regarding the change of names mentioned in the document, such as mitsubishi electric and mitsubishi xx, to renesas technology corp. the semiconductor operations of hitachi and mitsubishi electric were transferred to renesas technology corporation on april 1st 2003. these operations include microcomputer, logic, analog and discrete devices, and memory chips other than drams (flash memory, srams etc.) accordingly, although mitsubishi electric, mitsubishi electric corporation, mitsubishi semiconductors, and other mitsubishi brand names are mentioned in the document, these names have in fact all been changed to renesas technology corp. thank you for your understanding. except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. note : mitsubishi electric will continue the business operations of high frequency & optical devices and power devices. renesas technology corp. customer support dept. april 1, 2003 to all our customers
mar. 2002 outline drawing dimensions in mm to-220f type name voltage class ? measurement point of case temperature 3.2 0.2 1.3 max 0.8 2.54 13.5 min 3.6 5.0 1.2 8.5 10.5 max 5.2 4.5 17 2.54 2.8 0.5 2.6 ? ? ? ??? ? ? ? t 1 terminal t 2 terminal gate terminal ? mitsubishi semiconductor ? triac ? BCR8PM-16 medium power use insulated type, planar passivation type application washing machine, other general purpose control applications BCR8PM-16 ? i t (rms) ........................................................................ 8a ? v drm ....................................................................... 800v ? i fgt ! , i rgt ! , i rgt # ........................................... 30ma ? v iso ........................................................................ 2000v ? ul recognized: yellow card no. e80276(n) file no. e80271 ? 1. gate open. symbol i t (rms) i tsm i 2 t p gm p g (av) v gm i gm t j t stg v iso parameter rms on-state current surge on-state current i 2 t for fusing peak gate power dissipation average gate power dissipation peak gate voltage peak gate current junction temperature storage temperature weight isolation voltage conditions commercial frequency, sine full wave 360 conduction, t c =88 c 60hz sinewave 1 full cycle, peak value, non-repetitive value corresponding to 1 cycle of half wave 60hz, surge on-state current typical value t a =25 c, ac 1 minute, t 1 ?t 2 ?g terminal to case unit a a a 2 s w w v a c c g v ratings 8 80 26 5 0.5 10 2 ?0 ~ +125 ?0 ~ +125 2.0 2000 symbol v drm v dsm parameter repetitive peak off-state voltage ? 1 non-repetitive peak off-state voltage ? 1 voltage class unit v v maximum ratings 16 800 960
mar. 2002 10 0 23 5710 1 40 20 23 5710 2 44 60 80 100 30 10 50 70 90 0 3.80.6 1.4 2.2 3.01.0 1.8 2.6 3.4 10 2 7 5 3 2 10 1 7 5 3 2 10 0 7 5 3 2 10 ? t j = 125 c t j = 25 c maximum on-state characteristics on-state current (a) on-state voltage (v) rated surge on-state current surge on-state current (a) conduction time (cycles at 60hz) supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c mitsubishi semiconductor ? triac ? BCR8PM-16 medium power use insulated type, planar passivation type ? 2. measurement using the gate trigger characteristics measurement circuit. ? 3. the contact thermal resistance r th (c-f) in case of greasing is 0.5 c/w. ? 4. test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. test conditions commutating voltage and current waveforms (inductive load) 1. junction temperature t j =125 c 2. rate of decay of on-state commutating current (di/dt) c = 4.0a/ms 3. peak off-state voltage v d =400v symbol i drm v tm v fgt ! v rgt ! v rgt # i fgt ! i rgt ! i rgt # v gd r th (j-c) (dv/dt) c parameter repetitive peak off-state current on-state voltage gate trigger voltage ? 2 gate trigger current ? 2 gate non-trigger voltage thermal resistance critical-rate of rise of off-state commutating voltage test conditions t j =125 c, v drm applied t c =25 c, i tm =12a, instantaneous measurement t j =25 c, v d =6v, r l =6 ? , r g =330 ? t j =25 c, v d =6v, r l =6 ? , r g =330 ? t j =125 c, v d =1/2v drm junction to case ? 3 t j =125 c unit ma v v v v ma ma ma v c/w v/ s typ. ! @ # ! @ # electrical characteristics limits min. 0.2 10 max. 2.0 1.6 1.5 1.5 1.5 30 30 30 3.7 performance curves ? 4
mar. 2002 mitsubishi semiconductor ? triac ? BCR8PM-16 medium power use insulated type, planar passivation type 23 10 1 5710 0 23 5710 1 23 5710 2 3.5 3.0 2.5 2.0 1.5 1.0 0.5 4.0 0 23 10 2 5710 3 23 5 10 0 23 10 1 5710 2 23 5710 3 23 5710 4 3 2 10 1 7 5 3 2 7 5 7 5 3 2 10 1 v gd = 0.2v p gm = 5w p g(av) = 0.5w v gm = 10v v gt = 1.5v i gm = 2a i fgt i i rgt i, i rgt iii maximum on-state power dissipation on-state power dissipation (w) rms on-state current (a) maximum transient thermal impedance characteristics (junction to case) transient thermal impedance ( c/w) conduction time (cycles at 60hz) gate voltage (v) gate current (ma) gate trigger current vs. junction temperature junction temperature ( c) gate trigger voltage vs. junction temperature junction temperature ( c) maximum transient thermal impedance characteristics (junction to ambient) transient thermal impedance ( c/w) conduction time (cycles at 60hz) 10 3 10 1 10 3 10 4 10 2 7 5 3 2 10 0 7 5 3 2 10 1 7 5 3 2 7 5 3 2 10 1 23 57 23 57 10 2 10 5 23 57 23 57 no fins 16 12 6 4 2 14 10 8 0 160 24 8 6 101214 360 conduction resistive, inductive loads gate characteristics 100 (%) gate trigger current (t j = t c) gate trigger current (t j = 25 c) 100 (%) gate trigger voltage ( t j = t c ) gate trigger voltage ( t j = 25 c ) 10 1 10 3 7 5 3 2 60 20 20 10 2 7 5 3 2 60 100 140 4 4 40 0 40 8 0 120 i rgt i , i rgt iii i fgt i typical example 10 1 10 3 7 5 3 2 60 20 20 10 2 7 5 3 2 60 100 140 4 4 40 0 4 0 8 0 120 typical example
mar. 2002 mitsubishi semiconductor ? triac ? BCR8PM-16 medium power use insulated type, planar passivation type laching current vs. junction temperature laching current (ma) junction temperature ( c) allowable ambient temperature vs. rms on-state current ambient temperature ( c) rms on-state current (a) allowable ambient temperature vs. rms on-state current ambient temperature ( c) rms on-state current (a) repetitive peak off-state current vs. junction temperature junction temperature ( c) 14040 40 60 20 0 2 0 6 0 80 100 120 10 5 7 5 3 2 10 4 7 5 3 2 10 3 7 5 3 2 10 2 typical example 160 120 100 60 20 0 160 2 6 10 14 40 80 140 4812 60 60 t2.3 120 120 t2.3 100 100 t2.3 curves apply regardless of conduction angle resistive, inductive loads natural convection all fins are black painted aluminum and greased 160 120 100 60 20 0 160 2 6 10 14 40 80 140 4812 curves apply regardless of conduction angle 360 conduction resistive, inductive loads allowable case temperature vs. rms on-state current case temperature ( c) rms on-state current (a) 160 120 100 60 20 0 3.20 0.4 1.2 2.0 2.8 40 80 140 0.8 1.6 2.4 natural convection no fins curves apply regardless of conduction angle resistive, inductive loads holding current vs. junction temperature junction temperature ( c) 100 (%) holding current ( t j = t c ) holding current ( t j = 25 c ) 100 (%) repetitive peak off-state current ( t j = t c ) repetitive peak off-state current ( t j = 25 c ) 10 3 7 5 3 2 60 20 20 10 2 7 5 3 2 60 100 140 4 4 40 0 4 0 8 0 120 10 1 typical example 160 40 0 4 0 8 0 120 20 20 60 100 140 10 3 7 5 4 3 2 7 5 4 3 2 7 5 4 3 2 10 2 10 1 10 0 t 2 + , g distribution t 2 , g typical example t 2 + , g +
mar. 2002 6 ? 6 ? 6 ? 6v 6v 6v r g r g r g a v a v a v test procedure 1 test procedure 3 test procedure 2 gate trigger characteristics test circuits mitsubishi semiconductor ? triac ? BCR8PM-16 medium power use insulated type, planar passivation type 23 10 0 5710 1 23 445710 2 7 5 3 2 10 1 7 10 2 5 4 4 3 2 10 0 160 100 80 40 20 0 140 60 120 60 20 20 60 100 140 40 0 4 0 8 0 120 typical example breakover voltage vs. junction temperature junction temperature ( c) commutation characteristics critical rate of rise of off-state commutating voltage (v/ s) rate of decay of on-state commutating current (a /ms) breakover voltage vs. rate of rise of off-state voltage rate of rise of off-state voltage (v/ s) 100 (%) breakover voltage ( dv/dt = xv/ s ) breakover voltage ( dv/dt = 1v/ s ) gate trigger current vs. gate current pulse width gate current pulse width ( s) 100 (%) gate trigger current ( tw ) gate trigger current ( dc ) 10 1 10 3 7 5 3 2 10 0 23 5710 1 10 2 7 5 3 2 23 5710 2 4 4 44 i rgt iii i rgt i i fgt i typical example 23 10 1 710 2 23 710 3 2345 4545 7 10 4 120 0 20 40 60 80 100 140 160 typical example t j = 125 c typical example t j = 125 c i t = 4a = 500 s v d = 200v f = 3hz iii quadrant i quadrant minimum charac- teristics value 100 (%) breakover voltage ( t j = t c ) breakover voltage ( t j = 25 c ) supply voltage time time time main current main voltage (di/dt)c v d (dv/dt)c i quadrant iii quadrant
|