![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
MIC921 Micrel MIC921 45MHz Low-Power SC-70 Op Amp Final Information General Description The MIC921 is a high-speed operational amplifier with a gainbandwidth product of 45MHz. The part is unity gain stable. It has a very low 300A supply current, and features the IttyBittyTM SC-70 and SOT-23-5 package. Supply voltage range is from 2.5V to 9V, allowing the MIC921 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC921 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC921 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. Features * * * * * * * * 45MHz gain bandwidth product 61MHz -3dB bandwidth 300A supply current SC-70 or SOT-23-5 packages 3200V/s slew rate Drives any capacitive load 112dB CMRR Unity gain stable Applications * * * * * Video Imaging Ultrasound Portable equipment Line drivers Ordering Information Part Number MIC921BM5 MIC921BC5 Junction Temp. Range -40C to +85C -40C to +85C Package SOT-23-5* SC-70 *Contact factory for availability of SOT-23-5 package. Pin Configuration IN- 3 Functional Pinout V- 2 IN+ 1 IN- V- 2 IN+ 1 Part Identification 3 A38 4 5 4 5 OUT V+ OUT V+ SOT-23-5 or SC-70 SOT-23-5 or SC-70 Pin Description Pin Number 1 2 3 4 5 Pin Name IN+ V- IN- OUT V+ Pin Function Noninverting Input Negative Supply (Input) Inverting Input Output: Amplifier Output Positive Supply (Input) Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com December 2001 1 MIC921 MIC921 Micrel Absolute Maximum Ratings (Note 1) Supply Voltage (VV+ - VV-) ........................................... 20V Differentail Input Voltage (VIN+ - VIN-) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN-) .......... VV+ to VV- Lead Temperature (soldering, 5 sec.) ....................... 260C Storage Temperature (TS) ........................................ 150C ESD Rating, Note 4 ................................................... 1.5kV Operating Ratings (Note 2) Supply Voltage (VS) ....................................... 2.5V to 9V Junction Temperature (TJ) ......................... -40C to +85C Package Thermal Resistance SC70-5 .............................................................. 450C/W SOT23-5 ............................................................ 260C/W Electrical Characteristics (5V) V+ = +5V, V- = -5V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted. Symbol VOS VOS IB IOS VCM CMRR PSRR AVOL VOUT Parameter Input Offset Voltage VOS Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 72dB -2.5V < VCM < +2.5V 3.5V < VS < 9V RL = 2k, VOUT = 2V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k positive, RL = 200 negative, RL = 200, Note 5 GBW PM BW SR ISC IS Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 1300V/s source sink Supply Current Input Voltage Noise Input Current Noise No Load f = 10kHz f = 10kHz 45 20 AV = 1, CL = 1.7pF +1.5 +3.0 -3.25 75 95 70 87 105 84 85 3.7 -3.7 3.0 -2.5 37 46 53 1500 57 40 0.30 12 0.7 0.50 -1.0 -3.0 Condition Min Typ 0.43 1 0.13 0.06 0.6 0.3 +3.25 Max 5 Units mV V/C A A V dB dB dB dB V V V V MHz MHz V/s mA mA mA nVHz pAHz Electrical Characteristics V+ = +9V, V- = -9V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted Symbol VOS VOS IB IOS VCM CMRR Parameter Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio CMRR > 75dB -2.5V < VCM < +2.5V -7.25 75 87 Condition Min Typ 0.4 1 0.13 0.06 0.6 0.3 +7.25 Max 5 Units mV V/C A A V dB MIC921 2 December 2001 MIC921 Symbol PSRR AVOL VOUT GBW PM BW SR ISC IS Parameter Power Supply Rejection Ratio Large-Signal Voltage Gain Condition 3.5V < VS < 9V RL = 2k, VOUT = 3V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 2500V/s source sink Supply Current Input Voltage Noise Input Current Noise Note 1. Note 2. Note 3. Note 4. Note 5. Micrel Min 95 75 Typ 105 86 92 +6.5 7.6 -7.6 45 40 61 3200 40 25 59 45 0.36 12 0.7 0.6 -6.2 Max Units dB dB dB V V MHz MHz V/s mA mA mA nVHz pAHz AV = 1, CL = 1.7pF No Load f = 10kHz f = 10kHz Exceeding the absolute maximum rating may damage the device. The device is not guaranteed to function outside its operating rating. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in "Typical Characteristics." December 2001 3 MIC921 MIC921 Micrel Test Circuits V+ 10F V+ 50 BNC 0.1F R2 5k 10F Input 0.1F 10k 10k 50 BNC 2k 3 5 BNC Input 4 BNC R1 5k R7c 2k R7b 200 R7a 100 R6 5k 3 5 0.1F 4 BNC MIC921 1 2 Output MIC921 1 2 Output 10k 0.1F 0.1F 50 All resistors 1% Input 0.1F R3 200k R4 250 R5 5k V- 10F All resistors: 1% metal film V- 10F R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 PSRR vs. Frequency CMRR vs. Frequency 100pF V+ V+ 10F 10pF R1 20 R2 4k 10F 3 0.1F 5 R3 27k S1 S2 3 5 0.1F 4 BNC MIC921 1 2 To Dynamic Analyzer MIC921 VIN 50 1 2 4 300 VOUT FET Probe 0.1F 1k R5 20 R4 27k 0.1F CL 10pF V- 10F 10F V- Noise Measurement Closed Loop Frequency Response Measurement MIC921 4 December 2001 MIC921 Micrel Typical Characteristics Offset Voltage vs. Temperature 1 SUPPLY CURRENT (mA) Supply Current vs. Temperature 0.35 0.30 0.25 0.20 0.15 0.10 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) V = 5V V = 2.5V V = 9V SUPPLY CURRENT (mA) Supply Current vs. Supply Voltage 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 2.5 OFFSET VOLTAGE (mV) 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 V = 2.5V +85C +25C -40C 3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V) 9 V = 5V V = 9V 0.55 0.5 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) Offset Voltage vs. Common-Mode Voltage 2.20 2.00 V = 2.5V 1.80 -40C 1.60 1.40 +25C 1.20 1.00 +85C 0.80 0.60 0.40 0.20 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 OFFSET VOLTAGE (mV) OFFSET VOLTAGE (mV) Offset Voltage vs. Common-Mode Voltage OFFSET VOLTAGE (mV) Offset Voltage vs. Common-Mode Voltage 2.2 2 1.8 1.6 1.4 1.2 +25C 1 0.8 0.6 0.4 0.2 0 -7.40 -5.92 V = 5V -40C V = 9V -40C +25C +85C +85C 1.48 2.96 4.44 5.92 -4.44 -2.96 COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) Output Voltage vs. Output Current (Sinking) 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 V = 5V OUTPUT VOLTAGE (V) Output Voltage vs. Output Current (Sinking) 0.9 V = 9V 0 -0.9 -1.8 -2.7 25C -3.6 -4.5 85C -40C -5.4 -6.3 -7.2 -8.1 -9.0 -50-45-40-35-30-25-20-15-10 -5 0 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) Output Voltage vs. Output Current (Sourcing) 5.5 V = 5V 5.0 4.5 4.0 85C 25C 3.5 3.0 2.5 -40C 2.0 1.5 1.0 0.5 0 0 8 16 24 32 40 48 56 64 72 80 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) -40C 25C 85C -45.0 -40.5 -36.0 -31.5 -27.0 -22.5 -18.0 -13.5 -9.0 OUTPUT CURRENT (mA) -4.5 0 Output Voltage vs. Output Current (Sourcing) 0.5 V = 9V 0 85C -0.5 25C -1.0 -1.5 -40C -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 0 8 16 24 32 40 48 56 64 72 80 OUTPUT CURRENT (mA) SHORT CIRCUIT CURRENT (mA) Short Circuit Current vs. Supply Voltage (Sinking) 7 0 -40C -7 25C -14 -21 -28 -35 85C -42 -49 -56 -63 -70 2.0 3.4 4.8 Short-Circuit Current vs. Supply Voltage (Sourcing) 110 100 90 80 70 60 50 40 30 20 10 0 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) -40C -1.48 0 25C 85C 6.2 7.6 9.0 2 SUPPLY VOLTAGE (V) 3.4 4.8 6.2 7.6 SUPPLY VOLTAGE (V) December 2001 5 7.40 -3.4 -2.7 -2.0 -1.4 -0.7 0.0 0.7 1.4 2.0 2.7 3 9 MIC921 MIC921 Micrel Bias Current vs. Temperature 0.18 0.16 BIAS CURRENT (A) 0.14 GAIN (dB) Closed-Loop Gain vs. Frequency 50 40 30 20 10 0 -10 -20 -30 -40 -50 100k 50pF Closed-Loop Gain vs. Frequency 50 40 30 20 GAIN (dB) V = 5V V = 9V 0.12 0.10 0.08 0.06 0.04 0.02 V = 9V V = 5V 1.7pF 100pF 10 0 -10 -20 -30 -40 -50 100k 50pF 1.7pF 100pF 200pF 400pF 600pF 800pF 1000pF 200pF 400pF 600pF 800pF 1000pF 0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 100M 10M 1M FREQUENCY (Hz) 100M 10M 1M FREQUENCY (Hz) Open-Loop Gain vs. Frequency 50 40 30 20 V = 5V Open-Loop Gain vs. Frequency 50 40 30 20 GAIN (dB) Open-Loop Frequency Response 100 V = 5V 80 60 40 GAIN (dB) V = 9V Phase (100) 225 180 135 90 45 0 -45 -90 -135 -180 -225 PHASE () GAIN (dB) 10 0 -10 -20 -30 -40 -50 100k 200pF 400pF 600pF 50pF 100pF 1.7pF 10 0 -10 -20 -30 -40 -50 100k 50pF 100pF 1.7pF 200pF 400pF 600pF 1000pF 20 0 -20 -40 -60 -80 -100 100k (no load) (100) Gain 1000pF 100M 10M 1M FREQUENCY (Hz) 100M 10M 1M FREQUENCY (Hz) 1M 10M 100M FREQUENCY (Hz) Open-Loop Frequency Response 100 80 60 V = 9V 225 GAIN BANDWIDTH (MHz) Phase (100) Gain Bandwidth and Phase Margin vs. Supply Voltage 50 45 40 35 30 25 20 0 2 4 6 8 SUPPLY VOLTAGE (V) 10 Gain Bandwidth 40 GAIN BANDWIDTH (MHz) Gain Bandwidth and Phase Margin vs. Load 35 30 25 20 15 10 5 0 100 200 PHASE () GAIN (dB) 40 20 0 -20 -40 -60 -80 -100 (no load) 90 45 0 -45 Phase Margin 40 30 20 (100) Gain -90 -135 -180 -225 Gain Bandwidth 300 400 500 600 700 800 10 900 1000 0 0 FREQUENCY (Hz) CAPACITIVE LOAD (pF) Gain Bandwidth and Phase Margin vs. Load 45 Voltage Noise Density vs. Frequency 60 NOISE VOLTAGE (nV/Hz1/2) 70 60 50 40 30 20 10 0 10 100 1000 10000 100000 FREQUENCY (Hz) NOISE CURRENT (pA/Hz1/2) 2.5 2.0 1.5 1.0 0.5 0 10 Current Noise Density vs. Frequency GAIN BANDWIDTH (MHz) 40 35 30 25 20 15 10 5 0 V = 9V Phase Margin 40 30 20 Gain Bandwidth 10 0 900 1000 100 200 300 400 500 600 700 800 0 PHASE MARGIN () 50 100 1000 10000 100000 FREQUENCY (Hz) CAPACITIVE LOAD (pF) MIC921 6 December 2001 PHASE MARGIN () 180 135 Phase Margin V = 5V 60 50 MIC921 Micrel Positive Slew Rate vs. Supply Voltage NEGATIVE SLEW RATE (V/s) Negative Slew Rate vs. Supply Voltage 1600 1400 SLEW RATE (V/s) 800 POSITIVE SLEW RATE (V/s) 700 600 500 400 300 200 100 0 2 3 4 5 6 7 8 9 Negative Slew Rate 1400 1200 1000 800 600 400 200 0 100 1000 1M 10M 1000 V = 5V 1200 1000 800 600 400 200 0 0 1 2 3 4 5 6 7 8 9 200 300 400 500 600 700 POSITIVE VOLTAGE (V) POSITIVE VOLTAGE (V) LOAD CAPACITANCE (pF) Positive Slew Rate 1600 1400 SLEW RATE (V/s) Positive Slew Rate 3500 3000 SLEW RATE (V/s) Negative Slew Rate 3000 2500 SLEW RATE (V/s) V = 5V V = 9V V = 9V 1200 1000 800 600 400 200 0 900 1000 100 200 300 400 500 600 700 800 2500 2000 1500 1000 500 0 1000 100 200 300 400 500 600 700 800 900 2000 1500 1000 500 0 100 200 300 400 500 600 700 800 900 0 0 0 LOAD CAPACITANCE (pF) LOAD CAPACITANCE (pF) LOAD CAPACITANCE (pF) Positive Power Supply Rejection Ratio 120 100 V = 5V 120 100 PSRR (dB) Negative Power Supply Rejection Ratio V = 5V 120 100 PSRR (dB) 80 60 40 20 10k 100k 1k FREQUENCY (Hz) 1M 0 100 Positive Power Supply Rejection Ratio V = 9V PSRR (dB) 80 60 40 20 0 100 10k 100k 1k FREQUENCY (Hz) 1M 80 60 40 20 0 100 10k 100k 1k FREQUENCY (Hz) Negative Power Supply Rejection Ratio 120 100 CMRR (dB) V = 9V Common-Mode Rejection Ratio 100 90 80 70 60 50 40 30 20 10 0 100 V = 5V Common-Mode Rejection Ratio 100 90 80 CMRR (dB) 70 60 50 40 30 20 10 0 100 V = 9V PSRR (dB) 80 60 40 20 0 100 10k 100k 1k FREQUENCY (Hz) 1M 1k 10k 100k 1M FREQUENCY (Hz) 10M 1k 10k 100k 1M FREQUENCY (Hz) December 2001 7 800 900 0 MIC921 MIC921 Micrel Functional Characteristics Small Signal Reponse V = 5V Av = 1 CL = 1.7pF V = 9V Av = 1 CL = 1.7pF Small Signal Reponse INPUT (50mV/div) OUTPUT (50mV/div) TIME (100ns/div) OUTPUT (50mV/div) INPUT (50mV/div) TIME (100ns/div) Small Signal Reponse V = 5V Av = 1 CL = 100pF V = 9V Av = 1 CL = 100pF Small Signal Reponse INPUT (50mV/div) OUTPUT (50mV/div) TIME (500ns/div) OUTPUT (50mV/div) INPUT (50mV/div) TIME (500ns/div) Small Signal Reponse V = 5V Av = 1 CL = 1000pF V = 9V Av = 1 CL = 1000pF INPUT (50mV/div) Small Signal Reponse OUTPUT (50mV/div) INPUT (50mV/div) TIME (1s/div) OUTPUT (50mV/div) TIME (1s/div) MIC921 8 December 2001 MIC921 Micrel Large Signal Response V = 5V Av = 1 CL = 1.7pF Large Signal Response V = 9V Av = 1 CL = 1.7pF OUTPUT (2V/div) OUTPUT (2V/div) Positive Slew Rate = 1520V/s Negative Slew Rate = 1312V/s TIME (25ns/div) Positive Slew Rate = 3230V/s Negative Slew Rate = 2950V/s TIME (25ns/div) Large Signal Response V = 5V Av = 1 CL = 100pF Large Signal Response V = 9V Av = 1 CL = 100pF OUTPUT (2V/div) Positive Slew Rate = 349V/s Negative Slew Rate = 181V/s OUTPUT (2V/div) Positive Slew Rate = 615V/s Negative Slew Rate = 447V/s TIME (25ns/div) TIME (50ns/div) Large Signal Response V = 5V Av = 1 CL = 1000pF Large Signal Response V = 9V Av = 1 CL = 1000pF OUTPUT (2V/div) Positive Slew Rate = 63V/s Negative Slew Rate = 44V/s OUTPUT (2V/div) Positive Slew Rate = 85V/s Negative Slew Rate = 57V/s TIME (250ns/div) TIME (250ns/div) December 2001 9 MIC921 MIC921 Micrel Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85C. The part can be operated up to the absolute maximum temperature rating of 125C, but between 85C and 125C performance will degrade, in particular CMRR will reduce. An MIC921 with no load, dissipates power equal to the quiescent supply current * supply voltage PD(no load) = VV + - VV - IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. PD(output stage) = VV + - VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Applications Information The MIC921 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC921 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC921 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470 is ideal. To use the part as a follower, the output should be connected to input via a short wire. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. ( ) ( ) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450C/W. Max. AllowablePowerDissipation = TJ(max) - TA(max) 450C / W MIC921 10 December 2001 MIC921 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 1.30 (0.051) 0.90 (0.035) 10 0 0.15 (0.006) 0.00 (0.000) 0.20 (0.008) 0.09 (0.004) 0.50 (0.020) 0.35 (0.014) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) 0.65 (0.0256) BSC 1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.18 (0.007) 0.10 (0.004) 0.30 (0.012) 0.15 (0.006) 0.10 (0.004) 0.00 (0.000) 0.30 (0.012) 0.10 (0.004) SC-70 (C5) MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL USA + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 2001 Micrel Incorporated December 2001 11 MIC921 |
Price & Availability of MIC921
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |