Part Number Hot Search : 
UPD70F3 PT12113 M040123 5STP200 14124 43619 DL5249 MA6X128
Product Description
Full Text Search
 

To Download G1420 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 1 G1420 global mixed-mode technology inc. 2w stereo audio amplifier features ? depop circuitry integrated ? output power at 1% thd+n, vdd=5v --1.8w/ch (typical) into a 4 ? ? ? ? load --1.2w/ch (typical) into a 8 ? ? ? ? load ? bridge-tied load (btl), single-ended (se) ? stereo input mux ? mute and shutdown control available ? surface-mount power package 24-pin tssop-p applications ? stereo power amplifiers for notebooks or desktop computers ? multimedia monitors ? stereo power amplifiers for portable audio systems general description G1420 is a stereo audio power amplifier in 24pin tssop thermal pad package. it can drive 1.8w con- tinuous rms power into 4 ? load per channel in bridge-tied load (btl) mode at 5v supply voltage. its thd is smaller than 1% under the above operation condition. to simplify the audio system design in the notebook application, G1420 supports the bridge-tied load (btl) mode for driving the speakers, single-end (se) mode for driving the headphone. G1420 can mute the output when mute-in is activated. for the low current consumption applications, the shdn mode is supported to disable G1420 when it is idle. the cur- rent consumption can be further reduced to below 5a. G1420 also supports two input paths, that means two different gain loops can be set in the same pcb and choosing either one by setting hp/ line pin. it en- hances the hardware designing flexibility. ordering information order number temp. range package packing G1420f31u -40c to +85c tssop-24l tape & reel G1420f31t -40c to +85c tssop-24l tube pin configuration rout+ rlinein rhpin rbypass rvdd nc hp/line rout- se/btl gnd/hs lout+ llinein lhpin lbypass lvdd shutdown mute out lout- mute in G1420 gnd/hs 24pin tssop 13 24 23 22 21 20 19 18 17 16 15 5 6 7 8 9 10 11 12 1 4 3 2 14 tj nc 14 thermal pad top view bottom view gnd/hs gnd/hs rout+ rlinein rhpin rbypass rvdd nc hp/line rout- se/btl gnd/hs lout+ llinein lhpin lbypass lvdd shutdown mute out lout- mute in G1420 gnd/hs 24pin tssop 13 24 23 22 21 20 19 18 17 16 15 5 6 7 8 9 10 11 12 1 4 3 2 14 tj nc 14 thermal pad top view bottom view gnd/hs gnd/hs
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 2 G1420 global mixed-mode technology inc. absolute maximum ratings supply voltage, v cc ???????..?...??.??...6v operating ambient temperature range t a ??.???????????.???.-40c to +85c maximum junction temperature, t j ?..???.?.150c storage temperature range, t stg ?.?.-65c to+150c soldering temperature, 10seconds, t s ???.??260c power dissipation (1) t a 25c????????????????..2.7w t a 70c????????????????..1.7w t a 85c???????.?????????.1.4w electrostatic discharge, v esd human body mode..????????...-3000 to 3000 (2) note: (1) : recommended pcb layout (2) : human body model : c = 100pf, r = 1500 ? , 3 positive pulses plus 3 negative pulses electrical characteristics dc electrical characteristics, t a =+25c parameter symbol conditions min typ max unit stereo btl 7 9 v dd =3.3v stereo se 3.5 5.6 stereo btl 8 11 supply current i dd v dd = 5v stereo se 4 6.5 dc differential output voltage v o(diff) v dd = 5v,gain = 2 5 30 mv stereo btl 8 11 supply current in mute mode i dd(mute) v dd = 5v stereo se 4 6.5 ma i dd in shutdown i sd v dd = 5v 2 5 a (ac operation characteristics, v dd = 5.0v, t a =+25c, r l = 4 ? ? ? ? , unless otherwise noted) parameter symbol conditions min typ max unit thd = 1%, btl, r l = 4 ? 1.8 thd = 1%, btl, r l = 8 ? 1.12 thd = 10%, btl, r l = 4 ? 2 thd = 10%, btl, r l = 8 ? 1.4 w thd = 1%, se, r l = 4 ? 500 thd = 1%, se, r l = 8 ? 320 thd = 10%, se, r l = 4 ? 650 thd = 10%, se, r l l = 8 ? 400 output power (each channel) see note p (out) thd = 0.5%, se, r l = 32 ? 90 mw p o = 1.6w, btl, r l = 4 ? 500 p o = 1w, btl, r l = 8 ? 150 p o = 75mw, se, r l = 32 ? 20 total harmonic distortion plus noise thd+n v i = 1v, rl = 10k ? , g = 1 10 m% maximum output power bandwidth b om g = 1, thd = 1% 20 khz phase margin r l = 4 ? , open load 60 power supply ripple rejection rsrr f = 120hz 75 db mute attenuation 85 db channel-to-channel output separation f = 1khz 82 db line/hp input separation 80 db btl attenuation in se mode 85 db input impedance zi 2 m ? signal-to-noise ratio p o = 500mw, btl 90 db output noise voltage v n output noise voltage 55 v (rms) note :output power is measured at the output terminals of the ic at 1khz.
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 3 G1420 global mixed-mode technology inc. (ac operation characteristics, v dd = 3.3v, t a =+25c, r l = 4 ? ? ? ? , unless otherwise noted) parameter symbol conditions min typ max unit thd = 1%, btl, r l = 4 ? 0.8 thd = 1%, btl, r l = 8 ? 0.5 thd = 10%, btl, r l = 4 ? 1 thd = 10%, btl, r l = 8 ? 0.6 w thd = 1%, se, r l = 4 ? 230 thd = 1%, se, r l = 8 ? 140 thd = 10%, se, r l = 4 ? 290 thd = 10%, se, r l l = 8 ? 180 output power (each channel) see note p (out) thd = 0.5%, se, r l = 32 ? 43 mw p o = 1.6w, btl, r l = 4 ? 270 p o = 1w, btl, r l = 8 ? 100 p o = 75mw, se, r l = 32 ? 20 total harmonic distortion plus noise thd+n v i = 1v, rl = 10k ? , g = 1 10 m% maximum output power bandwidth b om g = 1, thd 1% 20 khz phase margin r l = 4 ? , open load 60 power supply ripple rejection psrr f = 120hz 75 db mute attenuation 85 db channel-to-channel output separation f = 1khz 80 db line/hp input separation 80 db btl attenuation in se mode 85 db input impedance zi 2 m ? signal-to-noise ratio p o = 500mw, btl 90 db output noise voltage v n output noise voltage 55 v (rms) note :output power is measured at the output terminals of the ic at 1khz.
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 4 G1420 global mixed-mode technology inc. pin description pin name i/o function 1,12,13,24 gnd/hs ground connection for circuitry, directly connected to thermal pad. 2 tj o source a current inversely to the junction temperature. this pin should be left uncon- nected during normal operation. for more information, see the junction temperature measurement section of this document. 3 lout+ o left channel + output in btl mode, + output in se mode. 4 lline in i left channel line input, selected when hp/ pin is held low. 5 lhp in i left channel headphone input, selected when hp/pin is held high. 6 lbypass connect to voltage divider for left channel internal mid-supply bias. 7 lvdd i supply voltage input for left channel and for primary bias circuits. 8 shutdown i shutdown mode control signal input, places entire ic in shutdown mode when held high, i dd = 5a. 9 mute out o follows mute in pin, provides buffered output. 10 lout- o left channel - output in btl mode, high impedance state in se mode. 11 mute in i mute control signal input, hold low for normal operation, hold high to mute. 14 se/ btl i mode control signal input, hold low for btl mode, hold high for se mode. 15 rout- o right channel - output in btl mode, high impedance state in se mode. 16 hp/ line i mux control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). 17,23 nc 18 rvdd i supply voltage input for right channel. 19 rbypass connect to voltage divider for right channel internal mid-supply bias. 20 rhp in i right channel headphone input, selected when hp/pin is held high. 21 rline in i right channel line input, selected when hp/pin is held low. 22 rout+ o right channel + output in btl mode, + output in se mode.
typical characteristics table of graphs v n output noise voltage supply ripple rejection ratio crosstalk closed loop response 42,43,44,45 i dd supply ripple rejection ratio p d power dissipation total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency p o output power thd +n total harmonic distortion plus noise vs output power 51,52,53,54 vs frequency vs output power vs frequency vs frequency vs frequency vs frequency vs supply voltage vs supply voltage 47,48 49,50 vs load resistance 38,39,40,41 46 34,35 36,37 figure 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 1,3,6,9,10,13,16,19,22,25,28,31 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 3m 3 5m 10m 20m 50m 100m 200m 500m 1 2 w vdd=5v rl=3 btl 20khz 1khz 20 hz vdd=5v rl=3 btl av=-2v/v po=1.8w po=1.5w figure 1 figure 2 global mixed-mode technology inc. G1420 5 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 3m 3 5m 10m 20m 50m 100m 200m 500m 1 2 w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 3m 3 5m 10m 20m 50m 100m 200m 500m 1 2 w vdd=5v rl=4 btl 20khz 1khz 20 hz vdd=5v rl=4 btl po=1.5w av=-1v/v av=-4v/v av=-2v/v vdd=5v rl=4 btl av=-2v/v po=1.5w po=0.75w po=0.25w vdd=5v rl=8 btl av=-2v/v 20khz 1khz 20hz figure 3 figure 4 figure 5 figure 6 6 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw global mixed-mode technology inc. G1420 ver: 1.1
total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w vdd=5v rl=8 btl av=-2v/v po=1w po=0.25w po=0.5w vdd=5v rl=8 btl po=1w av=-4v/v av=-2v/v av=-1v/v vdd=3.3v rl=3 btl 20khz 1khz 20hz vdd=3.3v rl=4 btl 20khz 1khz 20hz figure 7 figure 8 figure 9 figure 10 global mixed-mode technology inc. G1420 7 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 btl po=0.65w av=-4v/v av=-2v/v av=-1v/v vdd=3.3v rl=4 btl av=-2v/v po=0.7w po=0.35w po=0.1w 20khz 1khz 20hz vdd=3.3v rl=8 btl vdd=3.3v rl=8 btl po=0.4w av=-1v/v av=-2v/v av=-4v/v figure 11 figure 12 figure 13 figure 14 global mixed-mode technology inc. G1420 8 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=8 btl av=-2v/v po=0.1w po=0.4w po=0.25w vdd=5v rl=4 se 20khz 1khz 100hz vdd=5v rl=4 se po=0.5w av=-1v/v av=-2v/v av=-4v/v vdd=5v rl=4 se av=-2v/v po=0.1w po=0.4w po=0.25w figure 15 figure 16 figure 17 figure 18 global mixed-mode technology inc. G1420 9 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 200m 2m 5m 10m 20m 50m 100m w vdd=5v rl=8 se vdd=5v rl=8 se po=0.25w 1khz 20khz 100hz av=-1v/v av=-4v/v av=-2v/v vdd=5v rl=8 se av=-2 po=0.05w po=0.1w po=0.25w vdd=5v rl=32 se 1khz 20hz 20khz figure 19 figure 20 figure 21 figure 22 global mixed-mode technology inc. G1420 10 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 1 2m 5m 10m 20m 50m 100m 200m 500m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v rl=32 se po=75mw av=-4v/v av=-2v/v av=-1v/v vdd=5v rl=32 se po=25mw po=75mw po=50mw vdd=3.3v rl=4 ,se av=-2 20khz 1khz 100hz vdd=3.3v rl=4 se po=0.2w av=-1v/v av=-4v/v av=-2v/v figure 23 figure 24 figure 25 figure 26 global mixed-mode technology inc. G1420 11 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output power total harmonic distortion plus noise total harmonic distortion plus noise vs output frequency vs output frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz          0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 200m 2m 5m 10m 20m 50m 100m w 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=4 se av=-2 po=100mw po=50mw po=150mw vdd=3.3v rl=8 ,se a v=-2 100hz 1khz 20khz vdd=3.3v rl=8 se po=100mw av=-4v/v av=-1v/v av=-2v/v vdd=3.3v rl=8 se po=25mw po=50mw po=100mw figure 27 figure 28 figure 29 figure 30 global mixed-mode technology inc. G1420 12 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
total harmonic distortion plus noise total harmonic distortion plus noise vs output power vs output frequency total harmonic distortion plus noise output noise voltage vs output frequency vs frequency 0.01 10 0.02 0.05 0.1 0.2 0.5 1 2 5 % 1m 100m 2m 5m 10m 20m 50m w 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 0.001 10 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 % 20 20k 50 100 200 500 1k 2k 5k 10k hz 10u 100u 20u 30u 40u 50u 60u 70u 80u 90u v 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v rl=32 se 20hz 20khz 1khz vdd=3.3v rl=32 se po=30mw av=-1v/v av=-2v/v av=-4v/v vdd=3.3v rl=32 se po=10m po=30mw po=20mw vdd=5v rl=4 bw=22hz to 20khz vo btl vo se figure 31 figure 32 figure 33 figure 34 global mixed-mode technology inc. G1420 13 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
output noise voltage supply ripple rejection ratio vs frequency vs frequency supply ripple rejection ratio crosstalk vs frequency vs frequency 10u 100u 20u 30u 40u 50u 60u 70u 80u 90u v 20 20k 50 100 200 500 1k 2k 5k 10k hz -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz     -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz     vdd=3.3v rl=4 bw=22hz to 20khz vo btl vo se vdd=5v rl=4 cb=4.7uf btl se vdd=3.3v rl=4 cb=4.7uf btl se -100 -20 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v po=1.5w rl=4 btl l to r r to l figure 35 figure 36 figure 37 figure 38 global mixed-mode technology inc. G1420 14 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
crosstalk vs frequency crosstalk vs frequency crosstalk vs frequency -100 -30 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz -100 -30 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=5v po=75mw rl=32 se r to l l to r vdd=3.3v po=35mw rl=32 se r to l l to r -100 -20 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 d b 20 20k 50 100 200 500 1k 2k 5k 10k hz vdd=3.3v po=0.75w rl=4 btl l to r r to l figure 39 figure 40 figure 41 global mixed-mode technology inc. G1420 15 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
closed loop response figure 42 closed loop response figure 43 global mixed-mode technology inc. G1420 16 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
closed loop response figure 44 closed loop response figure 45 global mixed-mode technology inc. G1420 17 ver: 1.1 may 23, tel: 886-3-5788833 http://www.gmt.com.tw
supply current vs supply voltage 0 1 2 3 4 5 6 7 8 9 10 3456 supply voltage(v) supply current(ma) stereo btl stereo se output power vs supply voltage 0 0.5 1 1.5 2 2.5 2.5 3.5 4.5 5.5 6.5 supply voltage(v) po-output power (w) thd+n=1% btl each channel rl=3 output power vs supply voltage 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2.5 3.5 4.5 5.5 6.5 supply voltage(v) po-output power(w) thd+n=1% se each channel rl=4 rl=8 output power vs load resistance 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 4 8 121620242832 load resistance( ) po-output power(w) vdd=5v thd+n=1% btl each channel vdd=3.3v figure 46 figure 47 figure 48 figure 49 global mixed-mode technology inc. G1420 18 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
output power vs load resistance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 4 8 12 16 20 24 28 32 load resistance( ) po-output power(w) thd+n=1% se each channel vdd=3.3v vdd=5v power dissipation vs output power 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 2.5 po-output power(w) power dissipation(w) vdd=5v btl each channel rl=3 rl=4 rl=8 power dissipation vs output power 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.25 0.5 0.75 1 output power(w) power dissipation(w) vdd=3.3v btl each channel rl=3 rl=4 rl=8 power dissipation vs output power 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.2 0.4 0.6 0.8 output power(w) power dissipation(w) vdd=5v se each channel rl=4 rl=8 rl=32 figure 50 figure 51 figure 52 figure 53 global mixed-mode technology inc. G1420 19 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw
power dissipation vs output power 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.05 0.1 0.15 0.2 0.25 0.3 output power(w) power dissipation (w) vdd=3.3v se each channel rl=4 rl=8 rl=32 figure 54 20 ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw global mixed-mode technology inc. G1420 recommended pcb layout
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 21 G1420 global mixed-mode technology inc. block diagram parameter measurement information left mux + _ 11 8 mutein 6 5 4 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass shutdown hp/line se/btl lvdd lout- lout+ rl 4/8/32ohm btl mode test circuit ac source left mux + _ 11 8 mutein 6 5 4 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass shutdown hp/line se/btl lvdd lout- lout+ rl 4/8/32ohm btl mode test circuit ac source left mux + _ 3 10 llinein lhpin lbypass 18 rvdd lout- lout+ right mux rhpin rlinein + _ 15 22 rout+ rout- 7 lvdd bias circuits modes control circuits 16 14 2 tj se/btl hp/line shutdown rbypass mutein muteout 21 20 19 11 9 8 6 5 4 20k 20k left mux + _ 3 10 llinein lhpin lbypass 18 rvdd lout- lout+ right mux rhpin rlinein + _ 15 22 rout+ rout- 7 lvdd bias circuits modes control circuits 16 14 2 tj se/btl hp/line shutdown rbypass mutein muteout 21 20 19 11 9 8 6 5 4 20k 20k 20k
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 22 G1420 global mixed-mode technology inc. parameter measurement information (continued) left mux + _ 11 8 mutein 6 5 4 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass shutdown hp/line se/btl lvdd lout- lout+ rl 32ohm se mode test circuit vdd ac source left mux + _ 11 8 mutein 6 5 4 16 14 3 10 7 rf ri ci cb 4.7f llinein lhpin lbypass shutdown hp/line se/btl lvdd lout- lout+ rl 32ohm se mode test circuit vdd ac source
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 23 G1420 global mixed-mode technology inc. application circuits logical truth table inputs output amplifier states se/ btl hp/ line mute in shutdown mute out input l/r out+ l/r out- mode x x ---- high ---- x ---- ---- mute low x high ---- high x vdd/2 vdd/2 mute high x high ---- high x vdd/2 ---- mute low low low low low l/r line btl output btl output btl low high low low low l/r hp btl output btl output btl high low low low low l/r line se output ---- se high high low low low l/r hp se output ---- se gnd/hs nc rout+ rlinein rhpin lvdd rvdd nc hp/line rout- se/btl gnd/hs r 100k ? 1k ? phonojack 1 3 4 2 coutr cfl rfl audio source cil ril r 100k ? csr 1k ? coutr gnd/hs tj lout+ llinein rir lhpin lbypass rbypass shutdwon mute out lout- mute in gnd/hs cir audio source rfl cfr G1420 1 24 2 23 322 4 21 12 13 14 11 10 15 17 916 8 18 7 20 5 6 19 gnd/hs nc rout+ rlinein rhpin lvdd rvdd nc hp/line rout- se/btl gnd/hs r 100k ? 1k ? phonojack 1 3 4 2 coutr cfl rfl audio source cil ril r 100k ? csr 1k ? coutr gnd/hs tj lout+ llinein rir lhpin lbypass rbypass shutdwon mute out lout- mute in gnd/hs cir audio source rfl cfr G1420 1 24 2 23 322 4 21 12 13 14 11 10 15 17 916 8 18 7 20 5 6 19
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 24 G1420 global mixed-mode technology inc. application information input mux operation there are two input signal paths ? hp & line. with the prompt setting, G1420 allows the setting of different gains for btl and se modes. generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. se gain (hp) = -(r f(hp) /r i(hp) ) btl gain (line) = -2(r f(line) /r i(line) ) to achieve headphones and speakers listening parity, (r f(line /r i(line) ) is suggested to be 5 times of (r f(hp) / r i(hp) ). the ratio of (r f(hp) /r i(hp) ) can be determined by the applications. when the optimum distortion per- formance into the headphones (clear sound) is impor- tant, gain of ?1 ((r f(hp) / r i(hp) ) = 1) is suggested. single ended mode operation G1420 can drive clean, low distortion se output power into headphone loads (generally 16 ? or 32 ? ) as in figure 1. please refer to electrical characteristics to see the performances. a coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. choosing the coupling capaci- tor will also determine the 3 db point of the high-pass filter network, as figure 2. f c =1/(2 r l c c ) for example, a 68uf capacitor with 32 ? headphone load would attenuate low frequency performance be- low 73hz. so the coupling capacitor should be well chosen to achieve the excellent bass performance when in se mode operation. bridged-tied load mode operation G1420 has two linear amplifiers to drive both ends of the speaker load in bridged-tied load (btl) mode operation. figure 3 shows the btl configuration. the differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. this configuration in effect will double the voltage swing on the load as compared to a ground reference load. in btl mode, the peak-to-peak voltage v o (pp) on the load will be two times than a ground reference configuration. the voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. another benefit of using differential driving configuration is that btl operation cancels the dc off- sets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. low-frequency performance is then lim- ited only by the input network and speaker responses. cost and pcb space can be minimized by eliminating the dc coupling capacitors. vdd vo(pp) vo(pp) c c r l figure 1 vdd vo(pp) vo(pp) c c r l figure 1 -3 db f c figure 2 -3 db f c figure 2 vdd vo(pp) vdd -vo(pp) 2xvo(pp) r l figure 3 vdd vo(pp) vdd -vo(pp) 2xvo(pp) r l figure 3
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 25 G1420 global mixed-mode technology inc. mute and shutdown mode operations G1420 implements the mute and shutdown mode operations to reduce supply current, i dd, to the ab- solute minimum level during nonuse periods for battery-power conservation. when the shutdown pin (pin 8) is pulled high, all linear amplifiers will be de- activated to mute the amplifier outputs. and G1420 enters an extra low current consumption state, i dd is smaller than 5 a. if pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the vdd/2 dc voltage on the output to mute the ac performance. in mute mode operation, the current consumption will be a little different between btl, se. (se < btl) typically, the supply current is about 2.5ma in btl mute operation. shutdown and mute-in pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. optimizing depop operation circuitry has been implemented in G1420 to mini- mize the amount of popping heard at power-up and when coming out of shutdown mode. popping oc- curs whenever a voltage step is applied to the speaker and making the differential voltage gener- ated at the two ends of the speaker. to avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(c b x100k ? ) Q 1/(c i *(r i +r f )). where 100k ? is the output impedance of the mid-rail generator, c b is the mid-rail bypass capaci- tor, c i is the input coupling capacitor, r i is the input impedance, r f is the gain setting impedance which is on the feedback path. c b is the most important capacitor. besides it is used to reduce the popping, c b can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. de-popping circuitry of G1420 is shown on figure 4. the pnp transistor limits the voltage drop across the 50k ? by slewing the internal node slowly when power is applied. at start-up, the voltage at bypass capacitor is 0. the pnp is on to pull the mid-point of the bias circuit down. so the capacitor sees a lower effective voltage, and thus the charg- ing is slower. this appears as a linear ramp (while the pnp transistor is conducting), followed by the expected exponential ramp of an r-c circuit. junction temperature measurement characterizing a pcb layout with respect to thermal impedance is very difficult, as it is usually impossi- ble to know the junction temperature of the ic. G1420 tj (pin 2) sources a current inversely pro- portional to the junction temperature. typically tj sources?120 a for a 5v supply at 25 c . and the slope is approximately 0.22 a/ c . as the resistors have a tolerance of 20%, these values should be calibrated on each device. when the temperature sensing function is not used, tj pin can be left floating or tied to vdd to reduce the current con- sumption. temperature sensing circuit is shown on figure 5. bypass vdd 100 k ? 100 k ? 50 k ? figure 4 bypass vdd 100 k ? 100 k ? 50 k ? figure 4 tj vdd r r 5r figure 5 tj vdd r r 5r figure 5
ver: 1.1 may 23, 2003 tel: 886-3-5788833 http://www.gmt.com.tw 26 G1420 global mixed-mode technology inc. package information note: 1. package body sizes exclude mold flash protrusions or gate burrs 2. tolerance 0.1mm unless otherwise specified 3. coplanarity : 0.1mm 4. controlling dimension is millimeter. converted inch dimensions are not necessarily exact. 5. die pad exposure size is according to lead frame design. 6. follow jedec mo-153 dimension in mm dimension in inch symbol min. nom. max. min. nom. max. a ----- ----- 1.15 ----- ----- 0. 045 a1 0.00 ----- 0.10 0. 000 ----- 0. 004 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 ----- 0.30 0. 007 ----- 0. 012 c 0.09 ----- 0.20 0. 004 ----- 0. 008 d 7.70 7.80 7.90 0.303 0.307 0.311 e 6.20 6.40 6.60 0.244 0.252 2.260 e1 4.30 4.40 4.50 0.169 0.173 0.177 e ----- 0.65 ----- ----- 0. 026 ----- l 0.45 0.60 0.75 0.018 0.024 0.030 y ----- ----- 0.10 ----- ----- 0. 004 0o ----- 8o 0o ----- 8o taping specification gmt inc. does not assume any res ponsibility for use of any circuitry described, no circuit patent licenses are implied and gmt inc. r eserves the right at any time wit hout notice to change said circuitry and specifications. feed direction typical tssop package orientation feed direction typical tssop package orientation 24 e1 e d 1 b a a1 a2 c l e 3.85 1.88 1.88 2.8 0.71 note 5 24 e1 e d 1 b a a1 a2 c l e 3.85 1.88 1.88 2.8 0.71 note 5


▲Up To Search▲   

 
Price & Availability of G1420

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X