Part Number Hot Search : 
74HC37 SA26107 L7812 L7812 74HC37 SD340YS 74HC37 SD340YS
Product Description
Full Text Search
 

To Download ICS84427CMT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
FEATURES
* Six LVDS outputs * Crystal oscillator interface * Output frequency range: 77.76MHz to 625MHz * Crystal input frequency: 19.44MHz, 25MHz or 25.5MHz * RMS phase jitter at 155.52MHz, using a 19.44MHz crystal (12kHz to 20MHz): 3.4ps (typical) Phase noise: Offset Noise Power 100Hz ................. -95 dBc/Hz 1kHz ............... -110 dBc/Hz 10kHz ............... -120 dBc/Hz 100kHz ............... -121 dBc/Hz * 3.3V supply voltage * 0C to 70C ambient operating temperature * Industrial temperature information available upon request * Available in both standard and lead-free RoHS-compliant packages
GENERAL DESCRIPTION
The ICS84427 is a Crystal-to-LVDS Frequency Synthesizer/Fanout Buffer and a member of the HiPerClockSTM HiPerClockSTM family of High Performance Clock Solutions from ICS. The output frequency can be programmed using the frequency select pins. The low phase noise characteristics of the ICS84427 make it an ideal clock source for 10 Gigabit Ethernet, 10 Gigabit Fibre Channel, OC3 and OC12 applications.
IC S
FUNCTION TABLE
Inputs F_XTAL X 19.44MHz 19.44MHz 19.44MHz 19.44MHz 25MHz 25MHz 25MHz 25MHz 25.5MHz MR 1 0 0 0 0 0 0 0 0 0 F_SEL2 X 1 1 1 1 0 0 0 0 0 F_SEL1 F_SEL0 X 0 0 1 1 0 0 1 1 0 X 0 1 0 1 0 1 0 1 1 Output Frequency F_OUT LOW 77.76MHz 155.52MHz 311.04MHz 622.08MHz 78.125MHz 156.25MHz 312.5 MHz 625MHz 159.375MHz
BLOCK DIAGRAM
XTAL_IN
PIN ASSIGNMENT
0 1 6 Output Divider 6
OSC
XTAL_OUT
PLL
/ /
Q0:Q5 nQ0:nQ5
Feedback Divider
Q0 nQ0 Q1 nQ1 Q2 nQ2 Q3 nQ3 Q4 nQ4 Q5 nQ5
1 2 3 4 5 6 7 8 9 10 11 12
24 23 22 21 20 19 18 17 16 15 14 13
VDD F_SEL0 F_SEL1 MR XTAL_IN XTAL_OUT F_SEL2 VDDA VDD PLL_SEL GND VDD
ICS84427
24-Lead, 300-MIL SOIC 7.5mm x 15.33mm x 2.3mm body package M Package Top View
F_SEL2 MR
PLL_SEL
F_SEL1
F_SEL0
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.
84427CM
www.icst.com/products/hiperclocks.html
1
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
Type Output Output Output Output Output Output Power Description Differential output pair. LVDS interface levels. Differential output pair. LVDS interface levels. Differential output pair. LVDS interface levels. Differential output pair. LVDS interface levels. Differential output pair. LVDS interface levels. Differential output pair. LVDS interface levels. Core supply pins. Power supply ground. Selects between the PLL and cr ystal inputs as the input to the dividers. When HIGH, selects PLL. When LOW, selects XTAL_IN and XTAL_OUT. LVCMOS / LVTTL interface levels. Analog supply pin.
TABLE 1. PIN DESCRIPTIONS
Number 1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 16, 24 14 15 17 18 19, 20 21 22 23 Name Q0, nQ0 Q1, nQ1 Q2, nQ2 Q3, nQ3 Q4, nQ4 Q5, nQ5 VDD GN D PLL_SEL VDDA F_SEL2 XTAL_OUT, XTAL_IN MR F_SEL1 F_SEL0 Input Power Input Input Pullup Pullup
Input Input Input
Feedback frequency select pin. LVCMOS/LVTTL interface levels. Cr ystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output. Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inver ted outputs Pulldown nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels. Pulldown Output frequency select pin. LVCMOS/LVTTL interface levels. Pullup Output frequency select pin. LVCMOS/LVTTL interface levels.
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.
TABLE 2. PIN CHARACTERISTICS
Symbol CIN RPULLUP RPULLDOWN Parameter Input Capacitance Input Pullup Resistor Input Pulldown Resistor Test Conditions Minimum Typical 4 51 51 Maximum Units pF k k
84427CM
www.icst.com/products/hiperclocks.html
2
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
4.6V -0.5V to VDD + 0.5V 10mA 15mA 50C/W (0 lfpm) -65C to 150C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, VDD Inputs, VI Outputs, IO Continuous Current Surge Current Package Thermal Impedance, JA Storage Temperature, TSTG
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V5%, TA = 0C TO 70C
Symbol VDD VDDA IDD IDDA Parameter Core Supply Voltage Analog Supply Voltage Power Supply Current Analog Supply Current Test Conditions Minimum 3.135 3.135 Typical 3. 3 3.3 235 20 Maximum 3.465 3.465 Units V V mA mA
TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V5%, TA = 0C TO 70C
Symbol VIH VIL IIH IIL Parameter Input High Voltage Input Low Voltage Input High Current Input Low Current MR, F_SEL1 PLL_SEL, F_SEL0 MR, F_SEL1 PLL_SEL, F_SEL0 VDD = VIN = 3.465V VDD = VIN = 3.465V VDD = 3.465V, VIN = 0V VDD = 3.465V, VIN = 0V -5 -150 Test Conditions Minimum 2 -0.3 Typical Maximum VDD + 0.3 0. 8 150 5 Units V V A A A A
TABLE 3C. LVDS DC CHARACTERISTICS, VDD = VDDA = 3.3V5%, TA = 0C TO 70C
Symbol VOD VOD VOS VOS Parameter Differential Output Voltage VOD Magnitude Change Offset Voltage VOS Magnitude Change 1.4 50 Test Conditions Minimum 250 Typical 400 Maximum 600 50 Units mV mV V mV
84427CM
www.icst.com/products/hiperclocks.html
3
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
Test Conditions Minimum 19.44 Typical Maximum 25.5 50 7 1 Units MHz pF mW
TABLE 4. CRYSTAL CHARACTERISTICS
Parameter Mode of Oscillation Frequency Equivalent Series Resistance (ESR) Shunt Capacitance Drive Level Fundamental
TABLE 5. AC CHARACTERISTICS, VCC = VCCA = 3.3V5%, TA = 0C TO 70C
Symbol FOUT tjit(O) Parameter Output Frequency RMS Phase Jitter (Random); NOTE 1 Output Skew; NOTE 2, 3 Output Rise/Fall Time Output Duty Cycle Test Conditions 155.52MHz, (Integration Range: 12kHz-20MHz) 20% to 80% 45 Minimum 77.76 3.4 40 400 50 55 1 Typical Maximum 625 Units MHz ps ps ps % ms
tsk(o)
tR / tF odc
PLL Lock Time tLOCK See Parameter Measurement Information section. NOTE 1: See Phase Noise Plots. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential crossing points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.
84427CM
www.icst.com/products/hiperclocks.html
4
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
TYPICAL PHASE NOISE
AT
155.52MHZ
19.44MHz Input
RMS Phase Noise Jitter 12kHz to 20MHz = 3.4ps (typical)
0 -10 -20 -30 -40 -50 -60 -70
PHASE NOISE
(dBc) HZ
-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 10 100 1k 10k 100k 1M 10M
OFFSET FREQUENCY (HZ)
TYPICAL PHASE NOISE
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 10 100 1k
AT
156.25MHZ
25MHz Input
RMS Phase Noise Jitter 12kHz to 20MHz = 3.1ps (typical)
PHASE NOISE
()
dBc HZ
10k
100k
1M
10M
OFFSET FREQUENCY (HZ)
84427CM
www.icst.com/products/hiperclocks.html
5
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
PARAMETER MEASUREMENT INFORMATION
VDD out DC Input
Qx
3.3V5% POWER SUPPLY
SCOPE
+ Float GND -
LVDS
nQx
out
VOS/ VOS
3.3V OUTPUT LOAD AC TEST CIRCUIT
OFFSET VOLTAGE SETUP
VDD out
nQx Qx
DC Input
LVDS
100
VOD/ VOD out
nQy Qy
tsk(o)
DIFFERENTIAL OUTPUT VOLTAGE SETUP
OUTPUT SKEW
nQ0:nQ5
80% Clock Outputs
80% VOD
Q0:Q5
20% tR tF
20%
t PW
t
PERIOD
odc =
t PW t PERIOD
x 100%
OUTPUT RISE/FALL TIME
84427CM
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD
www.icst.com/products/hiperclocks.html
6
REV. D NOVEMBER 30, 2005
LVDS
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER APPLICATION INFORMATION
POWER SUPPLY FILTERING TECHNIQUES
As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS84427 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. VDD and VDDA should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 24 resistor along with a 10F and a .01F bypass capacitor should be connected to each VDDA pin.
3.3V VDD .01F V DDA .01F 10 F 24
FIGURE 1. POWER SUPPLY FILTERING
CRYSTAL INPUT INTERFACE
The ICS84427 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in Figure 2 below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.
XTAL_IN C1 18p X1 18pF Parallel Crystal XTAL_OUT C2 22p
Figure 2. CRYSTAL INPUt INTERFACE
84427CM
www.icst.com/products/hiperclocks.html
7
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
put. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the un-used outputs.
LVDS DRIVER TERMINATION
A general LVDS interface is shown in Figure 3. In a 100 differential transmission line environment, LVDS drivers require a matched load termination of 100 across near the receiver in-
3.3V 3.3V LVDS_Driv er + R1 100
-
100 Ohm Differiential Transmission Line
FIGURE 3. TYPICAL LVDS DRIVER TERMINATION
RECOMMENDATIONS FOR UNUSED OUTPUT PINS OUTPUTS:
LVDS All unused LVDS output pairs can be either left floating or terminated with 100 across. If they are left floating, we recommend that there is no trace attached.
84427CM
www.icst.com/products/hiperclocks.html
8
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
It is recommended to have one decouple capacitor per power pin. Each decoupling capacitor should be located as close as possible to the power pin. The low pass filter R7, C11 and C16 for clean analog supply should also be located as close to the VDDA pin as possible. For LVDS driver, the unused output pairs should be terminated with a 100 resistor across.
SCHEMATIC EXAMPLE
Figure 4A shows a schematic example of using an ICS84427. In this example, the input is a 25MHz parallel resonant crystal with load capacitor CL=18pF. The frequency fine tuning capacitors C1 and C2 is 22pF and 18pF respectively. This example also shows logic control input handling. The configuration is set at F_SEL[2:0]=101, therefore, the output frequency is 156.25MHz.
VDD
VDD R7 24 VDDA 22p C11 0.1u C16 10u C1 X1 25MHz,18pF C2 VDD VDD 18p
R4 1K
VDD 13 14 15 16 17 18 19 20 21 22 23 24
U1 Zo = 50 VDD VEE PLL_SEL VDD VDDA F_SEL2 XTAL_OUT XTAL_IN MR F_SEL1 F_SEL0 VDD nQ5 Q5 nQ4 Q4 nQ3 Q3 nQ2 Q2 nQ1 Q1 nQ0 Q0 12 11 10 9 8 7 6 5 4 3 2 1 + R1 100 Zo = 50 LVDS_input
F_SEL2
-
F_SEL1 R5 F_SEL0 1K
ICS84427 RU1 1K RU2 SP RU3 1K F_SEL2 F_SEL1 F_SEL0
VDD=3.3V
VDD (U1,13) (U1,16) C5 0.1u (U1,24) C3 0.1u
RD1 SP
RD2 1K
RD3 SP
e.g. F_SEL[2:0]=101 SP = Spare, Not Installed
C6 0.1u
FIGURE 4A. ICS84427 SCHEMATIC EXAMPLE
84427CM
www.icst.com/products/hiperclocks.html
9
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
* The differential 100 output traces should have the same length. * Avoid sharp angles on the clock trace. Sharp angle turns cause the characteristic impedance to change on the transmission lines. * Keep the clock traces on the same layer. Whenever possible, avoid placing vias on the clock traces. Placement of vias on the traces can affect the trace characteristic impedance and hence degrade signal integrity. * To prevent cross talk, avoid routing other signal traces in parallel with the clock traces. If running parallel traces is unavoidable, allow a separation of at least three trace widths between the differential clock trace and the other signal trace. * Make sure no other signal traces are routed between the clock trace pair. * The matching termination resistors should be located as close to the receiver input pins as possible.
The following component footprints are used in this layout example: All the resistors and capacitors are size 0603.
POWER
AND
GROUNDING
Place the decoupling capacitors C3, C5 and C6, as close as possible to the power pins. If space allows, placement of the decoupling capacitor on the component side is preferred. This can reduce unwanted inductance between the decoupling capacitor and the power pin caused by the via. Maximize the power and ground pad sizes and number of vias capacitors. This can reduce the inductance between the power and ground planes and the component power and ground pins. The RC filter consisting of R7, C11, and C16 should be placed as close to the VDDA pin as possible.
CLOCK TRACES
AND
TERMINATION
Poor signal integrity can degrade the system performance or cause system failure. In synchronous high-speed digital systems, the clock signal is less tolerant to poor signal integrity than other signals. Any ringing on the rising or falling edge or excessive ring back can cause system failure. The shape of the trace and the trace delay might be restricted by the available space on the board and the component location. While routing the traces, the clock signal traces should be routed first and should be locked prior to routing other signal traces.
CRYSTAL
The crystal X1 should be located as close as possible to the pins 20 (XTAL_IN) and 19 (XTAL_OUT). The trace length between the X1 and U1 should be kept to a minimum to avoid unwanted parasitic inductance and capacitance. Other signal traces should not be routed near the crystal traces.
C6
GND VDD
C1 R7
C5
Signals VIA
VDDA
C16 C11
X1
C2
C3
U1
ICS84427
Pin1
50 Ohm Traces
FIGURE 4B. PCB BOARD LAYOUT FOR ICS84427
84427CM
www.icst.com/products/hiperclocks.html
10
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER RELIABILITY INFORMATION
TABLE 7. JAVS. AIR FLOW TABLE
FOR
24 LEAD SOIC
JA by Velocity (Linear Feet per Minute)
0
Multi-Layer PCB, JEDEC Standard Test Boards 50C/W
200
43C/W
500
38C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TRANSISTOR COUNT
The transistor count for ICS84427 is: 2804
84427CM
www.icst.com/products/hiperclocks.html
11
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
24 LEAD SOIC
PACKAGE OUTLINE - M SUFFIX
FOR
TABLE 8. PACKAGE DIMENSIONS
SYMBOL N A A1 A2 B C D E e H h L 10.00 0.25 0.40 0 -0.10 2.05 0.33 0.18 15.20 7.40 1.27 BASIC 10.65 0.75 1.27 8 Millimeters Minimum 24 2.65 -2.55 0.51 0.32 15.85 7.60 Maximum
Reference Document: JEDEC Publication 95, MS-013, MO-119
84427CM
www.icst.com/products/hiperclocks.html
12
REV. D NOVEMBER 30, 2005
PRELIMINARY
Integrated Circuit Systems, Inc.
ICS84427
CRYSTAL-TO-LVDS INTEGRATED FREQUENCY SYNTHESIZER/FANOUT BUFFER
Marking ICS84427CM ICS84427CM Package 24 Lead SOIC 24 Lead SOIC 24 Lead "Lead-Free" SOIC 24 Lead "Lead-Free" SOIC Shipping Packaging tube 1000 tape & reel tube 1000 tape & reel Temperature 0C to 70C 0C to 70C 0C to 70C 0C to 70C
TABLE 9. ORDERING INFORMATION
Part/Order Number ICS84427CM ICS84427CMT ICS84427CMLF ICS84427CMLFT
ICS84427CMLF ICS84427CMLF
NOTE: Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS complaint.
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments. 84427CM
www.icst.com/products/hiperclocks.html
13
REV. D NOVEMBER 30, 2005


▲Up To Search▲   

 
Price & Availability of ICS84427CMT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X