![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
TSH80-TSH81-TSH82 Wide Band, Rail-to-Rail Operational Amplifier with Standby Function 4.5V, 12V operating conditions 3dB-bandwidth: 100MHz Slew-rate: 100V/s Output current: up to 55mA Input single supply voltage Output rail-to-rail Specified for 150 load Low distortion, THD: 0.1% SOT23-5, TSSOP and SO packages D SO-8 (Plastic Micro package) L SOT23-5 (Plastic Micro package) Description The TSH8x series offers single and dual operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers feature also large output voltage swing and high output current capability to drive standard 150 loads. Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V(2.5V) and 10V(5V) supplies. The TSH81 also features a standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications. For board space and weight saving, TSH8x series is proposed in SOT23-5, TSSOP8 and SO-8 packages. P TSSOP8 (Plastic Micro package) Pin Connections (top view) TSH80 : SOT23-5/SO8 Output 1 VCC - 2 Non-Inv. In. 3 5 VCC + NC 1 Inv. In. 2 4 Inv. In. Non-Inv. In. 3 VCC - 4 _ + 8 NC 7 VCC + 6 Output 5 NC +- TSH81 : SO8/TSSOP8 NC 1 Inverting Input 2 Non Inverting Input 3 VCC - 4 _ + 8 STANDBY 7 VCC + 6 Output 5 NC Application TSH82 : SO8/TSSOP8 Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC - 4 _ + _ + 8 VCC + 7 Output2 6 Inverting Input2 5 Non Inverting Input2 Video buffers A/D converters driver Hi-Fi applications August 2005 Rev 2 1/23 www.st.com 23 TSH80-TSH81-TSH82 Order Codes Type TSH80ILT TSH80IYLT TSH80ID/DT TSH80IYD/IYDT TSH81ID/DT TSH81IPT -40C to +85C TSH82ID/DT TSH82IPT TSH82IYD/ITDT -40C to +125C SO-8 TSSOP8 SO-8 (automotive grade level) Tube or Tape & Reel Tape & Reel Tube or Tape & Reel TSH82I SH82I SH82IY -40C to +125C -40C to +85C Temperature Range Package SOT23-5 Tape & Reel SOT23-5 (automotive grade level) SO-8 SO-8 (automotive grade level) SO-8 TSSOP8 Tape & Reel Tube or Tape & Reel K310 TSH80I SH80IY TSH81I SH81I Packaging Marking K303 2/23 TSH80-TSH81-TSH82 Absolute Maximum Ratings 1 Absolute Maximum Ratings Table 1. Symbol VCC Vid Vi Toper Tstg Tj Supply Voltage (1) Differential Input Voltage (2) Input Voltage (3) Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal resistance junction to case (4) SOT23-5 SO8 TSSOPO8 Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 Human Body Model Key parameters and their absolute maximum ratings Parameter Value 14 2 6 -40 to +85 -65 to +150 150 80 28 37 250 157 130 2 Unit V V V C C C Rthjc C/W Rthja C/W kV ESD 1. All voltage values, except differential voltage are with respect to network ground terminal 2. Differential voltages are non-inverting input terminal with respect to the inverting terminal 3. The magnitude of input and output must never exceed VCC +0.3V 4. Short-circuits can cause excessive heating Table 2. Symbol VCC VIC Standby Operating conditions Parameter Supply Voltage Common Mode Input Voltage Range Value 4.5 to 12 VCC- to (V CC+ -1.1) (V CC-) to (VCC+) Unit V V V 3/23 Electrical Characteristics TSH80-TSH81-TSH82 2 Electrical Characteristics Table 3. Symbol |Vio| Vio Iio Iib Cin ICC VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified) Parameter Input Offset Voltage Input Offset Voltage Drift vs. Temperature Input Offset Current Test Condition Tamb = 25C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Min. Typ. 1.1 Max. 10 12 Unit mV V/C 3.5 5 15 20 A A pF 10.5 11.5 mA 3 0.1 Input Bias Current Input Capacitance Supply Current per Operator 6 0.3 Tamb = 25C Tmin. < Tamb < Tmax. +0.1 Common Mode Rejection Ratio (Vic/Vio) 72 70 68 65 97 dB SVR PSR Supply Voltage Rejection Ratio (Vcc/Vio) Power Supply Rejection Ratio (Vcc/Vout) 75 dB dB 75 Avd Large Signal Voltage Gain 75 70 84 dB Io Output Short Circuit Current Source 35 33 55 55 mA 28 28 4/23 TSH80-TSH81-TSH82 Table 3. Symbol Electrical Characteristics VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified) Parameter Test Condition Tamb =25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Min. Typ. Max. Unit 4.2 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 Voh High Level Output Voltage RL = 150 to 2.5V RL = 600 to 2.5V RL = 2k to 2.5V RL = 10k to 2.5V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V Tamb =25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND 4.5 V 4.1 4.4 48 54 55 56 220 105 76 61 150 Vol Low Level Output Voltage RL = 150 to 2.5V RL = 600 to 2.5V RL = 2k to 2.5V RL = 10k to 2.5V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V 400 mV 200 450 GBP Gain Bandwidth Product F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150 to 2.5V AVCL =+2 RL=150 // C L to 2.5V CL = 5pF CL = 30pF RL=150 // 30pF to 2.5V F=100kHz AVCL =+2, F=4MHz RL=150 // 30pF to 2.5V Vout=1Vpp Vout=2Vpp 65 55 87 MHz Bw Bandwidth @-3dB MHz SR Slew Rate 60 104 105 40 11 V/s m en Phase Margin Equivalent Input Noise Voltage nV/Hz THD Total Harmonic Distortion -61 -54 dB 5/23 Electrical Characteristics Table 3. Symbol TSH80-TSH81-TSH82 VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25C (unless otherwise specified) Parameter Test Condition AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280kHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150 to 2.5V F=4.5MHz, V out=2Vpp AVCL =+2, RL=150 to 2.5V F=4.5MHz, V out=2Vpp F=DC to 6MHz, A VCL=+2 F=1MHz to 10MHz Min. Typ. Max. Unit IM2 Second order inter modulation product -76 dBc IM3 Third order inter modulation product -68 dBc G Differential gain 0.5 % Df Differential phase 0.5 Gf Gain Flatness 0.2 65 dB dB Vo1/Vo2 Channel Separation Table 4. Symbol |Vio| Vio Iio Iib Cin ICC VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified) Parameter Input Offset Voltage Input Offset Voltage Drift vs. Temperature Input Offset Current Test Condition Tamb = 25C Tmin. < Tamb < T max. Tmin. < Tamb < T max. Tamb = 25C Tmin. < Tamb < T max. Tamb = 25C Tmin. < Tamb < T max. Min. Typ. 0.8 Max. 10 12 Unit mV V/C 3.5 5 15 20 A A pF 12.3 13.4 mA 2 0.1 Input Bias Current Input Capacitance Supply Current per Operator 6 0.7 Tamb = 25C Tmin. < Tamb < T max. -4.9 < Vic < 3.9V & Vout=GND Tamb = 25C Tmin. < Tamb < T max. Tamb = 25C Tmin. < Tamb < T max. 9.8 CMR Common Mode Rejection Ratio (Vic/Vio) 81 72 71 65 106 dB SVR Supply Voltage Rejection Ratio (VCC/Vio) 77 dB 6/23 TSH80-TSH81-TSH82 Table 4. Symbol PSR Electrical Characteristics VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified) Parameter Power Supply Rejection Ratio (VCC/Vout) Test Condition Positive & Negative Rail RL=150 to GND Vout=-4 to +4 Tamb = 25C Tmin. < Tamb < T max. Tamb=25C Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Tmin. < Tamb < T max. Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Tmin. < Tamb < T max. RL = 150 to GND Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND Tmin. < Tamb < T max. RL = 150 to GND Min. Typ. 75 Max. Unit dB Avd Large Signal Voltage Gain 75 70 86 dB Io Output Short Circuit Current Source 35 30 55 55 mA 28 28 4.2 Voh High Level Output Voltage 4.36 4.85 4.9 4.93 V 4.1 Vol Low Level Output Voltage -4.63 -4.86 -4.9 -4.93 -4.4 mV -4.3 GBP Gain Bandwidth Product F=10MHz AVCL=+11 AVCL=-10 AVCL=+1 RL=150 // 30pF to GND AVCL=+2 RL=150 // CL to GND CL = 5pF CL = 30pF RL=150 to gnd 65 55 100 MHz Bw Bandwidth @-3dB MHz SR Slew Rate 68 117 118 40 V/s m Phase Margin 7/23 Electrical Characteristics Table 4. Symbol en TSH80-TSH81-TSH82 VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25C (unless otherwise specified) Parameter Equivalent Input Noise Voltage Test Condition F=100kHz AVCL=+2, F=4MHz RL=150 // 30pF to gnd Vout=1Vpp Vout=2Vpp AVCL=+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz AVCL=+2, Vout=2Vpp RL=150 to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL=+2, R L=150 to gnd F=4.5MHz, Vout=2Vpp AVCL=+2, R L=150 to gnd F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL =+2 F=1MHz to 10MHz Min. Typ. 11 Max. Unit nV/ Hz THD Total Harmonic Distortion -61 -54 dB IM2 Second order inter modulation product -76 dBc IM3 Third order inter modulation product -68 dBc G Df Gf Differential gain 0.5 % Differential phase Gain Flatness 0.5 0.2 65 dB dB Vo1/Vo2 Channel Separation 8/23 TSH80-TSH81-TSH82 Table 5. Electrical Characteristics Standby mode VCC+, VCC-, Tamb = 25C (unless otherwise specified) Parameter Standby Low Level Standby High Level pin 8 (TSH81) to VCCRout Cout Test Condition Min. VCC (V CC- +2) 20 10 17 2 Down to ICC SBY = 10A 10 Typ. Max. (VCC- +0.8) (V CC+) 55 Unit V V A M pF s s Symbol Vlow Vhigh Current Consumption per ICC SBY Operator when STANDBY is Active Zout Ton Toff Output Impedance (Rout// Cout) Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode TSH81 STANDBY CONTROL pin 8 (SBY) Vlow Vhigh OPERATOR STATUS Standby Active 9/23 Electrical Characteristics Closed loop gain & phase vs. frequency Gain=+2, Vcc= 2.5V, RL=150, Tamb = 25C 10 200 TSH80-TSH81-TSH82 Figure 2. Overshoot function of output capacitance Gain=+2, Vcc= 2.5V, Tamb = 25C 10 Figure 1. 5 150//33pF Gain 100 5 150//22pF Gain (dB) Phase () 0 -5 Gain (dB) 0 150//10pF 150 0 Phase -100 -10 -15 1E+4 -200 1E+5 1E+6 1E+7 1E+8 1E+9 -5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Closed loop gain & phase vs. frequency Gain=-10, Vcc= 2.5V, RL=150, Tamb = 25C 30 200 Figure 3. Figure 4. Closed loop gain & phase vs. frequency Gain=+11, Vcc= 2.5V, R L=150, Tamb = 25C 30 0 Phase 20 150 Phase 20 100 Gain (dB) Phase () Gain 10 50 Gain (dB) 10 0 0 -50 -100 0 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -100 1E+9 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Large signal measurement - positive Figure 6. Large signal measurement slew rate negative slew rate Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk Gain=2,Vcc=2.5V,ZL=150//5.6pF,Vin=400mVpk 3 3 Figure 5. 2 2 1 1 Vout (V) 0 Vout (V) 0 -1 -1 -2 -2 -3 0 10 20 30 40 50 60 70 80 -3 0 10 20 30 40 50 60 70 Time (ns) Time (ns) 10/23 Phase () Gain -50 TSH80-TSH81-TSH82 Figure 7. Small signal measurement - rise time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk 0.06 Electrical Characteristics Figure 8. Small signal measurement - fall time Gain=2,Vcc=2.5V,Zl=150,Vin=400mVpk 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin Vout (V) Vout Vin 0 0 Vout Vin -0.02 -0.02 -0.04 -0.04 -0.06 0 10 20 30 40 50 60 -0.06 0 10 20 30 40 50 60 Time (ns) Time (ns) Channel separation (Xtalk) vs. frequency Measurement configuration: Xtalk=20log(V0/V1) VIN 49.9 Figure 9. Figure 10. Channel separation (Xtalk) vs. frequency Gain=+11, Vcc=2.5V, ZL=150//27pF -20 + + -150 -30 V1 Xtalk (dB) -40 4/1output -50 100 1k 3/1output -60 -70 -80 2/1output + 49.9 100 1k 150 -90 VO -100 -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 11. Equivalent noise voltage Gain=100, Vcc=2.5V, No load 30 + _ 10k 100 Figure 12. Maximum output swing Gain=11, Vcc=2.5V, RL=150 3 25 2 Vout 1 en (nV/Hz) 20 Vin, Vout (V) Vin 0 15 -1 10 -2 5 0.1 1 10 100 1000 -3 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Frequency (kHz) Time (ms) 11/23 Inter Modulation Products TSH80-TSH81-TSH82 3 Inter Modulation Products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. Figure 13. Standby mode - Ton, Toff Vcc= 2.5V, Open Loop 3 2 1 0 -1 -2 Figure 14. Group delay Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C Vin Vin, Vout (V) Gain Vout Group Delay 5.32ns -3 0 Ton 2E-6 Standby 4E-6 6E-6 Toff 8E-6 1E-5 Time (s) Figure 15. Third order inter modulation Gain=2, Vcc= 2.5V, ZL=150//27pF, Tamb = 25C 0 -10 -20 -30 IM3 (dBc) -40 -50 740kHz 80kHz -60 -70 -80 -90 -100 0 1 2 3 4 380kHz 640kHz Vout peak(V) 12/23 TSH80-TSH81-TSH82 Figure 16. Closed loop gain & phase vs. frequency Gain=+2, Vcc= 5V, RL=150, Tamb = 25C 10 200 Inter Modulation Products Figure 17. Overshoot function of output capacitance Gain=+2, Vcc= 5V, Tamb = 25C 10 5 150//33pF Gain 100 5 150//22pF Gain (dB) Phase () 0 -5 Gain (dB) 0 150//10pF 150 0 Phase -100 -10 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -200 1E+9 -5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Figure 18. Closed loop gain & phase vs. frequency Gain=-10, Vcc= 5V, RL=150, Tamb = 25C 30 200 Figure 19. Closed loop gain & phase vs. frequency Gain=+11, Vcc= 5V, RL=150, Tamb = 25C 30 0 Phase 20 Phase 150 20 -50 Gain (dB) Phase () Gain 10 Gain (dB) 10 50 0 0 -100 0 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -50 1E+9 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Figure 20. Large signal measurement - positive Figure 21. Large signal measurement slew rate negative slew rate Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk Gain=2,Vcc=5V,ZL=150//5.6pF,Vin=400mVpk 5 4 3 2 5 4 3 2 Vout (V) 0 -1 -2 -3 -4 -5 0 20 40 60 80 100 Vout (V) 1 1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100 Time (ns) Time (ns) Phase () 100 Gain 13/23 Inter Modulation Products Figure 22. Small signal measurement - rise time Gain=2,Vcc=5V,Zl=150,Vin=400mVpk 0.06 TSH80-TSH81-TSH82 Figure 23. Small signal measurement - fall time Gain=2,Vcc=5V,Zl=150,Vin=400mVpk 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin, Vout (V) Vout 0 0 Vout Vin Vin -0.02 -0.02 -0.04 -0.04 -0.06 0 10 20 30 40 50 60 -0.06 0 10 20 30 40 50 60 Time (ns) Time (ns) Figure 24. Channel separation (Xtalk) vs. frequency Measurement configuration: Xtalk=20log(V0/V1) VIN 49.9 Figure 25. Channel separation (Xtalk) vs. frequency Gain=+11, Vcc=5V, ZL=150//27pF -20 + + -150 -30 V1 Xtalk (dB) -40 -50 4/1output 3/1output 100 1k -60 -70 -80 49.9 + 150 2/1output -90 VO -100 -110 1E+4 100 1k 1E+5 1E+6 1E+7 Frequency (Hz) Figure 26. Equivalent noise voltage Gain=100, Vcc=5V, No load 30 Figure 27. Maximum output swing Gain=11, Vcc=5V, RL=150 5 4 25 + _ 10k 3 2 Vout Vin, Vout (V) 100 en (nV/Hz) 20 1 0 -1 -2 Vin 15 10 -3 -4 5 0.1 1 10 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Frequency (kHz) Time (ms) 14/23 TSH80-TSH81-TSH82 Inter Modulation Products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. Figure 28. Standby mode - Ton, Toff Vcc= 5V, Open Loop Vin 5 Figure 29. Group delay Gain=2, Vcc= 5V, ZL=150//27pF, Tamb = 25C Vin, Vout (V) Vout 0 Gain Group Delay -5 5.1ns Ton 0 2E-6 Standby 4E-6 6E-6 Toff 8E-6 Time (s) Figure 30. Third order inter modulation Gain=2, Vcc= 5V, ZL=150//27pF, Tamb = 25C 0 -10 -20 -30 IM3 (dBc) -40 80kHz -50 -60 -70 -80 -90 740kHz 640kHz -100 0 1 2 3 380kHz 4 Vout peak(V) 15/23 Testing Conditions TSH80-TSH81-TSH82 4 4.1 Testing Conditions Layout precautions: To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. Proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance. For lower gain application, attention should be paid not to use large feedback resistance (>1k) to reduce time constant with parasitic capacitances. Choose component sizes as small as possible (SMD). Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence. Figure 31. CCIR330 video line 4.2 Maximum input level: The input level must not exceed the following values: Negative peak: must be greater than -Vcc+400mV. Positive peak value: must be lower than +Vcc-400mV. The electrical characteristics show the influence of the load on this parameter. 16/23 TSH80-TSH81-TSH82 Testing Conditions 4.3 Video capabilities: To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA Table 6. Video results Value (Vcc=2.5V) Value (Vcc=5V) Unit Parameter Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5 0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2 0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1 % % % % % % % % % % % % % % deg deg deg deg deg deg deg deg 17/23 Precautions on Asymmetrical Supply Operation TSH80-TSH81-TSH82 5 Precautions on Asymmetrical Supply Operation The TSH8X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs. IN Cin + R1 R2 R3 C1 Vcc+ C3 C2 R4 - Cout OUT R5 Cf RL R1=10k will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF. R2, R3 are such that the current through them must be superior to 100 times the bias current. So, we take R2=R3=4.7k. Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout). By taking R1=10k, RL=150, and Cin=2uF, Cout=220uF we provide a cutoff frequency below 10Hz. Figure 33. Use of the TSH8x in gain = -1 configuration Cf 1k IN Cin 1k Vcc+ R2 R3 C1 C2 C3 + Cout OUT RL R1 Some precautions have to be added, specially for low power supply application. A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit. 18/23 TSH80-TSH81-TSH82 Table 7. Precautions on Asymmetrical Supply Operation Capacitance Cf on the phase margin of the circuit Cf (pF) Vcc=1.5V Vcc=2.5V Vcc=5V Unit Parameter Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB 0 5.6 22 33 28 40 30 40 37 37 48 33.7 43 39.3 43 39.3 52 34 65 30.7 56 38.3 56 38.3 67 32 78 27.6 deg MHz deg MHz deg MHz deg MHz Figure 34. Example of a video application Vcc/2 IN Ce Rb1 AOP1 + R2 R1 Vcc/2 Cf Vcc/2 NTSC R7 C7 A2 LPF2 R8 V1 R3 C3 V2 A1 LPF1 PAL V3 R4 Vcc/2 C4 Rb1 Re + - AOP2 R6 R5 Cf Standby Vcc/2 C8 Rb1 V4 Rout Cout OUT RL + AOP3 R10 Vcc/2 R9 Cf Standby This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2). You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise. The video application requires 1Vpeak at input and output. Calculation of components: A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence Ce=10uF, with Rb1=10k. At the output, Cout=220uF. The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1k,V1=2Vpk, V2=1Vpk For the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1. To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2. For example, for an attenuation of 3dB, we choose R5=300 and R6=1k. We have V4=2Vpk and Vout=1Vpk. The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same 19/23 Package Mechanical Data TSH80-TSH81-TSH82 6 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 SO-8 Package SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 0016023/C 20/23 TSH80-TSH81-TSH82 Package Mechanical Data 6.2 TSSOP8 Package TSSOP8 MECHANICAL DATA mm. DIM. MIN. A A1 A2 b c D E E1 e K L L1 0 0.45 0.60 1 0.05 0.80 0.19 0.09 2.90 6.20 4.30 3.00 6.40 4.40 0.65 8 0.75 0 0.018 0.024 0.039 1.00 TYP MAX. 1.2 0.15 1.05 0.30 0.20 3.10 6.60 4.50 0.002 0.031 0.007 0.004 0.114 0.244 0.169 0.118 0.252 0.173 0.0256 8 0.030 0.039 MIN. TYP. MAX. 0.047 0.006 0.041 0.012 0.008 0.122 0.260 0.177 inch 0079397/D 21/23 Package Mechanical Data TSH80-TSH81-TSH82 6.3 SOT23-5 Package SOT23-5L MECHANICAL DATA mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils 22/23 TSH80-TSH81-TSH82 Revision History 7 Revision History Date Revision Changes Feb. 2003 Aug. 2005 1 2 First Release PPAP references inserted in the datasheet see Table : Order Codes on page 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 23/23 |
Price & Availability of TSH81I
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |