![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 16 MBit Synchronous DRAM Advanced Information * High Performance: -8 fCK(max.) tCK3 tAC3 tCK2 tAC2 125 8 6 10 6 -10 100 10 7 13.3 8 Units MHz ns ns ns ns * * * * * * * * * * * Multiple Burst Read with Single Write Operation Automatic Command and Controlled Precharge Data Mask for Read / Write control (x4, x8) Dual Data Mask for byte control ( x16) Auto Refresh (CBR) and Self Refresh Suspend Mode and Power Down Mode 4096 refresh cycles / 64 ms Random Column Address every CLK ( 1-N Rule) Single 3.3V +/- 0.3V Power Supply LVTTL Interface Plastic Packages: P-TSOPI-44 400mil width ( x4, x8 ) P-TSOPII -50 400 mil width ( x 16 ) -8 version for PC100 applications * * * * * * * Fully Synchronous to Positive Clock Edge 0 to 70 C operating temperature Dual Banks controlled by A11 ( Bank Select) Programmable CAS Latency : 2, 3 Programmable Wrap Sequence : Sequential or Interleave Programmable Burst Length: 1, 2, 4, 8 full page(optional) for sequencial wrap around * The HYB39S16400/800/160BT are dual bank Synchronous DRAM' based on the die revisions " " s D, & " and organized as 2 banks x 2MBit x4, 2 banks x 1MBit x8 and 2 banks x 512kbit x16 E" respectively. These synchronous devices achieve high speed data transfer rates up to 125 MHz by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to a system clock. The chip is fabricated with SIEMENS'advanced 16MBit DRAM process technology. The device is designed to comply with all JEDEC standards set for synchronous DRAM products, both electrically and mechanically. All of the control, address, data input and output circuits are synchronized with the positive edge of an externally supplied clock. Operating the two memory banks in an interleaved fashion allows random access operation to occur at higher rate than is possible with standard DRAMs. A sequential and gapless data rate of up to 125 MHz is possible depending on burst length, CAS latency and speed grade of the device. Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single 3.3V +/- 0.3V power supply and are available in TSOPII packages. These Synchronous DRAM devices are available with LV-TTL interfaces. Semiconductor Group 1 4.98 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Ordering Information Type Ordering Code Package Description LVTTL-version: HYB 39S16400BT-8 HYB 39S16400BT-10 HYB 39S16800BT-8 HYB 39S16800BT-10 HYB 39S16160BT-8 HYB 39S16160BT-10 P-TSOPII-44 (400mil) P-TSOPII-44-(400mil) P-TSOPII-44-(400mil) P-TSOPII-44 (400mil) P-TSOPII-50 (400mil) P-TSOPII-50-(400mil) 125MHz 2B x 2M x 4 SDRAM 100MHz 2B x 2M x 4 SDRAM 125MHz 2B x 1M x 8 SDRAM 100MHz 2B x 1M x 8 SDRAM 125MHz 2B x 512k x 16 SDRAM 100MHz 2B x 512k x 16 SDRAM Pin Description and Pinouts: CLK CKE CS RAS CAS WE A0-A10 A11 (BS) Clock Input Clock Enable Chip Select Row Address Strobe Column Address Strobe Write Enable Address Inputs Bank Select DQ DQM, LDQM, UDQM Vdd Vss Vddq Vssq NC Data Input /Output Data Mask Power (+3.3V) Ground Power for DQ' (+ 3.3V) s Ground for DQ' s not connected Semiconductor Group 2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Vdd NC Vssq DQ0 Vddq NC Vssq DQ1 Vddq NC NC WE CAS RAS CS A11 A10 A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 Vss NC Vssq DQ3 Vddq NC Vssq DQ2 Vddq NC NC DQM CLK CKE NC A9 A8 A7 A6 A5 A4 Vss Vdd DQ0 Vssq DQ1 Vddq DQ2 Vssq DQ3 Vddq NC NC WE CAS RAS CS A11 A10 A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 Vss DQ7 Vssq DQ6 Vddq DQ5 Vssq DQ4 Vddq NC NC DQM CLK CKE NC A9 A8 A7 A6 A5 A4 Vss HYB39S16400BT 2 Bank x 2MBit x 4 TSOPII-44 ( 400 mil x 725 mil) Vdd DQ0 DQ1 Vssq DQ2 DQ3 Vddq DQ4 DQ5 Vssq DQ6 DQ7 Vddq LDQM WE CAS RAS CS A11 A10 A0 A1 A2 A3 Vdd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 Vss DQ15 DQ14 Vssq DQ13 DQ12 Vddq DQ11 DQ10 Vssq DQ9 DQ8 Vddq NC UDQM CLK CKE NC A9 A8 A7 A6 A5 A4 Vss HYB39S16800BT 2 Bank x 1MBit x 8 TSOPII-44 ( 400 mil x 725 mil ) HYB39S16160BT 2 Bank x 512kbit x 16 TSOPII-50 ( 400 mil x 825 mil ) Semiconductor Group 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Signal Pin Description Pin CLK Type Input Signal Polarity Pulse Function Positive The system clock input. All of the SDRAM inputs are sampled on the rising Edge edge of the clock. Active High Active Low Active Low Activates the CLK signal when high and deactivates the CLK signal when low, thereby inititiates either the Power Down mode, Suspend mode or the Self Refresh mode. CS enables the command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the command to be executed by the SDRAM. During a Bank Activate command cycle, A0-A10 defines the row address (RA0-RA10) when sampled at the rising clock edge. During a Read or Write command cycle, A0-A9 defines the column address (CA0-CAn) when sampled at the rising clock edge.CAn depends from the SDRAM organisation. 4M x 4 SDRAM CAn = CA9 2M x 8 SDRAM CAn = CA8 1M x 16 SDRAM CAn = CA7 In addition to the column address, A10 is used to invoke autoprecharge operation at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and A11 defines the bank to be precharged (low=bank A, high=bank B). If A10 is low, autoprecharge is disabled. During a Precharge command cycle, A10 is used in conjunction with A11 to control which bank(s) to precharge. If A10 is high, both bank A and bank B will be precharged regardless of the state of A11. If A10 is low, then A11 is used to define which bank to precharge. CKE Input Level CS RAS, CAS WE Input Pulse Input Pulse A0 A10 Input Level -- A11 (BS) DQx Input Input Output Level Level -- -- Selects which bank is to be active. A11 low selects bank A and A11 high selects bank B. Data Input/Output pins operate in the same manner as on conventional DRAMs. The Data Input/Output mask places the DQ buffers in a high impedance state when sampled high. In Read mode, DQM has a latency of two clock cycles and controls the output buffers like an output enable. In Write mode, DQM has a latency of zero and operates as a word mask by allowing input data to be written if it is low but blocks the write operation if DQM is high. Power and ground for the input buffers and the core logic. DQM LDQM UDQM Input Pulse Active High VDD, VSS VDDQ VSSQ Supply Supply -- -- Isolated power supply and ground for the output buffers to provide improved noise immunity. Semiconductor Group 4 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Row Decoder 2048 2048 x 1024 Memory Bank A CKE CKE Buffer Self Refresh Clock 1024 Row Address Counter Bank A Row/Column Select Predecode A 3 Sequential Control Bank A Sense Amplifiers Column Decoder and DQ Gate 4 11 8 Data Latches Data Input/Output Buffers CLK A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 (BS) CLK Buffer Address Buffers (12) 12 8 12 11 Mode Register 8 Sequential Control Bank B DQ0 DQ1 DQ2 DQ3 CS CS Buffer 11 RAS Buffer Command Decoder Predecode B Bank B Row/Column Select 3 Data Latches 8 RAS Column Decoder and DQ Gate Sense Amplifiers 1024 2048 Row Decoder 2048 Memory Bank B 2048 x 1024 CAS CAS Buffer WE DQM WE Buffer DQM Buffer Block Diagram for HYB39S16400BT (2 banks x 4M x 4 SDRAM) Semiconductor Group 5 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Row Decoder Row Decoder 2048 2048 x 512 Memory Bank A CKE CKE Buffer Self Refresh Clock 1024 512 Row Address Counter Bank A Row/Column Select 8 Sense Amplifiers Sense Amplifiers Column Decoder and DQ Gate Column Decoder and DQ Gate 8 8 11 Predecode A 8 Data Input/Output Buffers 8 CLK A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 (BS) CLK Buffer Address Buffers (12) 12 3 Sequential Control Bank A Data Latches Data Latches 8 8 12 11 Mode Register 8 Sequential Control Bank B DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 CS CS Buffer 11 Predecode B RAS Buffer Command Decoder 3 8 Data Latches 8 RAS Bank B Row/Column Select 8 Column Decoder and DQ Gate Sense Amplifiers 512 2048 Memory Bank B Memory Bank B 2048 x 512 2048 x 1024 CAS CAS Buffer 8 DQM DQM Buffer Block Diagram for HYB39S16800BT (2 banks x 1M x 8 SDRAM) Semiconductor Group 6 Row Decoder Row Decoder WE WE Buffer HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Row Decoder Row Decoder Row Decoder Row Decoder 2048 x 512 Memory Bank A 2048 x 256 Memory Bank A 2048 1024 16 512 1024 256 CKE CKE Buffer Self Refresh Clock Row Address Counter Bank A Row/Column Select 16 CLK A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 (BS) CLK Buffer 16 11 Predecode A 3 Sequential Control Bank A 8 8 8 Data Latches Data Latches Data Latches Data Latches 16 8 8 Address Buffers (12) 12 12 11 Mode Register 8 Sequential Control Bank B CS CS Buffer 11 Predecode B RAS Buffer Command Decoder 3 16 Data Latches Data Latches 8 RAS Bank B Row/Column Select 16 Column Decoder and DQ Gate Column Decoder and DQ Gate Sense Amplifiers 256 CAS CAS Buffer 16 Sense Amplifiers Row Decoder Row Decoder Row Decoder Row Decoder WE WE Buffer 2048 Memory Bank B Memory Bank B 2048 x B Memory Bank256 2048 x 1024 Memory Bank B 2048 x 512 2048 x 1024 UDQM DQM Buffer LDQM DQM Buffer Block Diagram for HYB39S16160BT (2 banks x 512k x 16 SDRAM) Semiconductor Group 7 Data Input/Output Buffers Sense Amplifiers Sense Amplifiers Sense Amplifiers Column Decoder and DQ Gate Sense Amplifiers Column Decoder and DQ Gate Column Decoder and DQ Gate Column Decoder and DQ Gate DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Operation Definition All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at the positive edge of the clock. The following list shows the most important operation commands. Operation Standby, Ignore RAS, CAS, WE and Address Row Address Strobe and Activating a Bank Column Address Strobe and Read Command Column Address Strobe and Write Command Precharge Command Burst Stop Command Self Refresh Entry Mode Register Set Command Write Enable/Output Enable Write Inhibit/Output Disable No Operation (NOP) CS H L L L L L L L X X L RAS X L H H L H L L X X H CAS X H L L H H L L X X H WE X H H L L L H L X X H (L/U)DQM X X X X X X X X L H X Mode Register For application flexibility, a CAS latency, a burst length, and a burst sequence can be programmed in the SDRAM mode register. The mode set operation must be done before any activate command after the initial power up. Any content of the mode register can be altered by reexecuting the mode set command. Both banks must be in precharged state and CKE must be high at least one clock before the mode set operation. After the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing defines parameters to be set as shown in the following table. Semiconductor Group 8 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Address Input for Mode Set (Mode Register Operation) BS A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus (Ax) Operation Mode CAS Latency BT Burst Length Mode Register (Mx) Operation Mode M11 M10 M9 M8 M7 0 X 0 X 0 1 0 0 0 0 Mode Normal Multiple Burst with Single Write Burst Type M3 0 1 Type Sequential Interleave Burst Length CAS Latency M6 0 0 0 0 1 1 1 1 M5 0 0 1 1 0 0 1 1 M4 0 1 0 1 0 1 0 1 Latency Reserve 1 2 3 Reserve Reserve Reserve Reserve M2 0 0 0 0 1 1 1 1 M1 0 0 1 1 0 0 1 1 M0 0 1 0 1 0 1 0 1 Length Sequential 1 2 4 8 Reserve Reserve Reserve Full Page*) Interleave 1 2 4 8 Reserve Reserve Reserve Reserve *) optional Sequential Burst Addressing 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 2 3 4 5 6 7 0 1 3 4 5 6 7 0 1 2 4 5 6 7 0 1 2 3 5 6 7 0 1 2 3 4 6 7 0 1 2 3 4 5 7 0 1 2 3 4 5 6 Interleave Burst Addressing 0 1 2 3 4 5 6 7 1 0 3 2 5 4 7 6 2 3 0 1 6 7 4 5 3 2 1 0 7 6 5 4 4 5 6 7 0 1 2 3 5 4 7 6 1 0 3 2 6 7 4 5 2 3 0 1 7 6 5 4 3 2 1 0 Semiconductor Group 9 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Read and Write Access Mode When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle starts. According to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the word line are fired. A CAS cycle is triggered by setting RAS high and CAS low at a clock timing after a necessary delay, tRCD, from the RAS timing. WE is used to define either a read (WE = H) or a write (WE = L) at this stage. SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or write operations are allowed at up to a 125 MHz data rate. The numbers of serial data bits are the burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page, where full page is an optional feature in this device. Column addresses are segmented by the burst length and serial data accesses are done within this boundary. The first column address to be accessed is supplied at the CAS timing and the subsequent addresses are generated automatically by the programmed burst length and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is 2' then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5 . `, Full page burst operation is only possible using the sequential burst type and page length is a function of the I/O organisation and column addressing. Full page burst operation do not self terminate once the burst length has been reached. In other words, unlike burst length of 2, 3 or 8, full page burst continues until it is terminated using another command. Similar to the page mode of conventional DRAM' burst read or write accesses on any column s, address are possible once the RAS cycle latches sense amplifiers. The maximum tRAS or the refresh interval time limits the number of random column accesses. A new burst access can be done even before the previous burst ends. The interrupt operation at every clock cycles is supported. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. An interrupt which accompanies with an operation change from a read to a write is possible by exploiting DQM to avoid bus contention. When two banks are activated sequentially, interleaved bank read or write operations are possible. With the programmed burst length, alternate access and precharge operations on two banks can realize fast serial data access modes among many different pages. Once two banks are activated, column to column interleave operation can be done between two different pages. Refresh Mode SDRAM has two refresh modes, a CAS before RAS (CBR) automatic refresh and a self refresh. All of banks must be precharged before applying any refresh mode. An on-chip address counter increments the word and the bank addresses and no bank information is required for both refresh modes. The chip enters the automatic refresh mode, when RAS and CAS are held low and CKE and WE are held high at a clock timing. The mode restores word line after the refresh and no external precharge command is necessary. A minimum tRC time is required between two automatic refreshes in a burst refresh mode. The same rule applies to any access command after the automatic refresh operation. The chip has an on-chip timer and the self refresh mode is available. It enters the mode when RAS, CAS, and CKE are low and WE is high at a clock timing. All of external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one tRC delay is required prior to any access command. Semiconductor Group 10 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM DQM Function DQM has two functions for data I/O read write operations. During reads, when it turns to high at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM Data Disable Latency t DQZ). It also provides a data mask function for writes. When DQM is activated, the write operation at the next clock is prohibited (DQM Write Mask Latency t DQW = zero clocks). Suspend Mode During normal access mode, CKE is held high and CLK is enabled. When CKE is low, it freezes the internal clock and extends data read and write operations. One clock delay is required for mode entry and exit (Clock Suspend Latency t CSL ). Power Down In order to reduce standby power consumption, a power down mode is available. Bringing CKE low enters the power down mode and all of receiver circuits are gated. All banks must be precharged before entering this mode. One clock delay is required for mode entry and exit. The Power Down mode does not perform any refresh operation. Auto Precharge Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS timing accepts one extra address, CA10, to determine whether the chip restores or not after the operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation one clock after the Read Command is registered for CAS latencies of 1 and 2, and two clocks for CAS latencies of 3. If CAS10 is high when a Write Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation one clock delay form the last data-in for CAS latencies of 1 and 2 and two clocks for CAS latencies of 3. This delay is referenced as tDPL . Precharge Command If CA10 is low, the chip needs another way to precharge. In this mode, a separate precharge command is necessary. When RAS and WE are low and CAS is high at a clock timing, it triggers the precharge operation. Two address bits, A10 and A11, are used to define banks as shown in the following list. The precharge command may be applied coincident with the last of burst reads for CAS Latency = 1 and with the second to the last read data for CAS Latencies = 2 & 3. Writes require a time tDPL from the last burst data to apply the precharge command. Bank Selection by Address Bits A10 Bank A Only Bank B Only Both A and B Low Low High A11 Low High Don' Care t Semiconductor Group 11 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Burst Termination Once a burst read or write operation has been initiated, there are several methods in which to terminate the burst operation prematurely. These methods include using another Read or Write Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read or Write Command care must be taken to avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the easiest method to use when terminating a burst operation before it has been completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the burst write cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is registered will be written to the memory. Power Up Procedure All Vdd and Vddq must reach the specified voltage no later than any of input signal voltages. An initial pause of 200 sec is required after power on. All banks have to be precharged and a minimum of 2 auto-refresh cycles are required prior to the mode register set operation. Semiconductor Group 12 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Absolute Maximum Ratings Operating temperature range ......................................................................................... 0 to + 70 C Storage temperature range...................................................................................... - 55 to + 150 C Input/output voltage .............................................................................. - 0.5 to min(Vcc+0.5, 4.6) V Power supply voltage VDD / VDDQ.......................................................................... - 1.0 to + 4.6 V Power Dissipation............................................. ................................................................ ..........1 W Data out current (short circuit) ................................................................................................ 50 mA Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Recommended Operation and Characteristics for LV-TTL versions: TA = 0 to 70 C; VSS = 0 V; VDD,VDDQ = 3.3 V 0.3 V Parameter Input high voltage Input low voltage Output high voltage (IOUT = - 2.0 mA) Output low voltage (IOUT = 2.0 mA) Input leakage current, any input (0 V < VIN < Vddq, all other inputs = 0 V) Output leakage current (DQ is disabled, 0 V < VOUT < VCC) Notes: 1. All voltages are referenced to VSS. 2. Vih may overshoot to Vcc + 2.0 V for pulse width of < 4ns with 3.3V. Vil may undershoot to -2.0 V for pulse width < 4.0 ns with 3.3V. Pulse width measured at 50% points with amplitude measured peak to DC reference. Symbol Limit Values min. max. Vcc+0.3 0.8 - 0.4 10 10 2.0 - 0.3 2.4 - - 10 - 10 Unit Notes V V V V A A 1, 2, 3 1, 2, 3 3 3 VIH VIL VOH VOL II(L) IO(L) Capacitance TA = 0 to 70 C; VDD = 3.3 V 0.3 V, f = 1 MHz Parameter Input capacitance (CLK) Input capacitance (A0-A12, BA0,BA1,RAS, CAS, WE, CS, CKE, DQM) Symbol Values min. max. 4.0 5.0 6.5 2.5 2.5 4.0 Unit pF pF pF CI1 CI2 CIO Input / Output capacitance (DQ) Semiconductor Group 13 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Operating Currents (TA = 0 to 70oC, VCC = 3.3V 0.3V (Recommended Operating Conditions unless otherwise noted) Parameter Operating Current Symbol Test Condition Burst Length = 4 trc>=trc (min.) tck>=tck(min.), Io = 0mA 2 bank interleave operation CKE<=VIL(max), tck>=tck(min.) tCK=infinite CAS Latency -8 80 115 125 3 2 20 -10 65 90 100 3 2 20 mA mA mA mA mA Note max. max. 1, 2 Icc1 1 2 3 Precharge Standby Current in Power Down Mode Precharge Standby Current in Non-power down Mode Active Standby Current in Power Down Mode Icc2P Icc2PS CKE<=VIL(max), Icc2N CKE>=VIH(min), tck>=tck(min.) input signals changed once in 3 cycles tCK=infinite, input signals are stable mA CS= High Icc2NS CKE>=VIH(min), 10 10 mA Icc3P CKE<=VIL(max), tck>=tck(min.) tCK=infinite, inpit signals are stable 3 2 3 2 mA mA Icc3PS CKE<=VIL(max), Active Standby Current in Nonpower Down Mode Burst Operating Current Auto (CBR) Refresh Current Self Refresh Notes: Icc3N CKE>=VIH(min), tck>=tck(min.), changed once in 3 cycles tCK=infinite, input signals are stable 25 25 mA CS= High, 1 Icc3NS CKE>=VIH(min), 15 15 mA Icc4 Burst Length = full page trc = infinite tck >= tck (min.), IO = 0 mA 2 banks activated trc>=trc(min) 1 2 3 1 2 3 50 80 120 75 95 115 1 1 40 65 95 60 75 90 1 mA 1, 2 Icc5 mA mA mA mA 1, 2 Icc6 CKE=<0,2V 1, 2 1. The specified values are valid when addresses are changed no more than three times during trc(min.) and when No Operation commands are registered on every rising clock edge during tRC(min). 2. The specified values are valid when data inputs (DQ' are stable during tRC(min.). s) Semiconductor Group 14 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM AC Characteristics 1)2)3) TA = 0 to 70 C; VSS = 0 V; VCC = 3.3 V 0.3 V, tT = 1 ns Parameter Symbol Limit Values -8 min max min Unit -10 max Clock and Clock Enable Clock Cycle Time CAS Latency = 3 tCK CAS Latency = 2 Clock Frequency CAS Latency = 3 tCK CAS Latency = 2 Access Time from Clock CAS Latency = 3 tAC CAS Latency = 2 Clock High Pulse Width Clock Low Pulse Width Transition time - - - - 3 3 0.5 125 100 6 6 - - 10 - - - - 3 3 0.5 100 75 7 8 - - 10 MHz MHz 2, 4 ns ns ns ns ns 8 10 - - 10 12 - - s ns ns tCH tCL tT Setup and Hold Times Input Setup Time Input Hold Time CKE Setup Time CKE Hold Time Mode Register Set-up time Power Down Mode Entry Time tIS tIH tCKS tCKH tRSC tSB 2 1 2 1 16 0 - - - - - 8 3 1 3 1 20 0 - - - - - 10 ns ns ns ns ns ns 5 5 5 5 Common Parameters Row to Column Delay Time Row Active Time Row to Column Delay Time Row Precharge Time Row Cycle Time Activate(a) to Activate(b) Command period tRCD tRAS tRCD tRP tRC tRRD 20 45 20 20 70 16 - 100k 24 60 24 24 90 20 - 100k ns ns ns ns ns ns 6 6 6 6 6 6 - - - - - - - - Semiconductor Group 15 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Parameter Symbol Limit Values -8 min max min Unit -10 max CAS(a) to CAS(b) Command period tCCD 1 - 1 - CLK Refresh Cycle Refresh Period (4096 cycles) Self Refresh Exit Time tREF tSREX - 10 64 - 10 64 ms ns Read Cycle Data Out Hold Time Data Out to Low Impedance Time Data Out to High Impedance Time DQM Data Out Disable Latency tOH tLZ tHZ tDQZ 3 0 3 2 - - 8 - 3 0 3 2 - - 10 - ns ns ns CLK 2 8 Write Cycle Write Recovery Time DQM Write Mask Latency Write Latency tWR tDQW tWL 8 0 0 - - - 10 0 0 - - - ns CLK CLK Frequency vs. AC Parameter Relationship Table: -8 -parts CL 125 MHz 100 MHz 3 2 tRC 9 7 tRAS 6 5 tRP 3 2 tRRD 2 2 tRCD 3 2 tCCD 1 1 tWL 0 0 tWR 1 1 -10 -parts: CL 100 MHz 75 MHz 3 2 tRC 8 7 tRAS 6 5 tRP 3 2 tRRD 2 2 tRCD 3 2 tCCD 1 1 WL 0 0 tWR 1 1 Semiconductor Group 16 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Notes for AC Parameters: 1. For proper power-up see the operation section of this data sheet. 2. AC timing tests for LV-TTL versions have V il = 0.4 V and V ih = 2.4 V with the timing referenced to the 1.4 V crossover point. The transition time is measured between V ih and Vil. All AC measurements assume t T=1ns with the AC output load circuit shown in fig.1. Specified tac and toh parameters are measured with a 50 pF only, without any resistive termination and with a input signal of 1V / ns edge rate between 0.8V and 2.0 V. tCH 2.4 V CLOCK 0.4 V tCL tSETUP tHOLD + 1.4 V 50 Ohm Z=50 Ohm I/O tT INPUT 1.4V 50 pF tAC tLZ tOH tAC I/O 50 pF OUTPUT 1.4V Measurement conditions for tac and toh tHZ fig.1 3. If clock rising time is longer than 1 ns, a time (t T/2 - 0.5) ns has to be added to this parameter. 4. If tT is longer than 1 ns, a time (t T -1) ns has to be added to this parameter. 5. These parameter account for the number of clock cycle and depend on the operating frequency of the clock, as follows: the number of clock cycle = specified value of timing period (counted in fractions as a whole number) Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied once the Self Refresh Exit command is registered. Semiconductor Group 17 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Package Outlines: Plastic Package P-TSOPII-44 ( 400mil, 0.8mm lead pitch) Thin small outline package, SMD GLX05862 TSOP-44 (400).WMF Plastic Package P-TSOPII-50 ( 400mil, 0.8mm lead pitch) Thin small outline package, SMD 0.1 +0.05 1+0.05 - 1.2 max 10.16 +0.13 - 0.8 0.4 +0.05 -0.1 0.2 M 0.5+0.1 50x 0.1 11.76 +0.2 - 50 26 1 20.95 +0.13 1) Index marking 25 - 1) Does not include plastic or metal protusion of 0.25 max. per side Semiconductor Group 18 0.15 +0.06 -0.0 3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Timing Diagrams 1. Bank Activate Command Cycle 2. Burst Read Operation 3. Read Interrupted by a Read 4. Read to Write Interval 4.1 Read to Write Interval 4.2 Minimum Read to Write Interval 4.3 Non-Minimum Read to Write Interval 5. Burst Write Operation 6. Write and Read Interrupt 6.1 Write Interrupted by a Write 6.2 Write Interrupted by Read 7. Burst Read & Write with Auto-Precharge 7.1 Burst Write with Auto Precharge 7.2 Burst Read with Auto Precharge 8. Burst Termination 8.1 Termination of a Burst Read Operation 8.2 Termination of a Burst Write Operation 9. AC- Parameters 9.1 AC Parameters for a Write Timing 9.2 AC Parameters for a Read Timing 10. Mode Register Set 11. Power on Sequence and Auto Refresh (CBR) 12. Clock Suspension (using CKE) 12.1 Clock Suspension During Burst ReadCAS Latency = 1 12. 2 Clock Suspension During Burst ReadCAS Latency = 2 12. 3 Clock Suspension During Burst ReadCAS Latency = 3 12. 4 Clock Suspension During Burst Write CAS Latency = 1 12. 5 Clock Suspension During Burst Write CAS Latency = 2 12. 6 Clock Suspension During Burst Write CAS Latency = 3 13. Power Down Mode and Clock Suspend 14. Auto Refresh (CBR) 15. Self Refresh ( Entry and Exit) 16. Random Column Read ( Page within same Bank) 16.1 CAS Latency = 1 16.2 CAS Latency = 2 16.3 CAS Latency = 3 17. Random Column Write ( Page within same Bank) 17.1 CAS Latency = 1 17.2 CAS Latency = 2 17.3 CAS Latency = 3 Semiconductor Group 19 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Timing Diagrams (cont' d) 18. Random Row Read ( Interleaving Banks) 18.1 CAS Latency = 1 18.2 CAS Latency = 2 18.3 CAS Latency = 3 19. Random Row Write ( Interleaving Banks) 19.1 CAS Latency = 1 19.2 CAS Latency = 2 19.3 CAS Latency = 3 20. Full Page Read Cycle (optional feature) 20.1 CAS Latency = 1 20.2 CAS Latency = 2 20.3 CAS Latency = 3 21. Full Page Write Cycle (optional feature) 21.1 CAS Latency = 1 21.2 CAS Latency = 2 21.3 CAS Latency = 3 22. Precharge Termination of a Burst 22.1 CAS Latency = 1 22.2 CAS Latency = 2 22.3 CAS Latency = 3 Semiconductor Group 20 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 1. Bank Activate Command Cycle (CAS latency = 3) T0 CLK .......... T1 T T T T T ADDRESS Bank A Row Addr. Bank A Col. Addr. .......... Bank B Row Addr. Bank A Row Addr. tRCD tRRD NOP Write A with Auto Precharge .......... Bank B Activate NOP Bank A Activate COMMAND : " or " H" L" Bank A Activate NOP tRC 2. Burst Read Operation (Burst Length = 4, CAS latency = 1, 2, 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND READ A NOP NOP NOP NOP NOP NOP NOP NOP CAS latency = 1 tCK1, DQ' s CAS latency = 2 DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 tCK2, DQ' s CAS latency = 3 DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 tCK3, DQ' s DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 Semiconductor Group 21 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 3. Read Interrupted by a Read (Burst Length = 4, CAS latency = 1, 2, 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND READ A READ B NOP NOP NOP NOP NOP NOP NOP CAS latency = 1 tCK1, DQ' s CAS latency = 2 DOUT A 0 DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 tCK2, DQ' s CAS latency = 3 DOUT A 0 DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 tCK3, DQ' s DOUT A0 DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 4.1 Read to Write Interval (Burst Length = 4, CAS latency = 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 Minimum delay between the Read and Write Commands = 4+1 = 5 cycles DQM tDQZ tDQW COMMAND NOP READ A NOP NOP NOP NOP WRITE B NOP NOP DQ' s : " " or " H L" DOUT A 0 Must be Hi-Z before the Write Command DIN B0 DIN B1 DIN B2 Semiconductor Group 22 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 4 2. Minimum Read to Write Interval (Burst Length = 4, CAS latency = 1, 2) T0 CLK tDQW T1 T2 T3 T4 T5 T6 T7 T8 DQM tDQZ 1 Clk Interval BANK A ACTIVATE COMMAND NOP NOP NOP READ A WRITE A NOP NOP NOP CAS latency = 1 tCK1, DQ' s Must be Hi-Z before the Write Command CAS latency = 2 DIN A0 DIN A1 DIN A2 DIN A3 tCK2, DQ' s : " " or " H L" DIN A0 DIN A1 DIN A2 DIN A3 4. 3. Non-Minimum Read to Write Interval (Burst Length = 4, CAS latency = 3 T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 tDQW DQM tDQZ COMMAND NOP READ A NOP NOP READ A NOP WRITE B NOP NOP CAS latency = 1 tCK1, DQ' s CAS latency = 2 DOUT A 0 DOUT A1 DOUT A 2 Must be Hi-Z before the Write Command DIN B0 DIN B1 DIN B2 DOUT A 0 DOUT A 1 DIN B0 DIN B1 DIN B2 tCK2, DQ' s CAS latency = 3 DOUT A 0 DIN B0 DIN B1 DIN B2 tCK3, DQ' s : " or " H" L" Semiconductor Group 23 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 5. Burst Write Operation (Burst Length = 4, CAS latency = 1, 2, or 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND NOP WRITE A NOP NOP NOP NOP NOP NOP NOP DQ' s DIN A0 DIN A1 DIN A2 DIN A3 don' care t The first data element and the Write are registered on the same clock edge. Extra data is ignored after termination of a Burst. 6.1 Write Interrupted by a Write (Burst Length = 4, CAS latency = 1, 2, or 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND NOP WRITE A WRITE B NOP NOP NOP NOP NOP NOP 1 Clk Interval DQ' s DIN A0 DIN B0 DIN B1 DIN B2 DIN B3 Semiconductor Group 24 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 6.2 Write Interrupted by a Read (Burst Length = 4, CAS latency = 1, 2, 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND NOP WRITE A READ B NOP NOP NOP NOP NOP NOP CAS latency = 1 tCK1, DQ' s CAS latency = 2 DIN A0 DOUT B 0 DOUT B 1 DOUT B2 DOUT B 3 tCK2, DQ' s CAS latency = 3 DIN A0 don' care t DOUT B 0 DOUT B 1 DOUT B 2 DOUT B 3 tCK3, DQ' s DIN A0 don' care t don' care t DOUT B0 DOUT B 1 DOUT B 2 DOUT B 3 Input data for the Write is ignored. Input data must be removed from the DQ' at least one clock s cycle before the Read dataAPpears on the outputs to avoid data contention. 7.1 Burst Write with Auto-Precharge Burst Length = 2, CAS latency = 1, 2, 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND BANK A ACTIVE NOP NOP WRITE A Auto-Precharge NOP NOP NOP NOP NOP tDPL CAS latency = 1 DIN A0 DIN A1 tRP DQ' s CAS latency = 2 tDPL * * tDPL tRP DQ' s CAS latency = 3 DIN A0 DIN A1 tRP DQ' s DIN A0 DIN A1 Bank can be reactivated after trp * Begin Autoprecharge * Semiconductor Group 25 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 7.2 Burst Read with Auto-Precharge (Burst Length = 4, CAS latency = 1, 2, 3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND READ A with AP NOP NOP NOP NOP NOP NOP NOP NOP CAS latency = 1 * * tRP DOUT A 1 DOUT A 2 DOUT A 3 tCK1, DQ' s CAS latency = 2 DOUT A 0 tRP DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 tCK2, DQ' s CAS latency = 3 tCK3, DQ' s * tRP DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 Bank can be reactivated after trp * Begin Autoprecharge 8.1 Termination of a Burst Read Operation (CAS latency = 1, 2, 3 / Burst Length = 8) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND READ A NOP NOP NOP Burst Stop NOP NOP NOP NOP CAS latency = 1 tCK1, DQ' s CAS latency = 2 DOUT A0 The burst ends after a delay equal to the CAS latency. DOUT A 1 DOUT A 2 DOUT A 3 tCK2, DQ' s CAS latency = 3 DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 tCK3, DQ' s DOUT A 0 DOUT A 1 DOUT A 2 DOUT A 3 Semiconductor Group 26 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM 8.2 Termination of a Burst Write Operation (CAS Laency = 1, 2, 3, Burst Length = 8) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 COMMAND NOP WRITE A NOP NOP Burst Stop NOP NOP NOP NOP CAS latency = 1,2,3 DQ' s DIN A0 DIN A1 DIN A2 don' care t Input data for the Write is masked. Semiconductor Group 27 \ 9.1 AC Parameters for Write Timing Burst Length = 4, CAS Latency = 2 T6 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T7 T8 T9 T2 T3 T4 T5 T0 T1 CLK tCK2 tCS tCH Begin Auto Precharge Bank A Begin Auto Precharge Bank B Semiconductor Group tCH tCKH tCL CKE tCKS CS RAS CAS 28 WE BA tAH RBx RAy RAz RBy AP RAx tAS CAx RBx CBx RAy RAy RAz RBy Addr RAx DQM tRCD tRC Ax0 Ax1 Ax2 Ax3 Bx0 Bx1 Bx2 Bx3 Ay0 tDS tDH Ay1 Ay2 tDPL Ay3 tRP tRRD DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Write with Activate Write with Activate Command Auto Precharge Command Auto Precharge Command Bank A Command Bank B Command Bank A Bank A Bank B Write Command Bank A Precharge Command Bank A Activate Command Bank A Activate Command Bank B \ 9.2 AC Parameters for Read Timing Burst Length = 2, CAS Latency = 2 T3 T10 T11 T12 T13 T4 T5 T6 T7 T8 T9 T0 T1 T2 CLK tCK2 tCS tCKS tCH Begin Auto Precharge Bank B Semiconductor Group tCH tCL tCKH CKE CS RAS CAS 29 WE BA tAH RAx RBx RAy AP tAS RAx CAx RBx Addr tRRD RBx RAy tRAS tRC tAC2 tRCD tLZ tAC2 tOH Ax0 DQM tHZ Ax1 Bx0 tRP tHZ Bx1 DQ Activate Command Bank A Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Read Command Bank A Activate Command Bank B Read with Auto Precharge Command Bank B Precharge Command Bank A Activate Command Bank A \ 10. Mode Register Set T2 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T3 T4 T5 T6 T7 T8 T9 T0 T1 Semiconductor Group CLK CKE 2 Clock min. CS RAS CAS 30 Address Key Mode Register Set Command Any Command WE BA AP Addr HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Precharge Command All Banks \ 11. Power on Sequence and Auto Refresh (CBR) T T1 T T T T T T T T T T T T T T T T T T T T0 T Semiconductor Group CLK CKE Minimum of 2 Refresh Cycles are required 2 Clock min. High level is required CS RAS CAS 31 Address Key WE BA AP Addr DQM tRP tRC DQ Hi-Z Precharge 1st Auto Refresh Command Command All Banks 2nd Auto Refresh Command Mode Register Set Command Any Command HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Inputs must be stable for 200s \ 12.1 Clock Suspension During Burst Read (Using CKE) (1 of 3) Burst Length = 4, CAS Latency = 1 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group CAx tCK1 CKE CS RAS CAS 32 WE BA AP RAx Addr RAx DQM tHZ Ax0 Ax1 Ax2 Ax3 DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Read Command Bank A Clock Suspend 1 Cycle Clock Suspend 2 Cycles Clock Suspend 3 Cycles \ 12.2 Clock Suspension During Burst Read (Using CKE) (2 of 3) Burst Length = 4, CAS Latency = 2 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group CAx tCK2 CKE CS RAS CAS 33 WE BA AP RAx Addr RAx DQM tHZ Ax0 Ax1 Ax2 Ax3 DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Read Command Bank A Clock Suspend 1 Cycle Clock Suspend 2 Cycles Clock Suspend 3 Cycles \ 12.3 Clock Suspension During Burst Read (Using CKE) (3 of 3) Burst Length = 4, CAS Latency = 3 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group CAx tCK3 CKE CS RAS CAS 34 Ax0 Ax1 Ax2 Ax3 Read Command Bank A Clock Suspend 1 Cycle Clock Suspend 2 Cycles WE BA AP RAx Addr RAx DQM tHZ DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Clock Suspend 3 Cycles \ 12.4 Clock Suspension During Burst Write (Using CKE) (1 of 3) Burst Length = 4, CAS Latency = 1 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T12 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group CAx tCK1 CKE CS RAS CAS 35 DAx0 DAx1 DAx2 DAx3 WE BA AP RAx Addr RAx DQM DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Clock Suspend 1 Cycle Write Command Bank A Clock Suspend 2 Cycles Clock Suspend 3 Cycles \ 12.5 Clock Suspension During Burst Write (Using CKE) (2 of 3) Burst Length = 4, CAS Latency = 2 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T12 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group CAx tCK2 CKE CS RAS CAS 36 DAx0 DAx1 DAx2 DAx3 Clock Suspend 1 Cycle Write Command Bank A Clock Suspend 2 Cycles Clock Suspend 3 Cycles WE BA AP RAx Addr RAx DQM DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A \ 12.6 Clock Suspension During Burst Write (Using CKE) (3 of 3) Burst Length = 4, CAS Latency = 3 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T12 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group CAx tCK3 CKE CS RAS CAS 37 DAx0 DAx1 DAx2 DAx3 Clock Suspend 1 Cycle Write Command Bank A WE BA AP RAx Addr RAx DQM DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Clock Suspend 2 Cycles Clock Suspend 3 Cycles \ 13. Power Down Mode and Clock Suspend Burst Length = 4, CAS Latency = 2 T7 T8 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T9 T2 T3 T4 T5 T6 T0 T1 CLK tCKSP tCKSP Semiconductor Group CAx tCK2 CKE CS RAS CAS 38 WE BA AP RAx Addr RAx DQM tHZ Ax0 Ax1 Ax2 Ax3 DQ Hi-Z Activate Command Bank A Clock Suspend Mode Exit Read Command Bank A Clock Mask Start Clock Mask End Precharge Command Bank A Power Down Mode Entry Power Down Mode Exit Any Command HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Clock Suspend Mode Entry \ 14. Auto Refresh (CBR) Burst Length = 4, CAS Latency = 2 T3 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T4 T5 T6 T7 T8 T9 T2 T0 T1 CLK Semiconductor Group RAx RAx CAx tCK2 CKE CS RAS CAS 39 WE BA AP Addr tRC (Minimum Interval) DQM tRP tRC DQ Hi-Z Ax0 Ax1 Ax2 Ax3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Precharge Command All Banks Auto Refresh Command Auto Refresh Command Activate Command Bank A Read Command Bank A \ 15. Self Refresh (Entry and Exit) T2 T10 T11 T T T T T T T T T T T T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK tCKSR tSREX Semiconductor Group CKE CS RAS CAS 40 WE A11(BS) A10 A0 - A9 tRC DQM DQ Hi-Z All Banks must be idle Self Refresh Entry Begin Self Refresh Exit Command Self Refresh Exit Command issued Self Refresh Exit HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM \ 16.1 Random Column Read (Page within same Bank) (1 of 3) Burst Length = 4, CAS Latency = 1 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RAz CAx CAy RAz CAz tCK1 CKE CS RAS CAS 41 Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3 Az0 Az1 Az2 Az3 WE BA AP RAw Addr RAw CAw DQM DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Read Command Bank A Read Command Bank A Read Command Bank A Precharge Read Command Command Bank A Bank A Activate Command Bank A \ 16.2 Random Column Read (Page within same Bank) (2 of 3) Burst Length = 4, CAS Latency = 2 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RAz CAw CAx CAy RAz CAz tCK2 CKE CS RAS CAS 42 Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3 Read Command Bank A Read Command Bank A Read Command Bank A Precharge Command Bank A WE BA AP RAw Addr RAw DQM DQ Hi-Z Az0 Az1 Az2 Az3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Activate Command Bank A Read Command Bank A \ 16.3 Random Column Read (Page within same Bank) (3 of 3) Burst Length = 4, CAS Latency = 3 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RAz CAw CAx CAy RAz CAz tCK3 CKE CS RAS CAS 43 Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3 WE BA AP RAw Addr RAw DQM DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Read Command Bank A Read Command Bank A Read Command Bank A Precharge Command Bank A Activate Command Bank A Read Command Bank A \ 17.1 Random Column Write (Page within same Bank) (1 of 3) Burst Length = 4, CAS Latency = 1 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RBz CBx CBy RBz CBz tCK1 CKE CS RAS CAS 44 Write Command Bank B Write Command Bank B Precharge Command Bank B Activate Command Bank B WE BA AP RBw Addr RBw CBw DQM DQ Hi-Z DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3 DBz0 DBz1 DBz2 DBz3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B Write Command Bank B Write Command Bank B 18.1 Random Row Read (Interleaving Banks) (1 of 3) Burst Length = 8, CAS Latency = 1 T10 T11 T13 T14 T15 T16 T18 T19 T20 T22 T12 T17 T21 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 Semiconductor Group RAx RBy RAx CAx RBy CBy CLK tCK1 CKE High CS RAS CAS 45 WE A11(BS) A10 RBx A0 - A9 tRP RBx CBx tRCD tAC1 DQM DQ Bx1 Bx2 Bx3 Bx4 Bx5 Hi-Z Bx6 Bx0 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7 By0 By1 By2 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B Read Command Bank B Activate Precharge Command Command Bank A Bank B Activate Read Command Command BankB Bank A Read Command Bank B Precharge Command Bank A 18.2 Random Row Read (Interleaving Banks) (2 of 3) Burst Length = 8, CAS Latency = 2 T10 T11 T13 T14 T15 T16 T18 T19 T20 T22 T12 T17 T21 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RAx RBy RAx CAx RBy CBy tCK2 CKE High CS RAS CAS 46 WE A11(BS) A10 RBx A0 - A9 tAC2 RBx CBx DQM tRCD tRP DQ Bx0 Bx1 Bx2 Bx3 Hi-Z Bx4 Bx5 Bx6 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7 By0 By1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B Read Command Bank B Activate Command Bank A Precharge Command Bank B Read Command Bank A Activate Command Bank B Read Command Bank B 18. 3 Random Row Read (Interleaving Banks) (3 of 3) Burst Length = 8, CAS Latency = 3 T10 T11 T13 T14 T15 T16 T18 T19 T20 T22 T12 T17 T21 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 Semiconductor Group RAx RBy CBx RAx CAx RBy CBy CLK tCK3 CKE High CS RAS CAS 47 WE A11(BS) A10 RBx A0 - A9 tAC3 RBx DQM tRCD tRP DQ Bx0 Bx1 Hi-Z Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7 By0 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B Read Command Bank B Activate Command Bank A Read Command Bank A Precharge Command Bank B Activate Command Bank B Read Command Bank B Precharge Command Bank A 19.1 Random Row Write (Interleaving Banks) (1 of 3) Burst Length = 8, CAS Latency = 1 T10 T11 T13 T14 T15 T16 T18 T19 T20 T22 T12 T17 T21 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RBx RAy RBx CBx RAy CAy tCK1 CKE High CS RAS CAS 48 WE A11(BS) A10 RAx A0 - A9 RAx CAx tRCD tRP tDPL DQM DQ Hi-Z DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Activate Command Bank B Write Command Bank B Write Command Bank A Precharge Command Bank A Activate Command Bank A Precharge Command Bank B Write Command Bank A 19.2 Random Row Write (Interleaving Banks) (2 of 3) Burst Length = 8, CAS Latency = 2 T10 T11 T13 T14 T15 T16 T18 T19 T20 T22 T12 T17 T21 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 Semiconductor Group RBx RAy RBx CBx RAy CAy CLK tCK2 CKE High CS RAS CAS 49 WE A11(BS) A10 RAx A0 - A9 tDPL RAx CAX CAy tRCD DQM tRP tDPL DQ Hi-Z DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 DAy4 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Write Command Bank A Activate Command Bank B Write Command Bank B Precharge Command Bank A Activate Command Bank A Write Command Bank A Precharge Command Bank B 19.3 Random Row Write (Interleaving Banks) (3 of 3) Burst Length = 8, CAS Latency = 3 T10 T11 T13 T14 T15 T16 T18 T19 T20 T22 T12 T17 T21 T2 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RBx RAy CAX RBx CBx RAy CAy tCK3 CKE High CS RAS CAS 50 WE A11(BS) A10 RAx A0 - A9 RAx tRCD tDPL tRP tDPL DQM DQ Hi-Z DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Write Command Bank A Activate Command Bank B Write Command Bank B Precharge Command Bank A Activate Command Bank A Write Command Bank A Precharge Command Bank B \ 17.2 Random Column Write (Page within same Bank) (2 of 3) Burst Length = 4, CAS Latency = 2 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RBz RAw CBz CBx CBy RBz RAw CBz CAx tCK2 CKE CS RAS CAS 51 DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3 DBz0 DBz1 DBz2 DBz3 WE BA AP RBz Addr RBz DQM DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B Write Command Bank B Write Command Bank B Write Command Bank B Precharge Command Bank B Activate Command Bank B Write Command Bank B \ 17.3 Random Column Write (Page within same Bank) (3 of 3) Burst Length = 4, CAS Latency = 3 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T2 T10 T11 T3 T4 T5 T6 T7 T8 T9 T0 T1 CLK Semiconductor Group RBz CBz CBx CBy RBz CBz tCK3 CKE CS RAS CAS 52 DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3 Write Command Bank B Write Command Bank B Write Command Bank B WE BA AP RBz Addr RBz DQM DQ Hi-Z DBz0 DBz1 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B Precharge Command Bank B Activate Command Bank B Write Command Bank B \ 20.1 Full Page Read Cycle (1 of 3) Burst Length = Full Page, CAS Latency = 1 T T T T T T T T T T T T T T T T T T T2 T3 T4 T0 T1 CLK Semiconductor Group RBy CBx RBy tCK1 CKE High CS RAS CAS 53 WE BA AP RAx RBx Addr RAx CAx RBx DQM tRRD tRP DQ Ax+1 Ax+2 Ax-2 Ax-1 Ax Hi-Z Ax Ax+1 Bx Bx+1 Bx+2 Bx+3 Bx+4 Bx+5 Bx+6 Bx+7 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Activate Command Command Bank B Bank A Read Command Bank A The burst counter wraps from the highest order page address back to zero during this time interval. Read Command Bank B Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues Burst Stop bursting beginning with the starting address. Command Precharge Command Bank B Activate Command Bank B \ 20.2 Full Page Read Cycle (2 of 3) Burst Length = Full Page, CAS Latency = 2 T5 T T T T T T T T T T T T T T6 T T T T2 T3 T4 T0 T1 CLK Semiconductor Group RBx RBy RBx CBx RBy tCK2 CKE High CS RAS CAS 54 Ax Ax+1 Ax+2 Ax-2 Ax-1 Ax Ax+1 Bx Bx+1 Bx+2 Activate Command Bank B Read Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval. WE BA AP RAx Addr RAx CAx DQM tRP DQ Hi-Z Bx+3 Bx+4 Bx+5 Bx+6 Activate Command Bank A Read Command Bank A Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address. Precharge Command Bank B Burst Stop Command HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank B \ 20.3 Full Page Read Cycle (3 of 3) Burst Length = Full Page, CAS Latency = 3 T5 T T T T T T T T T T T T T T6 T7 T8 T T2 T3 T4 T0 T1 CLK Semiconductor Group RBx RBy CAx RBx CBx RBy tCK3 CKE High CS RAS CAS 55 WE BA AP RAx Addr RAx DQM tRRD DQ Ax Ax+1 Hi-Z Ax+2 Ax-2 Ax-1 Read Command Bank B Ax Ax+1 Bx Bx+1 Bx+2 Bx+3 Bx+4 Bx+5 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Activate Command Bank B Read Command Bank A Full Page burst operation does not terminate when the length is Precharge satisfied; the burst counter Command increments and continues Bank B The burst counter wraps bursting beginning with from the highest order the starting address. page address back to zero Burst Stop during this time interval. Command Activate Command Bank B \ 21.1 Full Page Write Cycle (1 of 3) Burst Length = Full Page, CAS Latency = 1 T T T T T T T T T T T T T T T T T T T2 T3 T4 T0 T1 CLK Semiconductor Group RBy CBx RBy tCK1 CKE High CS RAS CAS 56 The burst counter wraps from the highest order page address back to zero during this time interval. Write Command Bank B Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address. WE BA AP RAx RBx Addr RAx CAx RBx DQM DQ Hi-Z DAx DAx+1 DAx+2 DAx+2 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6 DBx+7 Data is ignored. Precharge Command Bank B Burst Stop Command Activate Command Bank B HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Page Length: 2Mb x 4I/O x 2 Banks = 1024 1Mb x 8I/O x 2 Banks = 512 512kb x 16I/O x 2 Banks = 256 Activate Command Activate Bank B Command Bank A Write Command Bank A \ 21.2 Full Page Write Cycle (2 of 3) Burst Length = Full Page, CAS Latency = 2 T5 T T T T T T T T T T T T T T T T T T2 T3 T4 T0 T1 CLK Semiconductor Group RBx RBy RBx CBx RBy tCK2 CKE High CS RAS CAS 57 WE BA AP RAx Addr RAx CAx DQM DQ Hi-Z DAx DAx+1 DAx+2 DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DBx+6 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Write Command Bank A Activate Write Command Precharge Command Data is ignored. Command Bank B Bank B Bank B The burst counter wraps Full Page burst operation does not from the highest order terminate when the burst length is satisfied; page address back to zero Burst Stop the burst counter increments and continues during this time interval. bursting beginning with the starting address. Command Activate Command Bank B \ 21.3 Full Page Write Cycle (3 of 3) Burst Length = Full Page, CAS Latency = 3 T5 T T T T T T T T T T T T T T6 T T T T2 T3 T4 T0 T1 CLK Semiconductor Group RBx RBy CAx RBx CBx RBy tCK3 CKE High CS RAS CAS 58 Write Command Bank A WE BA AP RAx Addr RAx DQM Data is ignored. DAx DAx+1 DAx+2 DAx+3 DAx-1 DAx DAx+1 DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 DQ Hi-Z HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Activate Write Command Precharge Command Full Page burst operation does not Command Bank B Bank B terminate when the length is Bank B satisfied; the burst counter The burst counter wraps increments and continues from the highest order bursting beginning with page address back to zero Burst Stop the starting address. during this time interval. Command Activate Command Bank B \ 22.1 Precharge Termination of a Burst (1 of 3) T2 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T3 T4 T5 T6 T7 T8 T9 Burst Length = Full Page, CAS Latency = 1 T0 T1 CLK Semiconductor Group RAy RAz CAx RAy CAy RAz CAz tCK1 CKE CS RAS CAS 59 WE BA AP RAx Addr tRP RAx tRP DQM Precharge Termination of a Read Burst. DQ DAx0 DAx1 DAx2 DAx3 DAx4 Hi-Z Ay0 Ay1 Ay2 DAz0 DAz1 DAz2 DAz3 DAz4 DAz5 DAz6 DAz7 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Activate Command Bank A Write Command Bank A Read Precharge Command Command Bank A Bank A Precharge Termination Activate of a Write Burst. Command Write data is masked. Bank A Precharge Command Bank A Write Command Bank A Activate Command Bank A \ 22.2 Precharge Termination of a Burst (2 of 3) T2 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T3 T4 T5 T6 T7 T8 T9 Burst Length = 8 or Full Page, CAS Latency = 2 T0 T1 CLK Semiconductor Group RAy RAz RAy CAy RAz CAz tCK2 CKE High CS RAS CAS 60 WE BA AP RAx Addr tRP RAx CAx tRP tRP DQM DQ Hi-Z DAx0 DAx1 DAx2 DAx3 Ay0 Ay1 Ay2 Az0 Az1 Az2 Activate Command Bank A HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Write Precharge Command Command Bank A Bank A Precharge Termination of a Write Burst. Write data is masked. Activate Command Bank A Read Command Bank A Precharge Command Bank A Activate Command Bank A Read Command Bank A Precharge Command Bank A Precharge Termination of a Read Burst. \ 22.3 Precharge Termination of a Burst (3 of 3) T2 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T3 T4 T5 T6 T7 T8 T9 Burst Length = 4,8 or Full Page, CAS Latency = 3 T0 T1 CLK Semiconductor Group RAy RAz CAx RAy CAy RAz tCK3 CKE High CS RAS CAS 61 WE BA AP RAx Addr tRP RAx tRP DQM DQ DAx0 Hi-Z Ay0 Ay1 Ay2 Activate Command Bank A Write Command Bank A Precharge Command Bank A Activate Command Bank A Read Command Bank A Precharge Command Bank A Activate Command Bank A Precharge Termination of a Read Burst. HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Write Data is masked Precharge Termination of a Write Burst. HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM Complete List of Operation Commands SDRAM FUNCTION TRUTH TABLE CURRENT STATE 1 Idle CS H L L L L L L L H L L L L L L H L L L L L L L H L L L L L L L H L L L L L L L RAS X H H H L L L L X H H H L L L X H H H H L L L X H H H H L L L X H H H H L L L CAS X H H L H H L L X H L L H H L X H H L L H H L X H H L L H H L X H H L L H H L WE X H L X H L H L X X H L H L X X H L H L H L X X H L H L H L X X H L H L H L X BS X X BS BS BS BS X OpX X BS BS BS BS X X X BS BS BS BS BS X X X BS BS BS BS BS X X X BS BS X BS BS X Addr X X X X RA AP X Code X X CA,AP CA,AP X AP X X X X CA,AP CA,AP X AP X X X X CA,AP CA,AP X AP X X X X X X X AP X ACTION NOP or Power Down NOP ILLEGAL2 ILLEGAL2 Row (&Bank) Active; Latch Row Address NOP4 5 Auto-Refresh or Self-Refresh 5 Mode reg. Access NOP NOP Begin Read; Latch CA; Determine AP Begin Write; Latch CA; Determine AP ILLEGAL2 Precharge ILLEGAL NOP (Continue Burst to End;>Row Active) NOP (Continue Burst to End;>Row Active) Burst Stop Command > Row Active Term Burst, New Read, Determine 3 AP Term Burst, Start Write, Determine 3 AP ILLEGAL2 Term Burst, Precharge ILLEGAL NOP (Continue Burst to End;>Row Active) NOP (Continue Burst to End;>Row Active) Burst Stop Command > Row Active Term Burst, Start Read, Determine 3 AP Term Burst, New Write, Determine 3 AP ILLEGAL2 Term Burst, Precharge3 ILLEGAL NOP (Continue Burst to End;> Precharge) NOP (Continue Burst to End;> Precharge) ILLEGAL2 ILLEGAL2 ILLEGAL ILLEGAL2 ILLEGAL2 ILLEGAL Row Active Read Write Read with Auto Precharge Semiconductor Group 62 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM SDRAM FUNCTION TRUTH TABLE(continued) CURRENT STATE 1 Write with Auto Precharge CS H L L L L L L L RAS X H H H H L L L X H H H L L L X H H H L L L X H H H L L L X H H L L X H H H L CAS X H H L L H H L X H H L H H L X H H L H H L X H H L H H L X H L H L X H H L X WE X H L H L H L X X H L X H L X X H L X H L X X H L X H L X X X X X X X H L X X BS X X BS BS X BS BS X X X BS BS BS BS X X X BS BS BS BS X X X BS BS BS BS X X X X X X X X X X X Addr X X X X X X AP X X X X X X AP X X X X X X AP X X X X X X AP X X X X X X X X X X X ACTION NOP (Continue Burst to End;> Precharge) NOP (Continue Burst to End;> Precharge) ILLEGAL2 ILLEGAL2 ILLEGAL ILLEGAL2 ILLEGAL2 ILLEGAL NOP;> Idle after tRP NOP;> Idle after tRP ILLEGAL2 ILLEGAL2 ILLEGAL2 NOP4 ILLEGAL NOP;> Row Active after tRCD NOP;> Row Active after tRCD ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL NOP NOP ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL2 ILLEGAL NOP;> Idle after tRC NOP;> Idle after tRC ILLEGAL ILLEGAL ILLEGAL NOP NOP ILLEGAL ILLEGAL ILLEGAL Precharging H L L L L L L Row Activating H L L L L L L H L L L L L L H L L L L H L L L L Write Recovering Refreshing Mode Register Accessing Semiconductor Group 63 HYB39S16400/800/160BT-8/-10 16MBit Synchronous DRAM CLOCK ENABLE (CKE) TRUTH TABLE: STATE(n) SelfRefresh6 CKE n-1 H L L L L L L H L L L L L L H H H H H H H H L H H L L CKE n X H H H H H L X H H H H H L H L L L L L L L L H L H L CS X H L L L L X X H L L L L X X H L L L L L L X X X X X RAS X X H H H L X X X H H H L X X X H H H L L L X X X X X CAS X X H H L X X X X H H L X X X X H H L H L L X X X X X WE X X H L X X X X X H L X X X X X H L X X H L X X X X X Addr X X X X X X X X X X X X X X X X X X X X X X X X X X X ACTION INVALID EXIT Self-Refresh, Idle after tRC EXIT Self-Refresh, Idle after tRC ILLEGAL ILLEGAL ILLEGAL NOP (Maintain Self-Refresh) INVALID EXIT Power-Down, > Idle. EXIT Power-Down, > Idle. ILLEGAL ILLEGAL ILLEGAL NOP (Maintain Low-Power Mode) Refer to the function truth table Enter Power- Down Enter Power- Down ILLEGAL ILLEGAL ILLEGAL Enter Self-Refresh ILLEGAL NOP Refer to the function truth table 8 Begin Clock Suspend next cycle 8 Exit Clock Suspend next cycle . Maintain Clock Suspend. Power-Down All. Banks Idle7 Any State other than listed above ABBREVIATIONS: RA = Row Address CA = Column Address BS = Bank Address AP = Auto Precharge Notes for SDRAM function truth table : 1. Current State is state of the bank determined by BS. All entries assume that CKE was active cycle. (HIGH) during the preced clock ing 2. Illegal to bank in specified state; Function may be legal in the bank indicated by BS, depending on the state of that bank. 3. Must satisfy bus contention, bus turn around, and/or write recovery requirements. 4. NOP to bank precharging or in Idle state. May precharge bank(s) indicated by BS (andAP). 5. Illegal if any bank is not Idle. 6. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT. 7. Power-Down and Self-Refresh can be entered only from the All Banks Idle State. 8. Must be legal command as defined in the SDRAM function truth table. Semiconductor Group 64 |
Price & Availability of HYB39S16800BT-8
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |