![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95398 IRG4PC50FPBF INSULATED GATE BIPOLAR TRANSISTOR Features Optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 Industry standard TO-247AC package Lead-Free C Fast Speed IGBT VCES = 600V G E VCE(on) typ. = 1.45V @VGE = 15V, IC = 39A n-channel Benefits Generation 4 IGBT's offer highest efficiency available IGBT's optimized for specified application conditions Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's Absolute Maximum Ratings Parameter VCES IC @ TC = 25C IC @ TC = 100C ICM ILM VGE EARV PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. TO-247AC Max. 600 70 39 280 280 20 20 200 78 -55 to + 150 300 (0.063 in. (1.6mm from case ) 10 lbfin (1.1Nm) Units V A V mJ W C Thermal Resistance Parameter RJC RCS RJA Wt Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. 0.24 6 (0.21) Max. 0.64 40 Units C/W g (oz) www.irf.com 1 6/16/04 IRG4PC50FPBF Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 Emitter-to-Collector Breakdown Voltage 18 V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage 0.62 1.45 VCE(ON) Collector-to-Emitter Saturation Voltage 1.79 1.53 VGE(th) Gate Threshold Voltage 3.0 VGE(th)/TJ Temperature Coeff. of Threshold Voltage -14 gfe Forward Transconductance 21 30 ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS Max. Units Conditions V VGE = 0V, IC = 250A V VGE = 0V, IC = 1.0A V/C VGE = 0V, IC = 1.0mA VGE = 15V 1.6 IC = 39A IC = 70A See Fig.2, 5 V IC = 39A , TJ = 150C 6.0 VCE = VGE, IC = 250A mV/C VCE = VGE, IC = 250A S VCE = 100V, IC = 39A 250 VGE = 0V, VCE = 600V A 2.0 VGE = 0V, VCE = 10V, TJ = 25C 2000 VGE = 0V, VCE = 600V, TJ = 150C 100 n A VGE = 20V Switching Characteristics @ TJ = 25C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. 190 28 65 31 25 240 130 0.37 2.1 2.47 28 24 390 230 5.0 13 4100 250 49 Max. Units Conditions 290 IC = 39A 42 nC VCC = 400V See Fig. 8 97 VGE = 15V TJ = 25C ns 350 IC = 39A, VCC = 480V 190 VGE = 15V, RG = 5.0 Energy losses include "tail" mJ See Fig. 10, 11, 13, 14 3.0 TJ = 150C, IC = 39A, VCC = 480V ns VGE = 15V, RG = 5.0 Energy losses include "tail" mJ See Fig. 13, 14 nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10H, RG = 5.0, (See fig. 13a) Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot. Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4PC50FPBF 100 For both: Triangular wave: 80 Load Current (A) Duty cycle: 50% TJ = 125C Tsink = 90C Gate drive as specified Power Dissipation = 40W Clamp voltage: 80% of rated 60 Square wave: 60% of rated voltage 40 20 Ideal diodes 0 0.1 1 10 A 100 f, Frequency (kHz) (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) Fig. 1 - Typical Load Current vs. Frequency IC , Collector-to-Emitter Current (A) 1000 1000 100 IC , Collector-to-Emitter Current (A) 100 TJ = 150C TJ = 25C 10 10 TJ = 150C TJ = 25C 1 0.1 VGE = 15V 20s PULSE WIDTHA 1 10 1 5 6 7 8 9 VCC = 50V 5s PULSE WIDTH A 10 11 12 VCE , Collector-to-Emitter Voltage (V) VGE , Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com Fig. 3 - Typical Transfer Characteristics 3 IRG4PC50FPBF 70 Maximum DC Collector Current (A) 60 VCE , Collector-to-Emitter Voltage (V) VGE = 15V 2.5 V GE = 15V 80s PULSE WIDTH I C = 78A 50 2.0 40 30 IC = 39A 1.5 20 10 I C = 20A A -60 -40 -20 0 20 40 60 80 100 120 140 160 0 25 50 75 100 125 150 1.0 TC , Case Temperature (C) TJ , Junction Temperature (C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature 1 Thermal Response (Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM t 1 t2 Notes: 1. Duty factor D = t / t 12 2. Peak TJ = PDM x Z thJC + TC 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PC50FPBF 8000 VGE = 0V f = 1 MHz Cies = Cge + Cgc + Cce Cres = Cce Coes = Cce + Cgc 20 VGE , Gate-to-Emitter Voltage (V) A SHORTED VCE = 400V I C = 39A 16 C, Capacitance (pF) 6000 Cies 4000 12 Coes 2000 8 Cres 4 0 1 10 100 0 0 40 80 120 160 A 200 VCE, Collector-to-Emitter Voltage (V) Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 3.8 3.6 3.4 Total Switching Losses (mJ) Total Switching Losses (mJ) VCC VGE TJ IC = 480V = 15V = 25C = 39A 100 RG = 5.0 VGE = 15V VCC = 480V 10 3.2 IC = 78A IC = 39A 3.0 2.8 1 IC = 20A 2.6 2.4 0 10 20 30 40 50 A 60 0.1 -60 -40 -20 0 20 40 60 80 A 100 120 140 160 R G , Gate Resistance ( ) TJ , Junction Temperature (C) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PC50FPBF 12 Total Switching Losses (mJ) 10 I C , Collector-to-Emitter Current (A) RG TJ VCC VGE = 5.0 = 150C = 480V = 15V 1000 VGE = 20V GE TJ = 125C SAFE OPERATING AREA 100 8 6 4 10 2 0 0 20 40 60 A 80 1 1 10 100 1000 I C , Collector-to-Emitter Current (A) VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 6 www.irf.com IRG4PC50FPBF L 50V 1000V VC * D.U.T. RL = 0 - 480V 480V 4 X IC@25C c 480F 960V d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit IC L Driver* 50V 1000V VC D.U.T. Fig. 14a - Switching Loss Test Circuit * Driver same type as D.U.T., VC = 480V A d e c d 90% e VC 90% 10% t d(off) Fig. 14b - Switching Loss Waveforms 10% I C 5% t d(on) tr E on E ts = (Eon +Eoff ) tf t=5s E off www.irf.com 7 IRG4PC50FPBF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 6/04 8 www.irf.com |
Price & Availability of IRG4PC50FPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |