![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
IX6R11 6A Half-Bridge Driver Features * Floating High Side Driver with boot-strap Power supply along with a Low Side Driver. * Fully operational to 650V * 50V/ns dV/dt immunity * Gate drive power supply range: 10 - 35V * Undervoltage lockout for both output drivers * Separate Logic power supply range: 3.3V to VCL * Built using the advantages and compatibility of CMOS and IXYS HDMOSTM processes * Latch-Up protected over entire operating range * High peak output current: 6A * Matched propagation delay for both outputs * Low output impedance * Low power supply current * Immune to negative voltage transients General Description The IX6R11 Bridge Driver for N-channel MOSFETs and IGBTs with a high side and low side output, whose input signals reference the low side. The High Side driver can control a MOSFET or IGBT connected to a positive buss voltage up to 650V. The logic input stages are compatible with TTL or CMOS, have built-in hysteresis and are fully immune to latch up over the entire operating range. The IX6R11 can withstand dV/dt on the output side up to 50V/ns. The IX6R11 comes in either the 14-PIN DIP package (IX6R11P7), the 16-PIN SOIC package (IX6R11S3) or the 18PIN, heat sinkable, SOIC package (IX6R11S6). Applications * * * * * * Driving MOSFETs and IGBTs in half-bridge circuits High voltage, high side and low side drivers Motor Controls Switch Mode Power Supplies (SMPS) DC to DC Converters Class D Switching Amplifiers Warning: The IX6R11 is ESD sensitive. Figure 1. Typical Circuit Connection Copyright (c) IXYS CORPORATION 2004 IX6R11S6 99037C(08/04) First Release IX6R11 Figure 2 - IX6R11 Functional Block Diagram VDD VCH Low to HIN HIN DG High OUT RST IN UVCC Detect HS Isolated High Side VCL HS VCH HIN 4A Gate Driver HGO VDD VCL LIN Low to High Side Delay Equalizer and Shutdown Shutdown Logic UVCC Detect 4A Gate Driver LGO ENB DG DG 1W LS LS Pin Description And Configuration SYMBOL VDD HIN LIN ENB DG VCH HGO HS VCL LGO LS 14-PIN DIP FUNCTION Logic Supply HS Input LS Input Not Enable Ground Supply Voltage Output Return Supply Voltage Output Ground DESCRIPTION Positive power supply for the chip CMOS functions High side Input signal, TTL or CMOS compatible; HGO in phase Low side Input signal, TTL or CMOS compatible; LGO in phase Chip enable. When driven high, both outputs go low. Logic Reference Ground High Side Power Supply High side driver output High side voltage return pin Low side power supply. This power supply provides power for both outputs. Voltage range is from 4.5 to 25V. Low side driver output Low side return 18-PIN SOIC-CT 16-PIN SOIC IX6R11P7 IX6R11S6 2 IX6R11S3 IX6R11 Absolute Maximum Ratings Symbol VCH VHS VHGO VCL VLGO VDD VDG VIN dVS/dt PD PD RTHJA RTHJc TJ TS TL Definition High side floating supply voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage(HIN & LIN) Allowable offset supply voltage transient Package power dissipation@ TA 25C (IX6R11S3/P7) (IX6R11S6) Package power dissipation@ TC 25C (IX6R11S3/P7) (IX6R11S6) Thermal resistance, junction-to-ambient (IX6R11S3/P7) (IX6R11S6) Thermal resistance, junction-to-case (IX6R11S3/P7) (IX6R11S6) Junction Temperature Storage temperature Lead temperature (soldering, 10 s) -55 Min -25 VCH-200 VHS-.3 -0.3 -0.3 -0.3 VLS-3.8 VSS-.3 Max 650 VCH+.3 VCH+.3 35 VCL+.3 VDG+35 VLS+3.8 VDD+.3 50 1.25 1.4 2.5 31 100 90 50 4 150 150 300 Units V V V V V V V V V/ns W W W W K/W K/W K/W K/W o o o C C C Recommended Operating Conditions Symbol VCH VHS VHGO VCL VLGO VDD VDG VIN TA Definition Min High side floating supply absolute voltage VHS+10 High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply voffset voltage Logic input voltage(HIN, LIN, ENbar) Ambient Temperature -20 VHS 10 0 VDG+3 VLS-1 VDG -40 Max VHS+20 650 VCH+20 20 VCC VDG+20 VLS+1 VDD 125 Units V V V V V V V V o C Ordering Information Part Number IX6R11P7 IX6R11S3 IX6R11S6 Package Type 14-PIN DIP 16-PIN SOIC 18-PIN SOIC-CT 3 IX6R11 Dynamic Electrical Characteristics Symbol ton toff tenb tr tf tdm Symbol VINH VINL VINH VINL Definition Turn-on propagation delay Turn-off propagation delay Device not enable delay Turn-on rise time Turn-off fall time Delay matching, HS & LS turn-on/off Cload= 2nF Cload= 2nF Cload= 2nF Test Conditions VDD= VCL= 15V VDD= VCL= 15V VCL= 15V VCL= 15V IO= 0A IO= 0A VHS= VCH= 600V VIN= 0V or VDD VIN= 0V or VDD VIN= 0V or VDD VIN= VDD VIN= 0V 7.5 7 7.4 7 6 8.6 8.2 8.5 8.2 7 -7 -6 170 1 1 15 20 3 3 30 40 1 9.7 9.4 9.6 9.4 A A Min 9.5 0 9.5 0 6 0.1 0.1 6 Test Conditions VHS= 0V, Cload= 2nF VHS= 600V, Cload= 2nF Min Typ 120 94 110 25 17 10 Max 170 125 140 35 25 20 Units ns ns ns ns ns ns Static Electrical Characteristics Definition Logic "1" input voltage, HIN Logic "0" input voltage, LIN NOT ENABLE, ENB NOTENABLE, ENB VCH-VHGO or VCL-VLGO VLLGO // VLHGO High level output voltage, VHGO or VLGO IHL IQHS IQLS IQDD IIN+ IINVCHUV+ VCHUVVCLUV+ VCLUVIGO+ IGOHS to LS bias current. Quiescent VCH supply current Quiescent VCL supply current Quiescent VDD supply current Logic "1" input bias current Logic "0" input voltage A mA mA uA uA uA V V V V V Typ Max Units V V V V V VHLGO // VHHGO High level output voltage, VCH supply undervoltage positive going threshold. VCH supply undervoltage negative going threshold. VCL supply undervoltage positive going threshold VCL supply undervoltage negative going threshold. HS or LS Output low short circuit current; VGO= 15V, VIN= 0V, PW<10us HS or LS Output low short circuit current; VGO= 15V, VIN=0V, PW<10us Timing Waveform Definitions ENB HIN/LIN ENB LGO/HGO Figure 3. INPUT/OUPUT Timing Diagram 4 LGO/HGO 50% tenb 10% Figure 4. ENABLE Waveform Definitions IX6R11 Timing Waveform Definitions 50% HIN LIN 50% Input Signal 90% LGO HGO 10% tdm tdm LGO HGO Figure 5. Definitions of Switching Time Waforms Outgoing Signal Figure 6. Definitions of Delay Matching Waveforms 15V U1 10 11 12 13 14 15 16 17 18 U2 15V 1 V1 18V Vin Vout 3 HS NC NC VDD HIN ENB LIN DG LS VCH HGO HS NC NC LS VCL LGO LS 9 8 7 6 5 4 3 2 1 + C2 10uF C5 0.1uF HGO HS OUTPUT MONITOR HV SCOPE PROBE GND2 L1 200uH + C3 10uF D1 DSEI12-10A GND2 100uF/250V + C1 C6 0.1uF GND1 dVs/dt > 50v/ns HV 600V GND GND1 15V V3 BATTERY 2 C8 0.1uF C9 10uF Q1 Measure dVdt ( HV Scope Probe ) D2 DSEI12-10A BNC PULSE 2 U3 VCC 16 OUT 2 U2 1,8 6,7 3 GND2 IXDD414 4,5 -600V IXFP4N100Q GND3 HCPL-314J 1/2 14 VEE 15 GND3 Figure 7. Test circuit for allowable offset supply voltage transient. 5 IX6R11 175 150 125 100 75 50 225 200 175 150 125 100 75 -50 Time - nanoseconds Max. toff Typ. toff Max. ton Time - nanoseconds Max. toff Typ. toff Max. ton Typ. ton Typ. ton -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Fig. 8a. Low side turn-on and turn-off delay times vs. temperature. 190 180 Temperature - Degrees C Temperature - Degrees C Fig. 8b. High side turn-on and turn-off times vs. temperature. 150 Time - nanonseconds 160 150 140 130 120 110 100 5 10 15 20 Time - nanaseconds 170 Max. ton 140 130 120 110 100 90 80 70 30 35 60 10 Max. ton Max. toff Typ. toff 15 20 25 30 35 Typ. ton Max. toff Typ. toff 25 Typ. ton VCL Supply Voltage - Volts VCH Supply Voltage - Volts Fig. 9a. Low side turn-on and turn-off delay times vs. VCL. 200 Fig. 9b. High side turn-on and turn-off delay times vs. VCH. 225 Time - nanaseconds 160 Time - nanoseconds 200 175 150 125 Max. toff 120 Max. toff Max. ton Typ. ton Typ. toff Max. ton Typ. ton 80 Typ. toff 100 75 40 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20 VDD Supply Voltage- Volts VDD Supply Voltage - Voltage Fig. 10a. Low side turn-on and turn-off delay times vs. VDD supply voltage. 6 Fig. 10b. High side turn-on and turn-off delay times vs. VDD. IX6R11 200 250 Enable Delay Time - ns Enable Delay Time - ns 175 Max. High Side 200 Max. High Side 150 125 100 75 50 Typ. High Side 150 Typ. High Side Max. Low side Typ. Low side 100 Max. Low side Typ. Low side -50 -25 0 25 50 75 100 125 50 10 12 14 16 18 20 22 24 26 28 30 Temperature - Degrees C VCL/VCH Supply Voltage - Volts Fig. 11a. High and Low side ENABLE (Shutdown) times vs. temperature. 300 Fig.11b. High and Low side ENABLE (Shutdown) times vs. supply voltage. Turn-on & Turn-off Rise Time - ns 30 Enable Delay Time - ns 225 Max. High Side 25 Max. turn-on Typ. turn-on Max. turn-off 150 Typ. High Side Max. Low side 20 75 Typ. Low side 15 Typ. turn-off 0 4 6 8 10 12 14 16 18 20 10 -50 -25 0 25 50 75 100 125 VDD Supply Voltage - Volts Temperature - Degrees C Fig. 11c. High and Low side ENABLE (Shutdown) times vs. supply voltage. 25 Turn-on Rise Time - ns Fig. 12a. Turn-on and turn-off rise times vs. temperature. 25 Turn-off Fall Time - ns Max. High Side Max. High Side 20 20 Max. Low side Typ. High Side Typ. High Side Max. Low side 15 Typ. Low side 15 Typ. Low side 10 10 15 20 25 30 35 10 10 15 20 25 30 35 VCL/VCH Supply Voltage - Volts VCL/VCH Supply Voltage - Volts Fig. 12b. Turn-on rise times vs. bias supply voltages. 7 Fig. 12c. Turn-off delay times vs. bias supply voltages. IX6R11 Offset Supply Leakage Current - 12 300 275 250 225 200 175 150 -50 Maximum Logic Input Threshold - Volts 10 8 Max Logic '1' 6 4 Min Logic '0' Typical 2 0 0 4 8 12 16 20 -25 0 25 50 75 100 125 VDD Logic Supply Voltage - Volts Temperature - Degrees C Fig. 13. Logic input threshold voltage vs bias supply voltage. 60 Fig. 14. Offset supply leakage current vs. temperature. 50 Load: IXTU01N100 Logic Input Bias Current - 50 Case Temperature - C o 45 V = 500V V = 320V 40 Maximum 30 20 Typical 40 V = 140V 35 30 25 100 200 300 400 500 600 700 800 900 1000 10 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) Fig. 15. Logic input current vs. bias voltage. 10 Frequency - kHz Fig. 16. IX6R11S3 Case temperature rise vs. operating frequency 18 Output Source Current (A) Output Source Current (A) 9 8 7 6 5 4 3 2 Typical Maximum 16 14 12 10 8 6 4 2 0 10 15 20 25 30 35 Typical Maximum -50 -25 0 25 50 75 100 125 Temperature - Degrees C Fig. 17a. Output source current vs. temperature VBIAS Supply Voltage (V) Fig. 17b. Output source current vs supply voltatge 8 IX6R11 12 20 Output Current - Amperes Output Current - Amperes 11 10 9 8 7 6 5 4 3 2 Minimum Typical 18 16 14 12 10 8 6 4 2 0 10 15 20 25 30 35 Minimum Typical -50 -25 0 25 50 75 100 125 Temperature - oC Bias Voltage - Volts Fig. 18a. Output sink current vs. temperature 15 14 13 12 11 10 9 8 7 6 5 -50 -25 0 25 50 75 100 125 Min Max Typ Fig. 18b. Output sink current vs. bias voltage 16 15 14 13 12 Max 11 10 Typ 9 8 7 Min 6 5 4 -50 -25 Undervoltage Lockout (+) - Volts Undervoltage Lockout (-) - Volts 0 25 50 75 100 125 Temperature - oC Fig. 19a. VCH Undervoltage positive trip vs. temperature. Undervoltage Lockout (+) - Volts 15 14 13 12 11 10 9 8 7 6 5 Min Typ Max Temperature - oC Fig. 19b. VCH Undervoltage negative trip vs. temperature. Undervoltage Lockout (-) - Volts 15 14 13 12 11 10 9 8 7 6 5 -50 -25 0 25 50 75 100 125 Min Max Typ -50 -25 0 25 50 o 75 100 125 Temperature - C Fig. 20a. VCL Undervoltage positive trip vs. temperature. 9 Temperature - oC Fig. 20b. VCL Undervoltage negative trip vs. temperature. IX6R11 1100 1000 VCH Current - A 900 800 Typical Maximum 1100 1000 VCH Current - A Maximum 900 800 700 600 10 Typical 700 600 -50 -25 0 25 50 75 100 125 15 20 25 30 35 Temperature - oC Fig. 21a. Quiescent current vs. temperature for the high side power supply. 1000 950 VCL Current - A 900 850 800 750 700 650 600 -50 -25 0 25 50 o VCH Voltage - Volts Fig. 21b. Quiescent current vs. voltage for the high side power supply. 0 -100 Buss Voltage - Volts Maximum -200 -300 Typical Typical -400 -500 -600 10 75 100 125 15 20 25 30 35 Temperature - C Fig. 22. Quiescent current vs. temperature for the low side power supply 75 70 Case Temperature - oC 65 60 55 50 45 40 35 30 25 E F Load Conditions: V CH Supply Voltage - Volts Fig. 23. BUS voltage vs. VCH supply voltage 75 Case Temperature - C A: IXFK21N100F @ VCH= 400V B: IXFK21N100F @ VCH= 200V C: IXFH14N100Q @ VCH=400V D: IXFH14N100Q @ VCH=200V E: IXTU01N100 @ VCH= 400V F: IXTU01N100 @ VCH= 200V 70 B A B C D Load Conditions: A: IXFK21N100F @ VCH= 400V B: IXFK21N100F @ VCH= 200V C: IXFH14N100Q @ VCH=400V D: IXFH14N100Q @ VCH=200V E: IXTU01N100 @ VCH= 400V F: IXTU01N100 @ VCH= 200V 65 60 55 50 45 40 35 30 A C D o E F 100 200 300 400 500 600 700 800 900 1000 25 100 200 300 400 500 600 700 800 900 1000 Frequency - kHz Fig. 24a. Case temperature rise vs. switching frequency for IX6R11S6 10 Frequency - kHz Fig. 24b. Case temperature rise vs. switching frequency for IX6R11S3 IX6R11 IX6R11S3 Package Outline IX6R11S6 Package Outline 11 IX6R11 IX6R11P7 Package Outline IXYS Corporation 3540 Bassett St; Santa Clara, CA 95054 Tel: 408-982-0700; Fax: 408-496-0670 e-mail: sales@ixys.net www.ixys.com IXYS Semiconductor GmbH Edisonstrasse15 ; D-68623; Lampertheim Tel: +49-6206-503-0; Fax: +49-6206-503627 e-mail: marcom@ixys.de 12 |
Price & Availability of IX6R11S6
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |