010100 0000010 0000000 2 0000010 0010010 0000010 0000000 3 0001001 0010000 0000010 0000000 4 0010011 0001110 0000010 0000000 5 0011101 0001100 0000010 0000000 6 0100101 0001011 0000001 0000000 7 0101011 0001010 0000001 0000000 8 0110001 0001001 0000001 0000000 9 0110110 0001000 0000001 0000000 10 0111010 0000111 0000001 0000000 11 0111001 0000110 0000001 0000000 12 0110000 0000101 0000001 0000000 13 0101000 0000100 0000000 0000000 14 0100000 0000100 0000000 0000000 15 0011010 0000011 0000000 0000000 16 0010111 0000011 0000000 0000000 scal[5:0] = 010001 (default), one step change of this value of scal[5:0] results in 6.25% scaling up/down against the pulse amplitude. table-12 transmit waveform value for ds1 -15.0 db lbo sample ui 1 ui 2 ui 3 ui 4 1 0000000 0110101 0001111 0000011 2 0000000 0110011 0001101 0000010 3 0000000 0110000 0001100 0000010 4 0000001 0101101 0001011 0000010 5 0000100 0101010 0001010 0000010 6 0001000 0100111 0001001 0000001 7 0001110 0100100 0001000 0000001 8 0010100 0100001 0000111 0000001 9 0011011 0011110 0000110 0000001 10 0100010 0011100 0000110 0000001 11 0101010 0011010 0000101 0000001 12 0110000 0010111 0000101 0000001 13 0110101 0010101 0000100 0000001 14 0110111 0010100 0000100 0000000 15 0111000 0010010 0000011 0000000 16 0110111 0010000 0000011 0000000 scal[5:0] = 001000 (default), one step change of the value of scal[5:0] results in 12.5% scaling up/down against the pulse amplitude. 20 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 3.3.4 transmit path line interface the transmit line interface consists of ttip pin and tring pin. the impedance matching can be realized by the internal impedance matching circuit or the external impedance matc hing circuit. if t_term[2] is set to ?0?, the internal impedance matching circ uit will be selected. in this case, the t_term[1:0] bits ( term, 03h ) can be set to choose 75 ? , 100 ? , 110 ? or 120 ? internal impedance of ttip/tring. if t_term[2] is set to ?1?, the internal impedance matching circuit will be disabled. in this case, the external impedance matching circuit w ill be used to realize the impedance matching. for t1/j1 mode, the exter nal impedance matching circuit for the transmitter is not supported. figure-8 shows the appropriate external com- ponents to connect with the cable. table-14 is the list of the recommended impedance matching for transmitter. in hardware control mode, term pin can be used to select impedance matching for both receiver and transmi tter. if term pin is low, external impedance network will be used for impedance matching. if term pin is high, internal impedance will be used for impedance matching and puls[3:0] pins will be set to select the specific internal impedance. refer to 5 hardware control pin summary for details. the ttip/tring pins can also be turned into high impedance by setting the thz bit ( tcf1, 06h ) to ?1?. in this state, the internal transmit circuits are still active. in hardware control mode, ttip/tring can be turned into high imped- ance by pulling thz pin to high. refer to 5 hardware control pin summary for details. besides, in the following cases, bot h ttip/tring pins will also become high impedance: ? loss of mclk; ? loss of tclk (exceptions: re mote loopback; transmit internal pattern by mclk); ? transmit path power down; ? after software reset; pin reset and power on. note : the precision of the resistors should be better than 1% 3.3.5 transmit path power down the transmit path can be powered down by setting the t_off bit ( tcf0, 05h ) to ?1?. in this case, the ttip/t ring pins are turned into high imped- ance. in hardware control mode, the transmit path can be powered down by pulling both patt1 and patt0 pins to high. refer to 5 hardware con- trol pin summary for details. table-13 transmit waveform value for ds1 -22.5 db lbo sample ui 1 ui 2 ui 3 ui 4 1 0000000 0101100 00 11110 0001000 2 0000000 0101110 0011100 0000111 3 0000000 0110000 0011010 0000110 4 0000000 0110001 0011000 0000101 5 0000001 0110010 0010111 0000101 6 0000011 0110010 0010101 0000100 7 0000111 0110010 0010100 0000100 8 0001011 0110001 0010011 0000011 9 0001111 0110000 0010001 0000011 10 0010101 0101110 0010000 0000010 11 0011001 0101100 0001111 0000010 12 0011100 0101001 0001110 0000010 13 0100000 0100111 0001101 0000001 14 0100011 0100100 0001100 0000001 15 0100111 0100010 0001010 0000001 16 0101010 0100000 0001001 0000001 scal[5:0] = 000100 (default), one step change of this value of scal[5:0] results in 25% scaling up/down against the pulse amplitude. table-14 impedance matching for transmitter cable configuration internal termination external termination t_term[2:0] puls[3:0] r t t_term[2:0] puls[3:0] r t e1/75 ? 000 0000 0 ? 1xx 0001 9.4 ? e1/120 ? 001 0001 0001 t1/0~133 ft 010 0010 - - - t1/133~266 ft 0011 t1/266~399 ft 0100 t1/399~533 ft 0101 t1/533~655 ft 0110 j1/0~655 ft 011 0111 0 db lbo 010 1000 -7.5 db lbo 1001 -15.0 db lbo 1010 -22.5 db lbo 1011 21 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 3.4 receive path the receive path consists of receiv e internal termination, monitor gain, amplitude/wave shape detector, digital tuning controller, adaptive equalizer, data slicer, cdr (clock & data recovery), optional jitter attenuator, decoder and los/ais detector. refer to figure-7 . 3.4.1 receive internal termination the impedance matching can be real ized by the internal impedance matching circuit or the external impedance matching circuit. if r_term[2] is set to ?0?, the internal impedance ma tching circuit will be selected. in this case, the r_term[1:0] bits ( term, 03h ) can be set to choose 75 ? , 100 ? , 110 ? or 120 ? internal impedance of rtip/rring. if r_term[2] is set to ?1?, the internal impedance matc hing circuit will be disabled. in this case, the external impedance matching ci rcuit will be used to realize the impedance matching. figure-8 shows the appropriate external compo- nents to connect with the cable. table-15 is the list of the recommended impedance matching for receiver. figure-7 receive path function block diagram figure-8 transmit/receive line circuit table-15 impedance matching for receiver cable configuration internal te rmination external termination r_term[2:0] r r r_term[2:0] r r e1/75 ? 000 120 ? 1xx 75 ? e1/120 ? 001 120 ? t1 010 100 ? j1 011 110 ? monitor gain adaptive equalizer los/ais detector data slicer decoder los rclk rdp rdn rtip clock and data recovery receive internal termination rring jitter attenuator a b ? ? ?? r x line r r ? ? t x line r t r t rtip rring tring ttip idt82v2081 vddt vddt d4 d3 d2 d1 1 : 1 2 : 1 d6 d5 d8 d7 cp vdda vdda ? 0.1 f gndt vddt 68 f 1 3.3 v ? 0.1 f gnda vdda 68 f 3.3 v 1 note : 1. common decoupling capacitor 2. cp 0-560 (pf) 3. d1 - d8, motorola - mbr0540t1; international rectifier - 11dq04 or 10bq060 ? ? ? ? 22 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit in hardware control mode, term, puls[3:0] pins can be used to select impedance matching for both receiver and transmitter. if term pin is low, external impedance network will be used for impedance matching. if term pin is high, internal impedance w ill be used for impedance matching and puls[3:0] pins can be set to select the specific internal impedance. refer to 5 hardware control pin summary for details. 3.4.2 line monitor in both t1/j1 and e1 short haul applic ations, the non-intrusive monitor- ing on channels located in other chips can be performed by tapping the mon- itored channel through a high impedanc e bridging circuit. refer to figure- 9 and figure-11 . after a high resistance bridging circui t, the signal arriving at the rtip/ rring is dramatically attenuated. to compensate this attenuation, the monitor gain can be used to boost the signal by 22 db, 26 db and 32 db, selected by mg[1:0] bits ( rcf2, 0ch ). for normal operation, the monitor gain should be set to 0 db. in hardware control mode, mont pin can be used to set the monitor gain. when mont pin is low, the monitor gain is 0 db. when mont pin is high, the monitor gain is 26 db. refer to 5 hardware control pin summary for details. figure-9 monitoring receive line in another chip figure-10 monitor transmit line in another chip 3.4.3 adaptive equalizer the adaptive equalizer can remove mo st of the signal distortion due to intersymbol interference caused by cable attenuation. it can be enabled or disabled by setting eq_on bit to ?1? or ?0? ( rcf1, 0bh ). when the adaptive equalizer is out of range, eq_s bit ( stat0, 17h ) will be set to ?1? to indicate the status of equalizer. if eq_ies bit ( intes, 16h ) is set to ?1?, any changes of eq_s bit will generate an interrupt and eq_is bit ( ints0, 19h ) will be set to ?1? if it is not masked. if eq_ies is set to ?0?, only the ?0? to ?1? transition of the eq_s bit will generate an interrupt and eq_is bit will be set to ?1? if it is not masked. the eq_is bit will be reset after being read. the amplitude/wave shape detector keeps on measuring the ampli- tude/wave shape of the incoming si gnals during an observation period. this observation period can be 32, 64, 128 or 256 symbol periods, as selected by updw[1:0] bits ( rcf2, 0ch) . a shorter observation period allows quicker responses to pulse amplitude variation while a longer observation period can minimize the possible overshoots. the default observation period is 128 symbol periods. based on the observed peak value for a period, the equalizer will be adjusted to achieve a normalized signal. latt[4:0] bits ( stat1, 18h ) indi- cate the signal attenuation introduced by the cable in approximately 2 db per step. 3.4.4 receive sensitivity for short haul application, the receive sensitivity for both e1 and t1/ j1 is -10 db. for long haul application, the receive sensitivity is -43 db for e1 and -36 db for t1/j1. when the chip is configured by har dware, the short haul or long haul operating mode can be selected by setting eq pin. for short haul mode, the receive sensitivity for both e1 and t1/j1 is -10 db. for long haul mode, the receive sensitivity is -43 db for e1 and -36 db for t1/j1. refer to 5 hard- ware control pin summary for details. 3.4.5 data slicer the data slicer is used to generate a standard amplitude mark or a space according to the amplitude of the input signals. the threshold can be 40%, 50%, 60% or 70%, as selected by the slice[1:0] bits ( rcf2, 0ch ). the output of the data slicer is fo rwarded to the cdr (clock & data recov- ery) unit or to the rdp/rdn pins directly if the cdr is disabled. 3.4.6 cdr (clock & data recovery) the cdr is used to recover the cl ock and data from the received signal. the recovered clock tracks the jitter in the data output from the data slicer and keeps the phase relationship between data and clock during the absence of the incoming pulse. the cdr can also be by-passed in the dual rail mode. when cdr is by-passed, the data from the data slicer is output to the rdp/rdn pins directly. 3.4.7 decoder in t1/j1 applications, the r_md[1:0] bits ( rcf0, 0ah ) is used to select the ami decoder or b8zs decoder. in e1 applications, the r_md[1:0] bits ( rcf0, 0ah ) are used to select the ami decoder or hdb3 decoder. when the chip is configured by hardw are, the operation mode of receive and transmit path can be selected by setting rxtxm1 and rxtxm0 pins. refer to 5 hardware control pin summary for details. rtip rring rtip rring normal receive mode monitor mode dsx cross connect point r monitor gain =22/26/32db monitor gain=0db ttip tring rtip rring normal transmit mode monitor mode dsx cross connect point r monitor gain monitor gain =22/26/32db 23 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 3.4.8 receive path system interface the receive path system interface co nsists of rclk pin, rd/rdp pin and rdn pin. in e1 mode, the rclk outputs a recovered 2.048 mhz clock. in t1/j1 mode, the rclk outputs a recovered 1.544 mhz clock. the received data is updated on the rd/rdp and rdn pins on the active edge of rclk. the active edge of rclk can be selected by the rclk_sel bit ( rcf0, 0ah ). and the active level of the data on rd/rdp and rdn can be selected by the rd_inv bit ( rcf0, 0ah ). in hardware control mode, only the active edge of rclk can be selected. if rclke is set to high, the falling edge will be chosen as the active edge of rclk. if rclke is set to low, the rising edge will be chosen as the active edge of rclk. the active level of the data on rd/rdp and rdn is the same as that in software control mode. the received data can be output to the system side in two different ways: single rail or dual rail, as selected by r_md bit [1] ( rcf0, 0ah ). in single rail mode, only rd pin is used to output data and the rdn/cv pin is used to report the received errors. in dual rail mode, both rdp pin and rdn pin are used for outputting data. in the receive dual rail mode, t he cdr unit can be by-passed by setting r_md[1:0] to ?11? (binary). in this situation, the output data from the data slicer will be output to the rdp/r dn pins directly, and the rclk outputs the exclusive or (xor) of the rdp and rdn. this is called receiver slicer mode. in this case, the transmit path is still operating in dual rail mode. 3.4.9 receive path power down the receive path can be powered down by setting r_off bit ( rcf0, 0ah ) to ?1?. in this case, the rclk, rd/rdp, rdn and los will be logic low. in hardware control mode, receiver power down can be selected by pull- ing rpd pin to high. refer to 5 hardware control pin summary for more details. 3.5 jitter attenuator there is one jitter attenuator in the idt82v2081. the jitter attenuator can be deployed in the transmit path or the receive path, and can also be disabled. this is selected by the jacf[1:0] bits ( jacf, 04h ). in hardware control mode, jitter attenuator position, bandwidth and the depth of fifo can be selected by ja[1:0] pins. refer to 5 hardware control pin summary for details. 3.5.1 jitter attenuation function description the jitter attenuator is composed of a fifo and a dpll, as shown in figure-11 . the fifo is used as a pool to buffer the jittered input data, then the data is clocked out of the fifo by a de-jittered clock. the depth of the fifo can be 32 bits, 64 bits or 128 bits, as selected by the jadp[1:0] bits ( jacf, 04h ). in hardware control mode, the depth of fifo can be selected by ja[1:0] pins. refer to 5 hardware control pin summary for details. consequently, the constant delay of the jitter attenuator will be 16 bits, 32 bits or 64 bits. deeper fifo can tolerate larger jitter, but at the cost of increasing data latency time. figure-11 jitter attenuator in e1 applications, the corner frequency of the dpll can be 0.9 hz or 6.8 hz, as selected by the jabw bit ( jacf, 04h ). in t1/j1 applications, the corner frequency of the dpll can be 1.25 hz or 5.00 hz, as selected by the jabw bit ( jacf, 04h ). the lower the corner frequency is, the longer time is needed to achieve synchronization. when the incoming data moves faster than the outgoing data, the fifo will overflow. this overflow is captured by the jaov_is bit ( ints1, 1ah ). if the incoming data moves slower than the outgoing data, the fifo will underflow. this underflow is captured by the jaud_is bit ( ints1, 1ah ). for some applications that are sensitive to data corruption, the ja limit mode can be enabled by setting ja_limit bit ( jacf, 04h ) to ?1?. in the ja limit mode, the speed of the outgoing data wi ll be adjusted automatically when the fifo is close to its full or empti ness. the criteria of starting speed adjust- ment are shown in table-16 . the ja limit mode can reduce the possibility of fifo overflow and underflow, but th e quality of jitter attenuation is dete- riorated. 3.5.2 jitter attenuator performance the performance of the jitter attenuator in the idt82v2081 meets the itu-t i.431, g.703, g.736-739, g.823, g.824, etsi 300011, etsi tbr12/ 13, at&t tr62411 specifications. deta ils of the jitter attenuator perfor- mance is shown in table-63 jitter tolerance and table-64 jitter attenuator characteristics . table-16 criteria of starting speed adjustment fifo depth criteria for adjusting data outgoing speed 32 bits 2 bits close to its full or emptiness 64 bits 3 bits close to its full or emptiness 128 bits 4 bits close to its full or emptiness fifo 32/64/128 dpll jittered data de-jittered data jittered clock de-jittered clock mclk w r rclk rd/rdp rdn 24 industrial temperature ranges single channel t1/e1/j1 long haul /short haul line interface unit 3.6 los and ai s detection 3.6.1 los detection the loss of signal detector monitors the amplitude of the incoming sig- nal level and pulse density of the received signal on rtip and rring. ? los declare (los=1) a los is detected when the incoming signal has ?no transitions?, i.e., when the signal level is less than q db below nominal for n consecutive pulse intervals. here n is defined by lac bit ( maint0, 0dh ). los will be declared by pulling los pin to high (los=1) and los interrupt will be gen- erated if it is not masked. ? los clear (los=0) the los is cleared when the incoming signal has ?transitions?, i.e., when the signal level is greater than p db below nominal and has an aver- age pulse density of at least 12.5% for m consecutive pulse intervals, start- ing with the receipt of a pulse. here m is defined by lac bit ( maint0, 0dh ). los status is cleared by pulling los pin to low. figure-12 los declare and clear ? los detect level threshold in short haul mode, the amplitude threshold q is fixed on 800 mvpp, while p=q+200 mvpp (200 mvpp is the los level detect hysteresis). in long haul mode, the value of q can be selected by los[4:0] bit ( rcf1, 0bh ), while p=q+4 db (4 db is the los level detect hysteresis). the los[4:0] default value is 10101 (-46 db). when the chip is configured by hardw are, the los detect level is fixed if the idt82v2081 operates in long ha ul mode. it is -46db (e1) and -38db (t1/j1). ? criteria for declare and clear of a los detect the detection supports the ansi t1.231 and i.431 for t1/j1 mode and g.775 and etsi 300233/i.431 for e1 mode. the criteria can be selected by lac bit ( maint0, 0dh ) and t1e1 bit ( gcf, 02h ). table-17 and table-18 summarize los declare and clear criteria for both short haul and long haul application. ? all ones output during los on the system side, the rdp/rdn will reflect the input pulse ?transition? at the rtip/rring side and output recovered clock (but the quality of the output clock can not be guaranteed when the input level is lower than the maximum receive sensitivity) when aise bit ( maint0, 0dh ) is 0; or output all ones as ais when aise bit ( maint0, 0dh ) is 1. in this case, rclk out- put is replaced by mclk. on the line side, the ttip/tring will output all ones as ais when atao bit ( maint0, 0dh ) is 1. the all ones pattern uses mclk as the reference clock. los indicator is always active for all kinds of loopback modes. signal level p density=ok los=1 los=0 table-17 los declare and clear criteria for short haul mode control bit los declare threshold los clear threshold t1e1 lac 1=t1/j1 0=t1.231 level < 800 mvpp n=175 bits level > 1 vpp m=128 bits 12.5% mark density <100 consecutive zeroes 1=i.431 level < 800 mvpp n=1544 bits level > 1 vpp m=128 bits 12.5% mark density <100 consecutive zeroes 0=e1 0=g.775 level < 800 mvpp n=32 bits level > 1 vpp m=32 bits 12.5% mark density <16 consecutive zeroes 1=i.431/etsi level < 800 mvpp n=2048 bits level > 1 vpp m=32 bits 12.5% mark density <16 consecutive zeroes |
Price & Availability of IDT82V2081PP
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |