![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
HUF76443P3, HUF76443S3S Data Sheet October 1999 File Number 4784 75A, 60V, 0.0095 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Packaging JEDEC TO-220AB SOURCE DRAIN GATE Features JEDEC TO-263AB DRAIN (FLANGE) * Ultra Low On-Resistance - rDS(ON) = 0.008, VGS = 10V - rDS(ON) = 0.0095, VGS = 5V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Electrical Models - Spice and SABER(c) Thermal Impedance Models - www.Intersil.com * Peak Current vs Pulse Width Curve * UIS Rating Curve GATE SOURCE DRAIN (FLANGE) HUF76443P3 HUF76443S3S Symbol D * Switching Time vs RGS Curves Ordering Information PART NUMBER PACKAGE TO-220AB TO-263AB BRAND 76443P 76443S HUF76443P3 HUF76443S3S G S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76443S3ST. Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified HUF76443P3, HUF76443S3S UNITS V V V A A A A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: 60 60 16 75 75 75 75 Figure 4 Figures 6, 17, 18 260 1.75 -55 to 175 300 260 W W/oC oC oC oC 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy Inc. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999 HUF76443P3, HUF76443S3S Electrical Specifications PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS IDSS IGSS VGS(TH) rDS(ON) ID = 250A, VGS = 0V (Figure 12) ID = 250A, VGS = 0V , TC = -40oC (Figure 12) Zero Gate Voltage Drain Current VDS = 55V, VGS = 0V VDS = 50V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250A (Figure 11) ID = 75A, VGS = 10V (Figures 9, 10) ID = 75A, VGS = 5V (Figure 9) ID = 75A, VGS = 4.5V (Figure 9) THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-220 and TO-263 0.57 62 oC/W oC/W TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 60 55 - - 1 250 100 3 0.008 0.0095 0.010 V V A A nA VGS = 16V 1 - 0.0067 0.0079 0.0083 V SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 30V, ID = 75A, Ig(REF) = 1.0mA (Figures 14, 19, 20) VDD = 30V, ID = 75A VGS = 10V, RGS = 2.7 (Figures 16, 21, 22) VDD = 30V, ID = 75A VGS = 4.5V, RGS = 2.7 (Figures 15, 21, 22) 18 235 47 116 380 245 ns ns ns ns ns ns SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance 4115 1185 215 pF pF pF 107 59 4.1 12 27 129 71 4.9 nC nC nC nC nC 12 48 65 117 90 275 ns ns ns ns ns ns Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 75A ISD = 37.5A Reverse Recovery Time Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/s ISD = 75A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.0 107 275 UNITS V V ns nC 2 HUF76443P3, HUF76443S3S Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 80 VGS = 10V ID, DRAIN CURRENT (A) 60 VGS = 4.5V 40 20 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101 SINGLE PULSE 0.01 10-5 10-4 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 VGS = 10V VGS = 5V 1000 IDM, PEAK CURRENT (A) 100 50 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 10-5 FIGURE 4. PEAK CURRENT CAPABILITY 3 HUF76443P3, HUF76443S3S Typical Performance Curves 1000 IAS, AVALANCHE CURRENT (A) (Continued) 1000 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] ID, DRAIN CURRENT (A) 100 100s 100 STARTING TJ = 25oC 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED TC = 25oC 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1ms 10ms STARTING TJ = 150oC 1 10 100 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 150 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V 150 VGS = 10V VGS = 5V VGS = 4V 90 VGS = 3.5V ID, DRAIN CURRENT (A) 90 60 TJ = 175oC 30 TJ = 25oC 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VGS, GATE TO SOURCE VOLTAGE (V) TJ = -55oC ID, DRAIN CURRENT (A) 120 120 60 VGS = 3V 30 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 4 0 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 25 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) ID = 75A 20 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 2.5 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.0 VGS = 10V, ID = 75A 15 ID = 40A 1.5 10 ID = 20A 5 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) 1.0 0.5 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 HUF76443P3, HUF76443S3S Typical Performance Curves 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE (Continued) 1.2 VGS = VDS, ID = 250A ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE 1.0 1.1 0.8 1.0 0.6 0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 10000 CISS = CGS + CGD FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 30V 8 C, CAPACITANCE (pF) 6 1000 COSS CDS + CGD 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 40A ID = 20A 0 25 50 75 100 125 CRSS = CGD VGS = 0V, f = 1MHz 1 10 60 2 100 0.1 0 VDS , DRAIN TO SOURCE VOLTAGE (V) Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 700 VGS = 4.5V, VDD = 30V, ID = 75A 600 1000 VGS = 10V, VDD = 30V, ID = 75A SWITCHING TIME (ns) SWITCHING TIME (ns) tr 500 400 300 tf 200 100 0 0 10 20 30 40 50 td(ON) td(OFF) 800 td(OFF) 600 400 tf 200 tr td(ON) 0 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE () RGS, GATE TO SOURCE RESISTANCE () FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 5 HUF76443P3, HUF76443S3S Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD + 0V IAS 0.01 0 tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS RL VDD VDS VGS = 10V VGS + Qg(TOT) Qg(5) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 5V DUT Ig(REF) FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON td(ON) RL VDS + tOFF td(OFF) tr tf 90% 90% VGS VDD DUT 0 10% 90% 10% RGS VGS VGS 0 10% 50% PULSE WIDTH 50% FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAVEFORM 6 HUF76443P3, HUF76443S3S PSPICE Electrical Model .SUBCKT HUF76443 2 1 3 ; CA 12 8 5.50e-9 CB 15 14 5.50e-9 CIN 6 8 3.90e-9 LDRAIN rev 26 August 1999 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 66.05 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1.00e-9 LGATE 1 9 5 4.92e-9 LSOURCE 3 7 2.39e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.80e-3 RGATE 9 20 0.84 RLDRAIN 2 5 10 RLGATE 1 9 49.2 RLSOURCE 3 7 23.9 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.20e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD S1A 12 S1B CA 13 8 GATE 1 RLGATE DPLCAP 10 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50 RSLC2 5 51 ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6 MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S2A 14 13 S2B 15 17 RBREAK 18 RVTEMP CB + 6 8 EDS 5 8 14 IT 19 7 SOURCE 3 13 + EGS - - VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*475),3))} .MODEL DBODYMOD D (IS = 3.16e-12 RS = 2.54e-3 TRS1 = 2.21e-3 TRS2 = 0 CJO = 4.95e-9 TT = 6.81e-8 M = 0.50) .MODEL DBREAKMOD D (RS = 1.41e-1 TRS1 = 1.09e-4 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 3.47e-9 IS = 1e-30 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 1.90 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.84) .MODEL MSTROMOD NMOS (VTO = 2.31 KP = 195 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.68 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.4 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.14e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 9.91e-3 TC2 = 2.75e-5) .MODEL RSLCMOD RES (TC1 = 1.01e-3 TC2 = 3.23e-5) .MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 =0) .MODEL RVTHRESMOD RES (TC1 = -2.59e-3 TC2 = -8.95e-6) .MODEL RVTEMPMOD RES (TC1 = -1.56e-3 TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.00 VOFF= -3.00) VON = -3.00 VOFF= -5.00) VON = -0.50 VOFF= 0.0) VON = 0.0 VOFF= -0.50) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 + - RDRAIN 21 16 DBODY MWEAK MMED VBAT + 8 22 RVTHRES HUF76443P3, HUF76443S3S SABER Electrical Model REV 26 August 1999 template huf76443 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 3.16e-12, cjo = 4.95e-9, tt = 6.81e-8, m = 0.50) d..model dbreakmod = () d..model dplcapmod = (cjo = 3.47e-9, is = 1e-30, m = 0.85 ) m..model mmedmod = (type=_n, vto = 1.90, kp = 5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.31, kp = 195, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.68, kp = 0.12, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.0, voff = -3.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3.0, voff = -5.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 0.0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -0.50) c.ca n12 n8 = 5.50e-9 c.cb n15 n14 = 5.50e-9 c.cin n6 n8 = 3.90e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 4.92e-9 l.lsource n3 n7 = 2.39e-9 GATE 1 RLGATE CIN LGATE LDRAIN DPLCAP 10 RSLC1 51 RSLC2 ISCL RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY 5 DRAIN 2 ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 DBODY - LSOURCE 7 RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u S1A S2A 14 13 S2B 13 + EGS 6 8 EDS CB + 5 8 14 15 SOURCE 3 RSOURCE 12 RBREAK 17 18 RVTEMP 19 IT res.rbreak n17 n18 = 1, tc1 = 1.14e-3, tc2 = 0 res.rdbody n71 n5 = 2.54e-3, tc1 = 2.21e-3, tc2 = 0 res.rdbreak n72 n5 = 1.41e-1, tc1 = 1.09e-4, tc2 = 0 res.rdrain n50 n16 = 2.8e-3, tc1 = 9.91e-3, tc2 = 2.75e-5 res.rgate n9 n20 = 0.84 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 49.2 res.rlsource n3 n7 = 23.9 res.rslc1 n5 n51 = 1.0e-6, tc1 = 1.01e-3, tc2 = 3.23e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.2e-3, tc1 = 1.0e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.56e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.59e-3, tc2 = -8.95e-6 spe.ebreak n11 n7 n17 n18 = 66.05 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 13 8 S1B CA VBAT + - - 8 RVTHRES 22 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/475))** 3)) } } 8 HUF76443P3, HUF76443S3S SPICE Thermal Model REV 25 August 1999 HUF76443T CTHERM1 th 6 5.50e-3 CTHERM2 6 5 2.50e-2 CTHERM3 5 4 1.75e-2 CTHERM4 4 3 1.00e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 tl 12.55 RTHERM1 th 6 3.89e-3 RTHERM2 6 5 9.69e-3 RTHERM3 5 4 2.73e-2 RTHERM4 4 3 1.53e-1 RTHERM5 3 2 2.31e-1 RTHERM6 2 tl 3.07e-2 RTHERM1 CTHERM1 th JUNCTION 6 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76443T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 5.50e-3 ctherm.ctherm2 6 5 = 2.50e-2 ctherm.ctherm3 5 4 = 1.75e-2 ctherm.ctherm4 4 3 = 1.00e-2 ctherm.ctherm5 3 2 = 4.85e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 3.89e-3 rtherm.rtherm2 6 5 = 9.69e-3 rtherm.rtherm3 5 4 = 2.73e-2 rtherm.rtherm4 4 3 = 1.53e-1 rtherm.rtherm5 3 2 = 2.31e-1 rtherm.rtherm6 2 tl = 3.07e-2 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 9 |
Price & Availability of HUF76443P3
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |