![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
14-Bit, 105/125 MSPS, IF Sampling ADC AD9445 FEATURES 125 MSPS guaranteed sampling rate (AD9445BSV-125) 78.3 dBFS SNR/92 dBFS SFDR with 30 MHz input (3.2 V p-p) 74.8 dBFS SNR/95 dBFS SFDR with 30 MHz input (2.0 V p-p) 77.0 dBFS SNR/87 dBFS SFDR with 170 MHz input (3.2 V p-p) 74.6 dBFS SNR/95 dBFS SFDR with 170 MHz input (2.0 V p-p) 73.0 dBFS SNR/88 dBFS SFDR with 300 MHz input (2.0 V p-p) 102 dBFS 2-tone SFDR with 30 MHz and 31 MHz 92 dBFS 2-tone SFDR with 170 MHz and 171 MHz 60 fsec rms jitter Excellent linearity DNL = 0.25 LSB typical INL = 0.8 LSB typical 2.0 V p-p to 4.0 V p-p differential full-scale input Buffered analog inputs LVDS outputs (ANSI-644 compatible) or CMOS outputs Data format select (offset binary or twos complement) Output clock available 3.3 V and 5 V supply operation FUNCTIONAL BLOCK DIAGRAM AGND AVDD1 AVDD2 DRGND DRVDD RF ENABLE DFS 14 CMOS OR LVDS OUTPUT STAGING DCS MODE OUTPUT MODE OR D13 TO D0 2 DCO REF 05489-001 AD9445 BUFFER VIN+ VIN- T/H PIPELINE ADC 2 28 CLK+ CLK- CLOCK AND TIMING MANAGEMENT VREF SENSE REFT REFB Figure 1. Optional features allow users to implement various selectable operating conditions, including input range, data format select, high IF sampling mode, and output data mode. The AD9445 is available in a Pb-free, 100-lead, surface-mount, plastic package (100-lead TQFP/EP) specified over the industrial temperature range -40C to +85C. APPLICATIONS Multicarrier, multimode cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Medical imaging Communications instrumentation PRODUCT HIGHLIGHTS 1. High performance: outstanding SFDR performance for IF sampling applications such as multicarrier, multimode 3G, and 4G cellular base station receivers. Ease of use: on-chip reference and high input impedance track-and-hold with adjustable analog input range and an output clock simplifies data capture. Packaged in a Pb-free, 100-lead TQFP/EP package. Clock duty cycle stabilizer (DCS) maintains overall ADC performance over a wide range of clock pulse widths. OR (out-of-range) outputs indicate when the signal is beyond the selected input range. RF enable pin allows users to configure the device for optimum SFDR when sampling frequencies above 210 MHz (AD9445-125) or 240 MHz (AD9445-105). 2. GENERAL DESCRIPTION The AD9445 is a 14-bit, monolithic, sampling analog-to-digital converter (ADC) with an on-chip IF sampling track-and-hold circuit. It is optimized for performance, small size, and ease of use. The product operates at up to a 125 MSPS conversion rate and is designed for multicarrier, multimode receivers, such as those found in cellular infrastructure equipment. The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are CMOS or LVDS compatible (ANSI-644 compatible) and include the means to reduce the overall current needed for short trace distances. 3. 4. 5. 6. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c) 2005 Analog Devices, Inc. All rights reserved. AD9445 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 DC Specifications ......................................................................... 3 AC Specifications.......................................................................... 4 Digital Specifications ................................................................... 6 Switching Specifications .............................................................. 6 Timing Diagrams.......................................................................... 7 Absolute Maximum Ratings............................................................ 8 Thermal Resistance ...................................................................... 8 ESD Caution.................................................................................. 8 Terminology .......................................................................................9 Pin Configurations and Function Descriptions ......................... 10 Equivalent Circuits......................................................................... 15 Typical Performance Characteristics ........................................... 16 Theory of Operation ...................................................................... 24 Analog Input and Reference Overview ................................... 24 Clock Input Considerations...................................................... 26 Power Considerations................................................................ 27 Digital Outputs ........................................................................... 27 Timing ......................................................................................... 27 Operational Mode Selection ..................................................... 28 Evaluation Board ............................................................................ 29 Outline Dimensions ....................................................................... 37 Ordering Guide .......................................................................... 37 REVISION HISTORY 10/05--Revision 0: Initial Version Rev. 0 | Page 2 of 40 AD9445 SPECIFICATIONS DC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 2.0 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = -1.0 dBFS, DCS on, unless otherwise noted. RF ENABLE = AGND. Table 1. Parameter RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL) 1 Integral Nonlinearity (INL)1 VOLTAGE REFERENCE Output Voltage VREF = 1.0 V Load Regulation @ 1.0 mA Reference Input Current (External VREF = 1.6 V) INPUT REFERRED NOISE ANALOG INPUT Input Span VREF = 1.6 V VREF = 1.0 V Internal Input Common-Mode Voltage External Input Common-Mode Voltage Input Resistance 2 Input Capacitance2 POWER SUPPLIES Supply Voltage AVDD1 AVDD2 DRVDD--LVDS Outputs DRVDD--CMOS Outputs Supply Current1 AVDD1 AVDD21, 3 IDRVDD1--LVDS Outputs IDRVDD1--CMOS Outputs PSRR Offset Gain POWER CONSUMPTION LVDS Outputs CMOS Outputs (DC Input) 1 2 Temp Full Full Full 25C Full 25C Full 25C Full Full Full Full 25C AD9445BSVZ-105 Min Typ Max 14 Guaranteed -7 3 -3 -2 -0.6 5 -1.6 0.9 1.0 2 1.0 +3 +2 +0.65 +7 AD9445BSVZ-125 Min Typ Max 14 Guaranteed -7 3 -3 -2 -0.6 5 -2 0.9 1.0 2 1.0 +3 +2 +0.65 +7 Unit Bits 0.25 0.65 0.25 0.8 mV mV % FSR % FSR LSB LSB LSB V mV A LSB rms +1.6 1.1 +2 1.1 Full Full Full Full Full Full 3.2 2.0 3.5 3.1 1 6 3.9 3.1 3.2 2.0 3.5 3.9 1 6 V p-p V p-p V V k pF Full Full Full Full Full Full Full Full Full Full Full Full 3.14 4.75 3.0 3.0 3.3 5.0 3.3 335 169 63 14 1 0.2 2.2 2.0 3.46 5.25 3.6 3.6 364 196 78 3.14 4.75 3.0 3.0 3.3 5.0 3.3 384 172 63 14 1 0.2 3.46 5.25 3.6 3.6 424 199 78 V V V V mA mA mA mA mV/V %/V 2.4 2.3 2.1 2.6 W W Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 differential termination on each pair of output bits for LVDS output mode and approximately 5 pF loading on each output bit for CMOS output mode. Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure. 3 For RF ENABLE = AVDD1, IAVDD2 increases by ~30 mA, which increases power dissipation. Rev. 0 | Page 3 of 40 AD9445 AC SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 2.0 V p-p differential input, internal trimmed reference (1.0 V mode), AIN = -1.0 dBFS, DCS on, RF ENABLE = ground, unless otherwise noted. Table 2. Parameter SIGNAL-TO-NOISE RATIO (SNR) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz 1 fIN = 300 MHz 2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 SIGNAL-TO-NOISE AND DISTORTION (SINAD) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 Temp 25C 25C Full 25C 25C Full 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C Full 25C 25C Full 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C Min AD9445BSVZ-105 Typ Max 74.3 74.3 73.6 73 72.1 71 70.5 77.6 77.5 76 75.3 73.7 74.2 74.2 73.3 72.5 71.7 67.2 65.2 77.4 77.3 75.7 75.1 72.5 12.2 12.2 12.1 12.0 11.8 11.7 11.6 Min AD9445BSVZ-125 Typ Max 74.1 73.8 73.2 72.9 72 71 70.5 77.3 77.3 76 75.4 73.5 73.9 73.7 73.0 72.5 71.5 66.3 64.3 76.9 76.8 75.4 75.2 71.8 12.2 12.1 12.0 12.0 11.8 11.7 11.6 Unit dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB Bits Bits Bits Bits Bits Bits Bits 73.3 73 72.9 72.2 72.2 71.4 72.9 72.5 72.3 72 71.4 71.3 73.2 72.8 72.3 71.4 71.3 70.2 72.8 72.3 72.4 71.9 70.7 69.3 Rev. 0 | Page 4 of 40 AD9445 Parameter SPURIOUS-FREE DYNAMIC RANGE (SFDR, Second or Third Harmonic) fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 WORST SPUR EXCLUDING SECOND OR THIRD HARMONICS fIN = 10 MHz fIN = 30 MHz fIN = 170 MHz fIN = 225 MHz1 fIN = 300 MHz2 fIN = 400 MHz2 fIN = 450 MHz2 fIN = 10 MHz (3.2 V p-p Input) fIN = 30 MHz (3.2 V p-p Input) fIN = 170 MHz (3.2 V p-p Input) fIN = 225 MHz (3.2 V p-p Input)1 fIN = 300 MHz (3.2 V p-p Input)2 TWO-TONE SFDR fIN = 30.3 MHz @ -7 dBFS, 31.3 MHz @ -7 dBFS fIN = 170.3 MHz @ -7 dBFS, 171.3 MHz @ -7 dBFS ANALOG BANDWIDTH 1 2 Temp Min AD9445BSVZ-105 Typ Max Min AD9445BSVZ-125 Typ Max Unit 25C 25C Full 25C 25C Full 25C 25C 25C 25C 25C 25C 25C 25C 84 83 82 76 75 76 95 92 94 87 87 75 70 92 88 86 81 77 85 82 80 83 75 75 95 94 91 88 87 73 69 92 91 86 80 76 dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc 25C 25C Full 25C 25C Full 25C 25C 25C 25C 25C 25C 25C 25C 25C 25C Full -97 -99 -99 -94 -97 -93 -82 -97 -97 -97 -95 -93 102 92 615 -90 -90 -92 -88 -86 -90 -97 -98 -93 -94 -92 -93 -87 -95 -95 -95 -94 -91 102 91 615 -89 -88 -85 -84 -80 -82 dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBc dBFS dBFS MHz RF ENABLE = low (AGND ) for AD9445-105; RF ENABLE = high (AVDD1) for AD9445-125. RF ENABLE = high (AVDD1). Rev. 0 | Page 5 of 40 AD9445 DIGITAL SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDS_BIAS = 3.74 k, unless otherwise noted. Table 3. Parameter CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE) High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance DIGITAL OUTPUT BITS--CMOS MODE (D0 to D13, OTR) 1 DRVDD = 3.3 V High Level Output Voltage Low Level Output Voltage DIGITAL OUTPUT BITS--LVDS MODE (D0 to D13, OTR) VOD Differential Output Voltage 2 VOS Output Offset Voltage CLOCK INPUTS (CLK+, CLK-) Differential Input Voltage Common-Mode Voltage Differential Input Resistance Differential Input Capacitance 1 2 Temp Full Full Full Full Full AD9445BSVZ-105 Min Typ Max 2.0 0.8 200 +10 2 AD9445BSVZ-125 Min Typ Max 2.0 0.8 200 +10 2 Unit V V A A pF -10 -10 Full Full Full Full Full Full Full Full 3.25 0.2 247 1.125 0.2 1.3 1.1 545 1.375 3.25 0.2 247 1.125 0.2 1.3 1.1 545 1.375 V V mV V V V k pF 1.5 1.4 2 1.6 1.7 1.5 1.4 2 1.6 1.7 Output voltage levels measured with 5 pF load on each output. LVDS RTERM = 100 . SWITCHING SPECIFICATIONS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted. Table 4. Parameter CLOCK INPUT PARAMETERS Maximum Conversion Rate Minimum Conversion Rate CLK Period CLK Pulse Width High 1 (tCLKH) CLK Pulse Width Low1 (tCLKL) DATA OUTPUT PARAMETERS Output Propagation Delay--CMOS (tPD) 2 (Dx, DCO+) Output Propagation Delay--LVDS (tPD) 3 (Dx+), (tCPD)3 (DCO+) Pipeline Delay (Latency) Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ) 1 2 3 Temp Full Full Full Full Full Full Full Full Full Full AD9445BSVZ-105 Min Typ Max 105 10 9.5 3.8 3.8 3.35 3.6 13 60 AD9445BSVZ-125 Min Typ Max 125 10 8.0 3.2 3.2 3.35 3.6 13 60 Unit MSPS MSPS ns ns ns ns ns Cycles ns fsec rms 2.1 4.8 2.3 4.8 With duty cycle stabilizer (DCS) enabled. Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load. LVDS RTERM = 100 . Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition. Rev. 0 | Page 6 of 40 AD9445 TIMING DIAGRAMS N-1 AIN N N+1 tCLKL tCLKH 1/fS CLK+ CLK- tPD DATA OUT N - 13 N - 12 13 CLOCK CYCLES DCO+ DCO- 05489-002 N N+1 tCPD Figure 2. LVDS Mode Timing Diagram N-1 N N+1 VIN tCLKL tCLKH CLK- N+2 CLK+ tPD 13 CLOCK CYCLES DX N - 13 N - 12 N-1 N DCO+ DCO- 05489-003 Figure 3. CMOS Timing Diagram Rev. 0 | Page 7 of 40 AD9445 ABSOLUTE MAXIMUM RATINGS Table 5. With Respect To AGND AGND DGND DGND DRVDD DRVDD AVDD1 DGND AGND AGND Parameter ELECTRICAL AVDD1 AVDD2 DRVDD AGND AVDD1 AVDD2 AVDD2 D0 to D13 CLK+/CLK- OUTPUT MODE, DCS MODE, DFS, SFDR, RF ENABLE VIN+, VIN- VREF SENSE REFT, REFB ENVIRONMENTAL Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering 10 sec) Junction Temperature Rating -0.3 V to +4 V -0.3 V to +6 V -0.3 V to +4 V -0.3 V to +0.3 V -4 V to +4 V -4 V to +6 V -4 V to +6 V -0.3 V to DRVDD + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD1 + 0.3 V Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE The heat sink of the AD9445 package must be soldered to ground. Table 6. Package Type 100-lead TQFP/EP JA 19.8 JB 8.3 JC 2 Unit C/W AGND AGND AGND AGND -0.3 V to AVDD2 + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD1 + 0.3 V -65C to +125C -40C to +85C 300C 150C Typical JA = 19.8C/W (heat sink soldered) for multilayer board in still air. Typical JB = 8.3C/W (heat sink soldered) for multilayer board in still air. Typical JC = 2C/W (junction to exposed heat sink) represents the thermal resistance through heat sink path. Airflow increases heat dissipation, effectively reducing JA. Also, more metal directly in contact with the package leads from metal traces through holes, ground, and power planes reduces the JA. It is required that the exposed heat sink be soldered to the ground plane. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 8 of 40 AD9445 TERMINOLOGY Analog Bandwidth (Full Power Bandwidth) The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. Aperture Delay (tA) The delay between the 50% point of the rising edge of the clock and the instant at which the analog input is sampled. Aperture Uncertainty (Jitter, tJ) The sample-to-sample variation in aperture delay. Clock Pulse Width and Duty Cycle Pulse width high is the minimum amount of time that the clock pulse should be left in the Logic 1 state to achieve rated performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle. Differential Nonlinearity (DNL, No Missing Codes) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 14-bit resolution indicates that all 16,384 codes must be present over all operating ranges. Effective Number of Bits (ENOB) The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula: Minimum Conversion Rate The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit. Offset Error The major carry transition should occur for an analog value of 1/2 LSB below VIN+ = VIN-. Offset error is defined as the deviation of the actual transition from that point. Out-of-Range Recovery Time The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale. Output Propagation Delay (tPD) The delay between the clock rising edge and the time when all bits are within valid logic levels. Power-Supply Rejection Ratio The change in full scale from the value with the supply at the minimum limit to the value with the supply at the maximum limit. Signal-to-Noise and Distortion (SINAD) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. Signal-to-Noise Ratio (SNR) The ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. Spurious-Free Dynamic Range (SFDR) The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may be a harmonic. SFDR can be reported in dBc (that is, degrades as signal level is lowered) or dBFS (always related back to converter full scale). Temperature Drift The temperature drift for offset error and gain error specifies the maximum change from the initial (25C) value to the value at TMIN or TMAX. Total Harmonic Distortion (THD) The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components. Two-Tone SFDR The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. Rev. 0 | Page 9 of 40 ENOB = (SINAD - 1.76 ) 6.02 Gain Error The first code transition should occur at an analog value of 1/2 LSB above negative full scale. The last transition should occur at an analog value of 11/2 LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions. Integral Nonlinearity (INL) The deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs 1/2 LSB before the first code transition. Positive full scale is defined as a level 11/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line. Maximum Conversion Rate The clock rate at which parametric testing is performed. AD9445 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS RF ENABLE D13+ (MSB) DRGND DRVDD DRVDD 75 PIN 1 74 73 72 71 70 69 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND D12+ D11+ D10+ D13- D12- D11- D10- OR+ OR- D9+ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 DCS MODE 1 DNC OUTPUT MODE DFS LVDS_BIAS AVDD1 SENSE VREF AGND 2 3 4 5 6 7 8 9 D9- DRGND D8+ D8- D7+ D7- D6+ D6- DCO+ DCO- D5+ D5- DRVDD DRGND D4+ D4- D3+ D3- D2+ D2- D1+ D1- D0+ D0- (LSB) DNC DNC AD9445 LVDS MODE TOP VIEW (Not to Scale) 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 REFT 10 REFB 11 AVDD2 12 AVDD2 13 AVDD2 14 AVDD2 15 AVDD2 16 AVDD2 17 AVDD1 18 AVDD1 19 AVDD1 20 AGND 21 VIN+ 22 VIN- 23 AGND 24 AVDD2 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 CLK- AVDD1 AVDD1 AVDD1 CLK+ DNC DRGND DRVDD AGND AGND AGND DNC DNC = DO NOT CONNECT Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode Rev. 0 | Page 10 of 40 05489-004 AD9445 Table 7. Pin Function Descriptions--100-Lead TQFP/EP in LVDS Mode Pin No. 1 2, 49 to 52 3 4 5 6, 18 to 20, 32 to 34, 36, 38, 43 to 45, 92 to 97 7 8 9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink 10 11 12 to 17, 25 to 31, 35, 37 22 23 40 41 47, 63, 75, 87 48, 64, 76, 88 53 54 55 56 57 58 59 60 61 62 65 66 67 68 69 70 71 72 73 74 77 78 79 80 81 82 Mnemonic DCS MODE DNC OUTPUT MODE DFS LVDS_BIAS AVDD1 SENSE VREF AGND REFT REFB AVDD2 VIN+ VIN- CLK+ CLK- DRGND DRVDD D0- (LSB) D0+ D1- D1+ D2- D2+ D3- D3+ D4- D4+ D5- D5+ DCO- DCO+ D6- D6+ D7- D7+ D8- D8+ D9- D9+ D10- D10+ D11- D11+ Description Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended); DCS = high (AVDD1) to disable DCS. Do Not Connect. These pins should float. CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place 3.7 k resistor terminated to DRGND. 3.3 V (5%) Analog Supply. Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for external reference. 1.0 V Reference I/O. Function dependent on SENSE and external programming resistors. Decouple to ground with 0.1 F and 10 F capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. Differential Reference Output. Decoupled to ground with 0.1 F capacitor and to REFB (Pin 14) with 0.1 F and 10 F capacitors. Differential Reference Output. Decoupled to ground with a 0.1 F capacitor and to REFT (Pin 13) with 0.1 F and 10 F capacitors. 5.0 V Analog Supply (5%). Analog Input--True. Analog Input--Complement. Clock Input--True. Clock Input--Complement. Digital Output Ground. 3.3 V Digital Output Supply (3.0 V to 3.6 V). D0 Complement Output Bit (LVDS Levels). D0 True Output Bit. D1 Complement Output Bit. D1 True Output Bit. D2 Complement Output Bit. D2 True Output Bit. D3 Complement Output Bit. D3 True Output Bit. D4 Complement Output Bit. D4 True Output Bit. D5 Complement Output Bit. D5 True Output Bit. Data Clock Output--Complement. Data Clock Output--True. D6 Complement Output Bit. D6 True Output Bit. D7 Complement Output Bit. D7 True Output Bit. D8 Complement Output Bit. D8 True Output Bit. D9 Complement Output Bit. D9 True Output Bit. D10 Complement Output Bit. D10 True Output Bit. D11 Complement Output Bit. D11 True Output Bit. Rev. 0 | Page 11 of 40 AD9445 Pin No. 83 84 85 86 89 90 100 Mnemonic D12- D12+ D13- D13+ (MSB) OR- OR+ RF ENABLE Description D12 Complement Output Bit. D12 True Output Bit. D13 Complement Output Bit. D13 True Output Bit. Out-of-Range Complement Output Bit. Out-of-Range True Output Bit. RF ENABLE Control Pin. CMOS-compatible control pin to optimize the configuration of the AD9445 analog front end. Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR performance. Power dissipation from AVDD2 increases by 150 mW to 200 mW. Rev. 0 | Page 12 of 40 AD9445 RF ENABLE D13 (MSB) DRGND DRVDD DRVDD 75 PIN 1 74 73 72 71 70 69 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND D12 D11 D10 OR D9 D8 D7 D6 D5 D4 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 DCS MODE 1 DNC OUTPUT MODE DFS LVDS_BIAS AVDD1 SENSE VREF AGND 2 3 4 5 6 7 8 9 D3 DRGND D2 D1 D0 (LSB) DNC DNC DNC DCO+ DCO- DNC DNC DRVDD DRGND DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC AD9445 CMOS MODE TOP VIEW (Not to Scale) 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 REFT 10 REFB 11 AVDD2 12 AVDD2 13 AVDD2 14 AVDD2 15 AVDD2 16 AVDD2 17 AVDD1 18 AVDD1 19 AVDD1 20 AGND 21 VIN+ 22 VIN- 23 AGND 24 AVDD2 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 CLK- AVDD1 AVDD1 AVDD1 CLK+ DNC DRGND DRVDD AGND AGND AGND DNC DNC = DO NOT CONNECT Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode Rev. 0 | Page 13 of 40 05489-005 AD9445 Table 8. Pin Function Descriptions--100-Lead TQFP/EP in CMOS Mode Pin No. 1 2, 49 to 62, 65 to 66, 69 to 71 3 4 5 6, 18 to 20, 32 to 34, 36, 38, 43 to 45, 92 to 97 7 8 9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink 10 11 12 to 17, 25 to 31, 35, 37 22 23 40 41 47, 63, 75, 87 48, 64, 76, 88 67 68 72 73 74 77 78 79 80 81 82 83 84 85 86 89 90 100 Mnemonic DCS MODE DNC OUTPUT MODE DFS LVDS_BIAS AVDD1 SENSE VREF AGND REFT REFB AVDD2 VIN+ VIN- CLK+ CLK- DRGND DRVDD DCO- DCO+ D0 (LSB) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 (MSB) OR RF ENABLE Description Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended); DCS = high (AVDD1) to disable DCS. Do Not Connect. These pins should float. CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode; OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place 3.7 k resistor terminated to DRGND. 3.3 V (5%) Analog Supply. Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for external reference. 1.0 V Reference I/O. Function dependent on SENSE and external programming resistors. Decouple to ground with 0.1 F and 10 F capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. Differential Reference Output. Decoupled to ground with 0.1 F capacitor and to REFB (Pin 14) with 0.1 F and 10 F capacitors. Differential Reference Output. Decoupled to ground with a 0.1 F capacitor and to REFT (Pin 13) with 0.1 F and 10 F capacitors. 5.0 V Analog Supply (5%). Analog Input--True. Analog Input--Complement. Clock Input--True. Clock Input--Complement. Digital Output Ground. 3.3 V Digital Output Supply (3.0 V to 3.6 V). Data Clock Output--Complement. Data Clock Output--True. D0 True Output Bit (CMOS levels). D1 True Output Bit. D2 True Output Bit. D3 True Output Bit. D4 True Output Bit. D5 True Output Bit. D6 True Output Bit. D7 True Output Bit. D8 True Output Bit. D9 True Output Bit. D10 True Output Bit. D11 True Output Bit. D12 True Output Bit. D13 True Output Bit. Out-of-Range True Output Bit. RF ENABLE CMOS-compatible Control Pin. Optimizes the configuration of the analog front end. Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR. Power dissipation from AVDD2 increases by 150 mW to 200 mW. Rev. 0 | Page 14 of 40 AD9445 EQUIVALENT CIRCUITS AVDD2 VIN+ 6pF 1k DRVDD 3.5V X1 1k T/H AVDD2 DX VIN- 05489-006 6pF Figure 6. Equivalent Analog Input Circuit Figure 9. Equivalent CMOS Digital Output Circuit 05489-009 VDD DRVDD DRVDD 1.2V LVDS_BIAS 3.74k K RF ENABLE, DCS MODE, OUTPUT MODE, DFS 05489-007 05489-010 30k ILVDSOUT Figure 7. Equivalent LVDS_BIAS Circuit Figure 10. Equivalent Digital Input Circuit, DFS, DCS MODE, OUTPUT MODE AVDD2 DRVDD 3k CLK+ 3k CLK- V DX- V V DX+ V 2.5k 2.5k 05489-008 Figure 8. Equivalent LVDS Digital Output Circuit Figure 11. Equivalent Sample Clock Input Circuit Rev. 0 | Page 15 of 40 05489-011 AD9445 TYPICAL PERFORMANCE CHARACTERISTICS AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25C, 2.0 V p-p differential input, AIN = -1.0 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted. 0 -10 -20 -30 AMPLITUDE (dBFS) 0 125MSPS 30.3MHz @ -1.0dBFS SNR = 73.4dB ENOB = 12.1BITS SFDR = 94dBc AMPLITUDE (dBFS) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-012 125MSPS 225.3MHz @ -1.0dBFS SNR = 72.9dB ENOB = 12.1BITS SFDR = 88dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 0 15.625 31.250 FREQUENCY (MHz) 46.875 -120 -130 0 15.625 31.250 FREQUENCY (MHz) 46.875 62.500 62.500 Figure 12. AD9445-125 64k Point Single-Tone FFT/125 MSPS/30.3 MHz Figure 15. AD9445-125 64k Point Single-Tone FFT/125 MSPS/225.3 MHz 0 -10 -20 -30 AMPLITUDE (dBFS) 0 125MSPS 100.3MHz @ -1.0dBFS SNR = 0dB ENOB = 12.1BITS SFDR = 96dBc AMPLITUDE (dBFS) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-013 125MSPS 300.3MHz @ -1.0dBFS SNR = 72.0dB ENOB = 11.8BITS SFDR = 87dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 0 15.625 31.250 FREQUENCY (MHz) 46.875 -120 -130 0 15.625 31.250 FREQUENCY (MHz) 46.875 62.500 62.500 Figure 13. AD9445-125 64k Point Single-Tone FFT/125 MSPS/100.3 MHz Figure 16. AD9445-125 64k Point Single-Tone FFT/125 MSPS/300.3 MHz 0 -10 -20 -30 AMPLITUDE (dBFS) 0 125MSPS 170.3MHz @ -1.0dBFS SNR = 73.2dB ENOB = 12.0BITS SFDR = 91dBc AMPLITUDE (dBFS) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-014 125MSPS 450.3MHz @ -1.0dBFS SNR = 70.5dB ENOB = 11.6BITS SFDR = 69dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 0 15.625 31.250 FREQUENCY (MHz) 46.875 -120 -130 0 15.625 31.250 FREQUENCY (MHz) 46.875 62.500 62.500 Figure 14. AD9445-125 64k Point Single-Tone FFT/125 MSPS/170.3 MHz Figure 17. AD9445-125 64k Point Single-Tone FFT/125 MSPS/450.3 MHz Rev. 0 | Page 16 of 40 05489-017 -110 05489-016 -110 05489-015 -110 AD9445 100 SFDR +85C 95 SFDR +25C 90 SFDR -40C 85 SNR +25C (dB) (dB) 100 SFDR +85C 95 90 SFDR +25C 85 SNR -40C 80 SNR -40C 75 SNR +25C 70 SNR +85C SNR +85C 65 05489-018 SFDR -40C 80 75 70 65 60 55 0 50 100 60 55 0 50 100 150 200 250 300 350 400 450 ANALOG INPUT FREQUENCY (MHz) 150 200 250 300 350 400 450 ANALOG INPUT FREQUENCY (MHz) Figure 18. AD9445-125 SNR/SFDR vs. Analog Input Frequency, 125 MSPS, 2.0 V p-p Input Range Figure 21. AD9445-125 SNR/SFDR vs. Analog Input Frequency, 125 MSPS, 3.2 V p-p Input Range 100 95 90 SFDR +25C 105 SFDR +85C 100 95 125M SFDR dBc 105M SFDR dBc 85 SNR +25C (dB) SFDR -40C SNR -40C (dB) 80 75 70 90 85 80 125M SNR dB 05489-019 05489-022 SNR +85C 65 60 55 0 10 20 30 40 50 60 70 80 90 ANALOG INPUT FREQUENCY (MHz) 75 105M SNR dB 70 0 20 40 60 80 100 120 140 SAMPLE RATE (MSPS) 100 Figure 19. AD9445-125 SNR/SFDR vs. Analog Input Frequency, 3.2 V p-p Input Range, 125 MSPS, CMOS Output Mode Figure 22. AD9445 Single-Tone SNR/SFDR vs. Sample Rate 2.3 MHz 120 SFDR dBFS 100 120 SFDR dBFS 100 80 SNR dBFS (dB) (dB) 80 SNR dBFS 60 60 40 SFDR dBc 20 05489-020 40 SFDR dBc 20 SNR dB SNR dB 0 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 05489-023 0 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 ANALOG INPUT AMPLITUDE (dB) ANALOG INPUT AMPLITUDE (dB) Figure 20. AD9445-125 SNR/SFDR vs. Analog Input Level, 125 MSPS/225.3 MHz Rev. 0 | Page 17 of 40 Figure 23. AD9445-125 SNR/SFDR vs. Analog Input Level, 125 MSPS/225.3 MHz, CMOS Output Mode 05489-021 AD9445 0 -10 -20 -30 AMPLITUDE (dBFS) 0 105MSPS 30.3MHz @ -1.0dBFS SNR = 74.3dB ENOB = 12.2BITS SFDR = 92dBc AMPLITUDE (dBFS) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-024 105MSPS 225.3MHz @ -1.0dBFS SNR = 73.0dB ENOB = 12.0BITS SFDR = 87dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 0 13.125 26.250 FREQUENCY (MHz) 39.375 -120 -130 0 13.125 26.250 FREQUENCY (MHz) 39.375 52.500 52.500 Figure 24. AD9445-105 64k Point Single-Tone FFT/105 MSPS/30.3 MHz Figure 27. AD9445-105 64k Point Single-Tone FFT/105 MSPS/225.3 MHz 0 -10 -20 -30 AMPLITUDE (dBFS) 0 105MSPS 100.3MHz @ -1.0dBFS SNR = 73.5dB ENOB = 11.8BITS SFDR = 93dBc AMPLITUDE (dBFS) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-025 105MSPS 300.3MHz @ -1.0dBFS SNR = 72.1dB ENOB = 11.8BITS SFDR = 87dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 0 13.125 26.250 FREQUENCY (MHz) 39.375 -120 -130 0 13.125 26.250 FREQUENCY (MHz) 39.375 52.500 52.500 Figure 25. AD9445-105 64k Point Single-Tone FFT/105 MSPS/100.3 MHz Figure 28. AD9445-105 64k Point Single-Tone FFT/105 MSPS/300.3 MHz 0 -10 -20 -30 AMPLITUDE (dBFS) 0 105MSPS 170.3MHz @ -1.0dBFS SNR = 73.6dB ENOB = 12.1BITS SFDR = 94dBc AMPLITUDE (dBFS) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-026 105MSPS 450.3MHz @ -1.0dBFS SNR = 70.5dB ENOB = 11.6BITS SFDR = 70dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 0 13.125 26.250 FREQUENCY (MHz) 39.375 -120 -130 0 13.125 26.250 FREQUENCY (MHz) 39.375 52.500 52.500 Figure 26. AD9445-105 64k Point Single-Tone FFT/105 MSPS/170.3 MHz Figure 29. AD9445-105 64k Point Single-Tone FFT/105 MSPS/450.3 MHz Rev. 0 | Page 18 of 40 05489-029 -110 05489-028 -110 05489-027 -110 AD9445 100 SFDR +25C 95 90 SFDR +85C 85 (dB) (dB) 100 SFDR -40C 95 SFDR +25C 90 85 80 75 SNR +25C 70 SNR +85C SNR +25C 65 05489-030 SFDR +85C SFDR -40C 80 SNR -40C 75 70 65 60 55 0 50 100 150 200 250 300 350 400 450 ANALOG INPUT FREQUENCY (MHz) SNR -40C SNR +85C 60 55 0 50 100 150 200 250 300 350 400 450 ANALOG INPUT FREQUENCY (MHz) Figure 30. AD9445-105 SNR/SFDR vs. Analog Input Frequency, 105 MSPS, 2.0 V p-p Figure 33. AD9445-105 SNR/SFDR vs. Analog Input Frequency, 105 MSPS, 3.2 V p-p 100 SFDR +25C 95 90 85 (dB) 100 SFDR +85C 95 90 SFDR dBc SFDR -40C (dB) 85 80 75 SNR dB 80 75 70 65 60 55 0 SNR -40C SNR +25C SNR +85C 70 05489-034 05489-031 65 60 2.7 20 40 60 80 100 120 140 160 180 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 ANALOG INPUT FREQUENCY (MHz) ANALOG INPUT COMMON-MODE VOLTAGE Figure 31. AD9445-105 SNR/SFDR vs. Analog Input Frequency, 3.2 V p-p Input Range, 105 MSPS, CMOS Output Mode Figure 34. AD9445-105 SNR/SFDR vs. Analog Input Common Mode, 105 MSPS/10.3 MHz 120 SFDR dBFS 100 120 SFDR dBFS 100 80 SNR dBFS (dB) 80 SNR dBFS (dB) 60 60 40 SFDR dBc 40 SFDR dBc 20 05489-032 20 SNR dB SNR dB 0 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 05489-035 0 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 ANALOG INPUT AMPLITUDE (dB) ANALOG INPUT AMPLITUDE (dB) Figure 32. AD9445-105 SNR/SFDR vs. Analog Input Level, 105 MSPS/225.3 MHz Rev. 0 | Page 19 of 40 Figure 35. AD9445-105 SNR/SFDR vs. Analog Input Level, 105 MSPS/225.3 MHz, CMOS Output Mode 05489-033 AD9445 0 -10 -20 -30 AMPLITUDE (dBFS) 0 125MSPS 30.3MHz @ -7.0dBFS 31.3MHz @ -7.0dBFS SFDR = 102dBFS SPUR AND IMD3 (dB) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-037 SFDR dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0 13.625 27.250 40.875 54.500 FREQUENCY (MHz) WORST IMD3 dBc SFDR dBFS 05489-041 -110 -120 -100 -90 WORST IMD3 dBFS -80 -70 -60 -50 -40 -30 -20 -10 0 FUNDAMENTAL LEVEL (dB) Figure 36. AD9445-125 64k Point Two-Tone FFT/ 125 MSPS/30.3 MHz, 31.3 MHz Figure 39. AD9445-125 Two-Tone SFDR vs. Analog Input Level 125 MSPS/170.3 MHz, 171.3 MHz 0 -10 -20 -30 SPUR AND IMD3 (dB) 0 -10 -20 SFDR dBc AMPLITUDE (dBFS) -30 -40 -50 -60 -70 -80 -90 -100 -110 05489-038 105MSPS 30.3MHz @ -7.0dBFS 31.3MHz @ -7.0dBFS SFDR = 102dBFS -40 -50 -60 -70 -80 -90 -100 -110 -120 -100 -90 -80 WORST IMD3 dBFS -70 -60 -50 -40 -30 -20 -10 0 SFDR dBFS WORST IMD3 dBc -130 -140 0 13.125 26.250 FREQUENCY (MHz) 39.375 52.500 FUNDAMENTAL LEVEL (dB) Figure 37. AD9445-125 Two-Tone SFDR vs. Analog Input Level 125 MSPS/30.3 MHz, 31.3 MHz Figure 40. AD9445-105 64k Point Two-Tone FFT/105 MSPS/30.3 MHz, 31.3 MHz 0 -10 -20 -30 AMPLITUDE (dBFS) 0 125MSPS 170.3MHz @ -7.0dBFS 171.3MHz @ -7.0dBFS SFDR = 91dBFS SPUR AND IMD3 (dB) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 05489-040 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0 13.625 27.250 40.875 54.500 FREQUENCY (MHz) SFDR dBc WORST IMD3 dBc SFDR dBFS WORST IMD3 dBFS -90 -80 -70 -60 -50 -40 -30 -20 -10 0 05489-043 -110 -120 -100 FUNDAMENTAL LEVEL (dB) Figure 38. AD9445-125 64k Point Two-Tone FFT/ 125 MSPS/170.3 MHz, 171.3 MHz Rev. 0 | Page 20 of 40 Figure 41. AD9445-105 Two-Tone SFDR vs. Analog Input Level 105 MSPS/30.3 MHz, 31.3 MHz 05489-042 -120 AD9445 25000 22190 20000 25000 23754 30000 SAMPLE SIZE = 65538 26294 20000 FREQUENCY 15000 FREQUENCY 15743 15000 16117 10000 7968 9003 10000 5000 05489-044 5000 1127 1355 75 N OUTPUT CODE 2 N+1 N+2 N+3 N+4 62 N-4 N-3 N-2 N-1 3 307 0 0 227 N OUTPUT CODE 2 N-4 N-3 N-2 N-1 N+1 N+2 N+3 N+4 Figure 42. AD9445-125 Grounded Input Histogram Figure 45. AD9445-105 Grounded Input Histogram 0 -10 -20 -30 AMPLITUDE (dBFS) 0 105MSPS 170.3MHz @ -7.0dBFS 171.3MHz @ -7.0dBFS SFDR = 92dBFS GAIN ERROR (%FSR) -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 05489-045 05489-048 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0 13.125 26.250 FREQUENCY (MHz) 39.375 -0.7 -0.8 -40 52.500 -20 0 20 40 60 80 TEMPERATURE (C) Figure 43. AD9445-105 64k Point Two-Tone FFT/105 MSPS/170.3 MHz, 171.3 MHz Figure 46. AD9445-125 Gain vs. Temperature 0 -10 -20 -30 SPUR AND IMD3 (dB) 0.4 0.3 0.2 DNL ERROR (LSB) SFDR dBc -40 -50 -60 -70 -80 -90 -100 -110 -120 -100 -90 WORST IMD3 dBFS -80 -70 -60 -50 -40 -30 -20 -10 0 05489-046 0.1 0 -0.1 -0.2 05489-049 WORST IMD3 dBc SFDR dBFS -0.3 -0.4 0 4096 8192 OUTPUT CODE 12288 16384 FUNDAMENTAL LEVEL (dB) Figure 44. AD9445-105 Two-Tone SFDR vs. Analog Input Level 105 MSPS/170.3 MHz, 171.3 MHz Figure 47. AD9445-105 DNL Error vs. Output Code, 105 MSPS, 10.3 MHz Rev. 0 | Page 21 of 40 05489-047 3350 3493 AD9445 0.4 0.3 0.2 DNL ERROR (LSB) 1.0 0.8 0.6 0.4 INL ERROR (LSB) 05489-050 0.1 0 -0.1 -0.2 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 0 4096 8192 OUTPUT CODE 12288 05489-053 -0.3 -0.4 0 4096 8192 OUTPUT CODE 12288 16384 16384 Figure 48. AD9445-125 DNL Error vs. Output Code, 125 MSPS, 10.3 MHz Figure 51. AD9445-125 INL Error vs. Output Code, 125 MSPS, 10.3 MHz 1.014 400 350 1.012 300 1.010 ISUPPLY (mA) VREF AVDD1 250 200 AVDD2 150 100 1.008 1.006 DRVDD 05489-051 05489-066 1.004 50 0 0 20 40 60 80 100 120 140 SAMPLE RATE (MSPS) 1.002 -40 -20 0 20 40 60 80 160 TEMPERATURE (C) Figure 49. AD9445-125 VREF vs. Temperature Figure 52. AD9445-105 Power Supply Current vs. Sample Rate 10.3 MHz @ -1 dBFS 0.5 0.4 0.3 0.2 INL ERROR (LSB) 78 77 170.3MHz SNR dB 76 75 (dB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0 4096 8192 OUTPUT CODE 12288 05489-052 225.3MHz SNR dB 74 73 72 71 1.8 300.3MHz SNR dB 16384 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) Figure 50. AD9445-105 INL Error vs. Output Code, 105 MSPS, 10.3 MHz Figure 53. AD9445-125 SNR vs. Analog Input Range, 125 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz Rev. 0 | Page 22 of 40 05489-067 AD9445 78 95 77 170.3MHz SFDR dBc 90 76 75 (dB) 170.3MHz SFDR dBc 225.3MHz SFDR dBc (dB) 85 74 300.3MHz SFDR dBc 73 225.3MHz SFDR dBc 80 75 05489-068 300.3MHz SFDR dBc 70 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 71 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) ANALOG INPUT RANGE (V p-p) Figure 54. AD9445-105 SNR vs. Analog Input Range, 105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz Figure 57. AD9445-105 SFDR vs. Analog Input Range, 105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz 400 350 300 AVDD1 ISUPPLY (mA) 81 80 79 105M SNR dBFS 250 78 200 AVDD2 150 100 DRVDD 05489-069 05489-039 (dB) 77 125M SNR dBFS 76 75 74 1.8 50 0 0 20 40 60 80 100 120 140 SAMPLE RATE (MSPS) 160 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) Figure 55. AD9445-125 Power Supply Current vs. Sample Rate 10.3 MHz @ -1 dBFS Figure 58. SNR vs. Analog Input Range, 2.3 MHz @ -30 dBFS 95 90 170.3MHz SFDR dBc 85 (dB) 80 225.3MHz SFDR dBc 75 05489-070 300.3MHz SFDR dBc 70 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ANALOG INPUT RANGE (V p-p) Figure 56. AD9445-125 SFDR vs. Analog Input Range, 125 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz Rev. 0 | Page 23 of 40 05489-071 72 AD9445 THEORY OF OPERATION The AD9445 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth track-and-hold circuit that samples the signal prior to quantization by the 14-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin. connected to AGND). Because of this trim and the maximum ac performance provided by the 2.0 V p-p analog input range, there is little benefit to using analog input ranges <2 V p-p. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use <2.0 V p-p may exhibit missing codes and, therefore, degraded noise and distortion performance. VIN+ VIN- REFT ADC CORE 0.1F 0.1F REFB VREF 10F + 0.1F SELECT LOGIC SENSE 0.5V 0.1F + ANALOG INPUT AND REFERENCE OVERVIEW A stable and accurate 0.5 V band gap voltage reference is built into the AD9445. The input range can be adjusted by varying the reference voltage applied to the AD9445, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly. 10F Internal Reference Connection A comparator within the AD9445 detects the potential at the SENSE pin and configures the reference into three possible states, which are summarized in Table 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 59), setting VREF to ~1.0 V. Connecting the SENSE pin to VREF switches the reference amplifier output to the SENSE pin, completing the loop and providing a ~1.0 V reference output. If a resistor divider is connected as shown in Figure 60, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as AD9445 Figure 59. Internal Reference Configuration VIN+ VIN- REFT ADC CORE 0.1F 0.1F REFB VREF + 10F 0.1F R2 SENSE SELECT LOGIC 0.1F + 10F R2 VREF = 0.5 V x 1 + R1 In all reference configurations, REFT and REFB drive the analog-to-digital conversion core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference. R1 0.5V Internal Reference Trim The internal reference voltage is trimmed during the production test to adjust the gain (analog input voltage range) of the AD9445. Therefore, there is little advantage to the user supplying an external voltage reference to the AD9445. The gain trim is performed with the AD9445 input range set to 2.0 V p-p nominal (SENSE Table 9. Reference Configuration Summary Selected Mode External Reference Programmable Reference Internal Fixed Reference SENSE Voltage AVDD1 0.2 V to VREF AGND to 0.2 V Resulting VREF (V) N/A R2 (See Figure 60) 0.5 x 1 + R1 AD9445 Figure 60. Programmable Reference Configuration Resulting Differential Span (V p-p) 2 x external reference 2 x VREF 2.0 1.0 Rev. 0 | Page 24 of 40 05489-055 05489-054 AD9445 External Reference Operation The AD9445's internal reference is trimmed to enhance the gain accuracy of the ADC. An external reference may be more stable over temperature, but the gain of the ADC is not likely to improve. Figure 49 shows the typical drift characteristics of the internal reference in both 1 V and 0.5 V modes. When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 7 k load. The internal buffer still generates the positive and negative full-scale references, REFT and REFB, for the ADC core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a maximum of 1.6 V. VIN+ 1V p-p 3.5V VIN- DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s 05489-056 Figure 61. Differential Analog Input Range for VREF = 1.0 V Analog Inputs As with most new high speed, high dynamic range ADCs, the analog input to the AD9445 is differential. Differential inputs improve on-chip performance because signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9445 cannot be realized with a single-ended analog input, so such configurations are discouraged. Contact sales for recommendations of other 14-bit ADCs that support singleended analog input configurations. With the 1 V reference, which is the nominal value (see the Internal Reference Trim section), the differential input range of the AD9445 analog input is nominally 2.0 V p-p or 1.0 V p-p on each input (VIN+ or VIN-). The AD9445 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 k resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the Equivalent Circuits section). Therefore, the analog source driving the AD9445 should be accoupled to the input pins. The recommended method for driving the analog input of the AD9445 is to use an RF transformer to convert single-ended signals to differential (see Figure 62). Series resistors between the output of the transformer and the AD9445 analog inputs help isolate the analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 k resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformer input. For example, if RT is set to 51 , RS is set to 33 , and there is a 1:1 impedance ratio transformer, the input will match a 50 source with a full-scale drive of 10.0 dBm. The 50 impedance matching can also be incorporated on the secondary side of the transformer, as shown in the evaluation board schematic (see Figure 67). ANALOG INPUT SIGNAL RT ADT1-1WT RS VIN+ RS 0.1F AD9445 05489-057 VIN- Figure 62. Transformer-Coupled Analog Input Circuit High IF Applications In applications where the analog input frequency range is >100 MHz, the phase and amplitude matching at the analog inputs becomes critical to optimize performance of the ADC. The circuit in Figure 63 can be used to optimize the matching of these parameters. This configuration uses a double balun configuration that has low parasitics, high bandwidth, and parasitic cancellation. ETC1-1-13 ETC1-1-13 25 CT 0.1F 50 SOURCE 25 0.1F 33 VIN+ 33 AD9445 VIN- 05489-058 Figure 63. Double Balun-Coupled Analog Input Circuit Rev. 0 | Page 25 of 40 AD9445 CLOCK INPUT CONSIDERATIONS Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-todigital output. For that reason, considerable care was taken in the design of the clock inputs of the AD9445, and the user is advised to give careful thought to the clock source. Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, may be sensitive to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9445 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. Noise and distortion performance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates of less than 30 MHz nominally. The loop is associated with a time constant that should be considered in applications where the clock rate can change dynamically, requiring a wait time of 1.5 s to 5 s after a dynamic clock frequency increase or decrease before the DCS loop is relocked to the input signal. During the time that the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependent on the duty cycle of the input clock signal. In such an application, it may be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance. The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the duty cycle stabilizer, and logic high (AVDD1 = 3.3 V) disables the controller. The AD9445 input sample clock signal must be a high quality, extremely low phase noise source to prevent degradation of performance. Maintaining 14-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. (See the AN-501 Application Note, Aperture Uncertainty and ADC System Performance.) For optimum performance, the AD9445 must be clocked differentially. The sample clock inputs are internally biased to ~2.2 V, and the input signal is usually ac-coupled into the CLK+ and CLK- pins via a transformer or capacitors. Figure 64 shows one preferred method for clocking the AD9445. The clock source (low jitter) is converted from singleended to differential using an RF transformer. The back-to-back Schottky diodes across the secondary of the transformer limit clock excursions into the AD9445 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9445 and limits the noise presented to the sample clock inputs. If a low jitter clock is available, it may help to band-pass filter the clock reference before driving the ADC clock inputs. Another option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 65. CLOCK SOURCE ADT1-1WT 0.1F CLK+ AD9445 HSMS2812 DIODES 05489-059 CLK- Figure 64. Crystal Clock Oscillator, Differential Encode VT 0.1F ENCODE ECL/ PECL 0.1F AD9445 ENCODE 05489-060 VT Figure 65. Differential ECL for Encode Jitter Considerations High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (fINPUT) and rms amplitude due only to aperture jitter (tJ) can be calculated using the following equation: SNR = 20 log[2fINPUT x tJ] In the equation, the rms aperture jitter represents the rootmean-square of all jitter sources, which includes the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter, see Figure 66. The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9445. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be synchronized by the original clock during the last step. Rev. 0 | Page 26 of 40 AD9445 75 0.2ps 70 65 0.5ps SNR (dBc) 60 1.0ps 1.5ps 2.0ps 2.5ps 3.0ps 55 50 45 1 10 100 INPUT FREQUENCY (MHz) 1000 Figure 66. SNR vs. Input Frequency and Jitter POWER CONSIDERATIONS Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that may be received by the AD9445. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 F chip capacitors. The AD9445 has separate digital and analog power supply pins. The analog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V), and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies can be tied together, best performance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage. The DRVDD supply of the AD9445 is a dedicated supply for the digital outputs in either LVDS or CMOS output mode. When in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply can be connected from 2.5 V to 3.6 V for compatibility with the receiving logic. 05489-061 40 resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic performance, including both SFDR and SNR, is maximized when the AD9445 is used in LVDS mode; designers are encouraged to take advantage of this mode. The AD9445 outputs include complimentary LVDS outputs for each data bit (Dx+/Dx-), the overrange output (OR+/OR-), and the output data clock output (DCO+/DCO-). The RSET resistor current is multiplied on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 x IRSET). A 100 differential termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended, with a 100 termination resistor placed as close to the receiver as possible. It is recommended to keep the trace length less than 2 inches and to keep differential output trace lengths as equal as possible. CMOS Mode In applications that can tolerate a slight degradation in dynamic performance, the AD9445 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits, Dx, are single-ended CMOS, as is the overrange output, OR. The output clock is provided as a differential CMOS signal, DCO+/DCO-. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. The capacitive load to the CMOS outputs should be minimized, and each output should be connected to a single gate through a series resistor (220 ) to minimize switching transients caused by the capacitive loading. TIMING The AD9445 provides latched data outputs with a pipeline delay of 13 clock cycles. Data outputs are available one propagation delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and Figure 3 for detailed timing diagrams. DIGITAL OUTPUTS LVDS Mode The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 3 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 k RSET Rev. 0 | Page 27 of 40 AD9445 OPERATIONAL MODE SELECTION Data Format Select The data format select (DFS) pin of the AD9445 determines the coding format of the output data. This pin is 3.3 V CMOScompatible, with logic high (or AVDD1, 3.3 V) selecting twos complement and DFS logic low (AGND) selecting offset binary format. Table 10 summarizes the output coding. RF ENABLE The RF ENABLE pin is a CMOS-compatible control pin that optimizes the configuration of the AD9445 analog front end. The crossover analog input frequency for determining the RF ENABLE connection differs for the 105 MSPS and 125 MSPS speed grades. For the 125 MSPS speed grade, connecting the RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <210 MHz. For applications with analog inputs >210 MHz, this pin should be connected to AVDD1 for optimum SFDR performance. Connecting this pin to AVDD1 reconfigures the ADC, thereby improving high IF and RF spurious performance. Operating in this mode increases power dissipation from AVDD2 by 150 mW to 200 mW. For the 105 MSPS speed grade, connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input frequencies <230 MHz. For applications with analog inputs >230 MHz, this pin should be connected to AVDD1 to optimize performance. Output Mode Select The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOS-compatible input. With OUTPUT MODE = 0 (AGND), the AD9445 outputs are CMOS compatible, and the pin assignment for the device is as defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3 V), the AD9445 outputs are LVDS compatible, and the pin assignment for the device is as defined in Table 7. Duty Cycle Stabilizer The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller. Table 10. Digital Output Coding Code 16,383 8192 8191 0 VIN+ - VIN- Input Span = 3.2 V p-p (V) +1.600 0 -0.000195 -1.60 VIN+ - VIN- Input Span = 2 V p-p (V) +1.000 0 -0.000122 -1.00 Digital Output Offset Binary (D13******D0) 11 1111 1111 1111 10 0000 0000 0000 01 1111 1111 1111 00 0000 0000 0000 Digital Output Twos Complement (D13******D0) 01 1111 1111 1111 00 0000 0000 0000 11 1111 1111 1111 10 0000 0000 0000 Rev. 0 | Page 28 of 40 AD9445 EVALUATION BOARD Evaluation boards are offered to configure the AD9445 in either CMOS or LVDS mode only. This design represents a recommended configuration for using the device over a wide range of sampling rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics are shown in Figure 67 through Figure 70. Gerber files are available from engineering applications demonstrating the proper routing and grounding techniques that should be applied at the system level. It is critical that signal sources with very low phase noise (<60 fsec rms jitter) be used to realize the ultimate performance of the converter. Proper filtering of the input signal to remove harmonics and lower the integrated noise at the input is also necessary to achieve the specified noise performance. The evaluation boards are shipped with a 115 V ac to 6 V dc power supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9445 and its support circuitry. Separate power supplies are provided to isolate the DUT from the support circuitry. Each input configuration can be selected by proper connection of various jumpers (see Figure 67). The LVDS mode evaluation boards include an LVDS-to-CMOS translator, making them compatible with the high speed ADC FIFO evaluation kit (HSC-ADC-EVALA-SC). The kit includes a high speed data capture board that provides a hardware solution for capturing up to 32 kB samples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256 kB samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9445 and many other high speed ADCs. Behavioral modeling of the AD9445 is also available at www.analog.com/ADIsimADC. The ADIsimADCTM software supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9445 and other high speed ADCs with or without hardware evaluation boards. The user can choose to remove the translator and terminations to access the LVDS outputs directly. Rev. 0 | Page 29 of 40 AD9445 GND P22 P21 PTMICRO4 PTMICRO4 DRGND 1 P1 2 P2 3 P3 4 P4 1 P1 2 P2 3 P3 4 P4 H2 MTHOLE6 H4 MTHOLE6 GND VCC GND 5V H1 MTHOLE6 H3 MTHOLE6 XTALPWR EXTREF DRGND DRVDD VCC E19 E66 GND E18 VCC E4 DRVDD D11_C/D6_Y D11_T/D7_Y D12_C/D8_Y D12_T/D9_Y D13_C/D10_Y D13_T/D11_Y D14_C/D12_Y D14_T/D13_Y D15_C/D14_Y (MSB) D15_T/D15_Y DRGND DRVDD DOR_C DOR_T/DOR_Y GND VCC VCC VCC VCC VCC VCC GND E6 GND GND E5 VCC E10 101 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 E1 GND E9 EPAD DRVDD D11_C D11_T D12_C D12_T D13_C D13_T D14_C D14_T D15_C D15_T DRGND DRVDD OR_C OR_T AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND VCC R11 1k GND E3 E14 VCC DRGND D10_T/D5_Y D10_C/D4_Y D9_T/D3_Y D9_C/D2_Y GND E2 GND VCC E41 E24 GND C3 0.1F C40 0.1F C9 0.1F GND C98 DNP GND C51 10F E25 E27 E26 C86 0.1F Figure 67. AD9445 Evaluation Board Schematic GND EXTREF GND Rev. 0 | Page 30 of 40 + GND C39 10F U1 5 R3 3.74k R1 DNP D8_T/D1_Y D8_C/D0_Y DR DRB AD9445/AD9446 R2 GND DNP D7_T D7_C DRVDD DRGND D6_T D6_C GND TOUT CT GND GND T2 1 4 R5 DNP C7 0.1F R4 36 R28 33 T1 ETC1-1-13 J4 SMBMST C12 0.1F GND 1 L1 10nH 2 D0_T D0_C DRVDD DRGND AGND AVDD1 AVDD1 AVDD1 AGND ENCB ENC AGND AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 C5 0.1F TINB 3 PRI SEC SCLK 1 2 3 4 5 6 VCC 7 8 9 GND 10 11 12 5V C2 13 5V 0.1F 14 5V 5V 15 16 5V 17 5V 18 VCC 19 VCC 20 VCC 21 GND 22 23 24 GND 25 5V DCS MODE DNC OUTPUT MODE DFS LVDSBIAS AVDD1 SENSE VREF AGND REFT REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1 AGND VIN+ VIN- AGND AVDD2 DRGND D10_T D10_C D9_T D9_C D8_T D8_C DCO DCOB D7_T D7_C DRVDD DRGND D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C PRI 3 4 2 5 ETC1-1-13 ANALOG R9 DNP R6 36 TOUTB 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 C13 DNP SEC OPTIONAL E15 C91 0.1F GND TOUT GND GND CT TOUTB C8 0.1F T5 ADT1-1WT ENCB ENC GND VCC 5V VCC 5V VCC VCC VCC D0_T D0_C (LSB) DRVDD DRGND GND VCC VCC VCC GND NC 1 5 6 2 5V 3 4 TINB 05489-062 PRI SEC R35 33 GND GND R7 DNP VXTAL R39 0 E31 5V E30 E20 XTALPWR + C44 10F GND ENC VXTAL + C1 10F CR2 TO MAKE LAYOUT AND PARASITIC LOADING SYMMETRICAL C41 0.1F ENCODE OPTIONAL ENCODE CIRCUITS 3 T3 ADT1-1WT CR2 J1 SMBMST GND 3 4 1 NC 5 6 2 CR1 C36 DNP DNP 1 J5 SMBMST 2 U6 ECLOSC 14 7 VCC VEE OUT ~OUT 8 1 XTALINPUT 2 C42 PRI SEC 0.1F GND 1 3 R8 50 ENCB GND GND DRVDD L4 FERRITE VCCX L3 FERRITE 5VX L5 FERRITE DRVDDX VXTAL C26 0.1F XTALINPUT VCC Figure 68. AD9445 Evaluation Board Schematic (Continued) 5V GND L2 DNP Rev. 0 | Page 31 of 40 ADP3338 U14 5V GND GND GND 5VX VCCX VIN 4 OUT 5VX VIN IN 3 4 OUT OUT1 2 1 POWER OPTIONS DRGND ADP3338 U7 3.3V GND OUT1 IN 1 2 3 GND VCCX VIN DRVDDX 4 ADP3338 U3 3.3V GND OUT OUT1 IN 1 2 3 DRGND DRVDDX VIN P4 PJ-102A 2 2 3 3 1 1 + C33 10F + C89 10F GND GND + C34 10F + + C87 10F C6 10F + C88 10F GND GND DRGND + C4 10F GND DRGND 05489-063 AD9445 AD9445 BYPASS CAPACITORS VCC + GND C64 10F C43 0.1F C35 0.1F C32 0.1F C30 0.01F C28 0.1F C27 0.1F C90 0.1F C50 0.1F C60 0.1F C10 0.1F C61 0.1F C75 0.1F VCC C11 XX GND C14 XX C17 XX C16 XX C15 XX C31 XX C38 XX C29 XX C19 XX DRVDD + DRGND C65 10F C47 0.1F C23 0.1F C21 0.1F C20 0.1F DRVDD C69 XX DRGND C70 XX C45 XX C49 XX 5V + GND C56 10F C85 0.1F C53 0.1F C52 0.1F C58 0.01F C37 0.1F C48 0.1F C18 0.1F EXTREF + GND C55 10F 5V C72 XX GND C73 XX C108 XX C109 XX C110 XX 5V 05489-064 C94 0.1F GND C95 0.1F C22 0.1F C59 0.1F C93 0.1F C96 0.1F C97 0.1F C84 0.1F C46 0.1F Figure 69. AD9445 Evaluation Board Schematic (Continued) Rev. 0 | Page 32 of 40 U15 SN75LVDT390 DR DRB DRVDD R19 DRVDD 0 DRGND R10 0 ORO DRVDD DRO 1 2 3 4 5 6 7 8 1A 1B 2A 2B 3A 3B 4A 4B EN_1_2 1Y 2Y VCC GND 3Y 4Y EN_3_4 16 15 14 13 12 11 10 9 DOR_T/DOR_Y DOR_C U8 SN75LVDS386 RZ5 220 RSO16ISO 1 2 3 4 DRVDD 5 6 7 8 R4 R5 R6 R7 R8 R3 14 13 12 11 10 9 220 RSO16ISO 1 2 DRVDD 3 4 5 6 7 8 R1 R2 R3 R4 R5 R6 R7 R8 RZ4 16 15 14 13 12 11 10 9 D7O D6O D5O D4O D3O D2O D1O D0O DRGND R2 15 R1 16 D15O D14O D13O D12O D11O D10O D9O D8O DRGND DRGND DOR_C D15_C/D14_Y D14_C/D12_Y D13_C/D10_Y D12_C/D8_Y D11_C/D6_Y D10_C/D4_Y D9_C/D2_Y D8_C/DO_Y DRB D7_C D6_C D5_C D4_C D3_C D2_C D1_C D0_C DRGND 40 P40 P39 39 DRGND ORO 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 P40 P38 P36 P34 P32 P30 P28 P26 P24 P22 P20 P18 P16 P14 P12 P10 P8 P6 P4 P2 P39 39 P37 37 P35 35 P33 33 P31 31 P29 29 P27 27 P25 25 P23 23 P21 21 P19 19 P17 17 P15 15 P13 13 P11 11 P9 9 P7 7 P5 5 P3 3 P1 1 P7 C40MS DRGND DRO GNDN D15O D14O D13O D12O D11O D10O D9O D8O D7O D6O D5O D4O D3O D2O D1O D0O DRGND DOR_T/DOR_Y 38 P38 P37 37 D15_T/D15_Y 36 P36 P35 35 DRGND DRVDD DRVDD DRGND DRVDD D14_T/D13_Y 34 P34 P33 33 D13_T/D11_Y 32 P32 P31 31 D12_T/D9_Y 30 P30 P29 29 D11_T/D7_Y 28 P28 P27 27 D10_T/D5_Y 26 P26 P25 25 D9_T/D3_Y 24 P24 P23 23 Figure 70. AD9445 Evaluation Board Schematic (Continued) Rev. 0 | Page 33 of 40 DRGND DRVDD DRVDD DRGND DRVDD DRGND DRVDD DRVDD DRGND DRVDD C76 0.1F DRGND C82 0.1F C77 0.1F C78 0.1F D8_T/D1_Y 22 P22 P21 21 DR 20 P20 P19 19 D7_T 18 P18 P17 17 D6_T 16 P16 P15 15 D5_T 14 P14 P13 13 D4_T 12 P12 P11 11 D3_T 10 P10 P9 9 D2_T 8 P8 P7 7 D1_T 6 P6 P5 5 D0_T 4 P4 P3 3 DRGND 2 P2 P1 1 D15_T/D15_Y D15_C/D14_Y D14_T/D13_Y D14_C/D12_Y D13_T/D11_Y D13_C/D10_Y D12_T/D9_Y D12_C/D8_Y D11_T/D7_Y D11_C/D6_Y D10_T/D5_Y D10_C/D4_Y D9_T/D3_Y D9_C/D2_Y D8_T/D1_Y D8_C/D0_Y D7_T D7_C D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C D0_T D0_C A1A A1B A2A A2B A3A A3B A4A A4B B1A B1B B2A B2B B3A B3B B4A B4B C1A C1B C2A C2B C3A C3B C4A C4B D1A D1B D2A D2B D3A D3B D4A D4B GND VCC1 VCC2 GND1 ENA A1Y A2Y A3Y A4Y ENB B1Y B2Y B3Y B4Y GND2 VCC3 VCC4 GND3 C1Y C2Y C3Y C4Y ENC D1Y D2Y D3Y D4Y END GND4 VCC5 VCC6 GND5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P6 C40MS 05489-065 AD9445 AD9445 Table 11. AD9445-125 Baseband Customer Evaluation Board Bill of Materials Item 1 2 Qty. 7 44 Reference Designator C4, C6, C33, C34, C87, C88, C89 C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94, C95, C96, C97 C30, C58 C39, C56, C64, C65 C51 CR1 CR2 E1, E2, E3, E4, E5, E6, E9, E10, E14, E18, E19, E20, E24, E25, E26, E27, E30, E31, E36, E41 J1, J4 L1 L3, L4, L5 P4 P7 R3 R8 R10, R19, R39, L2 R11 R28, R35 RZ4, RZ5 T3, T5 U1 U14 U3, U7 U8 U15 R4, R6 C1, C44, C55 1 C13, C14, C16, C17, C18, C19, C29, C31, C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93, C108, C109, C1101 C981 E151 J51 P61 R1, R21 R5, R7, R91 U21 Description Capacitor Capacitor Package TAJD 402 Value 10 F 0.1 F Manufacturer Digi-Key Corporation Digi-Key Corporation Mfg. Part No. 478-1699-2 PCC2146CT-ND 3 4 5 6 7 8 2 4 1 1 1 20 Capacitor Capacitor Capacitor Diode Diode Header 201 TAJD 805 SOT23M5 SOT23M5 EHOLE 0.01 F 10 F 10 F Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mouser Electronics 445-1796-1-ND 478-1699-2 490-1717-1-ND MA3X71600LCT-ND MA3X71600LCT-ND 517-6111TG 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 1 3 1 1 1 1 4 1 2 2 2 1 1 2 1 1 2 2 23 SMA Inductor EMIFIL(R) BLM31PG500SN1L PJ-002A Header Resistor Resistor Resistor BRES402 Resistor Resistor array Transformer AD9445BSVZ-125 ADP3338-5 ADP3338-3.3 SN75LVDT386 SN75LVDT390 Resistor Capacitor CAP402 SMA 0603A 1206MIL PJ-002A C40MS 402 402 402 402 402 16PIN ADT1-1WT SV-100-3 SOT-223HS SOT-223HS TSSOP64 SOIC16PW 402 TAJD 402 10 nH Digi-Key Corporation Coilcraft, Inc. Mouser Electronics Digi-Key Corporation Samtec, Inc. Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mini-Circuits Analog Devices, Inc. Analog Devices, Inc. Analog Devices, Inc. Arrow Electronics, Inc. Arrow Electronics, Inc. Digi-Key Corporation Digi-Key Corporation ARFX1231-ND 0603CS-10NXGBU 81-BLM31P500S CP-002A-ND TSW-120-08-L-D-RA P3.74KLCT-ND P49.9LCT-ND P0.0JCT-ND P1.0KLCT-ND P33JCT-ND 742C163220JCT-ND ADT1-1WT AD9445BSVZ-125 ADP3338-5 ADP3338-33 SN75LVDT386DGG SN75LVDT390PW P36JCT-ND 478-1699-2 3.74 k 50 0 1 k 33 22 36 10 F XX 29 30 31 32 33 34 35 1 2 3 1 Capacitor Header SMA Header BRES402 BRES402 ECLOSC 805 EHOLE SMA C40MS 402 402 DIP4(14) Rev. 0 | Page 34 of 40 10 F Digi-Key Corporation Mouser Electronics Digi-Key Corporation Samtec, Inc. 490-1717-1-ND 517-6111TG ARFX1231-ND TSW-120-08-L-D-RA XX XX AD9445 Item 36 37 38 1 Qty. 4 2 2 Reference Designator H1, H2, H3, H41 T1, T21 P21, P221 Description MTHOLE6 Balun transformer Term strip Package MTHOLE6 SM-22 PTMICRO4 Value Manufacturer M/A-COM Newark Electronics Mfg. Part No. ETC1-1-13 Parts not populated. Table 12. AD9445-125 IF Customer Evaluation Board Bill of Materials Item 1 2 Qty. 7 44 Reference Designator C4, C6, C33, C34, C87, C88, C89 C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94, C95, C96, C97 C30, C58 C39, C56, C64, C65 C51 CR1 CR2 E1, E2, E3, E4, E5, E6, E9, E10, E14, E18, E19, E20, E24, E25, E26, E27, E30, E31, E36, E41 J1, J4 L1 L3, L4, L5 P4 P7 R3 R8 R10, R19, R39, L2 R11 R28, R35 RZ4, RZ5 U1 U14 U3, U7 U8 U15 T1, T2 R5 T3 C1, C44, C55 1 Description Capacitor Capacitor Package TAJD 402 Value 10 F 0.1 F Manufacturer Digi-Key Corporation Digi-Key Corporation MFG_PART_NO 478-1699-2 PCC2146CT-ND 3 4 5 6 7 8 2 4 1 1 1 20 Capacitor Capacitor Capacitor Diode Diode Header 201 TAJD 805 SOT23M5 SOT23M5 EHOLE 0.01 F 10 F 10 F Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mouser Electronics 445-1796-1-ND 478-1699-2 490-1717-1-ND MA3X71600LCT-ND MA3X71600LCT-ND 517-6111TG 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 1 3 1 1 1 1 4 1 2 2 1 1 2 1 1 2 1 1 2 SMA Inductor EMIFIL(R) BLM31PG500SN1L PJ-002A Header Resistor Resistor Resistor BRES402 Resistor Resistor array AD9445BSVZ-125 ADP3338-5 ADP3338-3.3 SN75LVDT386 SN75LVDT390 Balun transformer Resistor Transformer Capacitor SMA 0603A 1206MIL PJ-002A C40MS 402 402 402 402 402 16PIN SV-100-3 SOT223HS SOT-223HS TSSOP64 SOIC16PW SM-22 402 ADT1-1WT TAJD 10 nH 3.74 k 50 0 1 k 33 22 Digi-Key Corporation Coilcraft, Inc. Mouser Electronics Digi-Key Corporation Samtec, Inc. Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Analog Devices, Inc. Analog Devices, Inc. Analog Devices, Inc. Arrow Electronics, Inc. Arrow Electronics, Inc. M/A-COM Digi-Key Corporation Mini-Circuits Digi-Key Corporation ARFX1231-ND 0603CS-10NXGBU 81-BLM31P500S CP-002A-ND TSW-120-08-L-D-RA P3.74KLCT-ND P49.9LCT-ND P0.0JCT-ND P1.0KLCT-ND P33JCT-ND 742C163220JCT-ND AD9445BSVZ-125 ADP3338-5 ADP3338-3.3 SN75LVDT386DGG SN75LVDT390PW ETC-1-1-13 P49.9LCT-ND ADT1-1WT 478-1699-2 36 10 F Rev. 0 | Page 35 of 40 AD9445 Item 29 Qty. 23 Reference Designator C13, C14, C16, C17, C18, C19, C29, C31, C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93, C108, C109, C1101 C981 E151 J51 P61 R1, R21 R5, R7, R91 U21 H1, H2, H3, H41 R4, R61 T51 P21, P221 Description CAP402 Package 402 Value XX Manufacturer MFG_PART_NO 30 31 32 33 34 35 36 37 38 39 40 1 1 2 3 1 4 2 1 2 Capacitor Header SMA Header BRES402 BRES402 ECLOSC MTHOLE6 Resistor Transformer Term strip 805 EHOLE SMA C40MS 402 402 DIP4(14) MTHOLE6 402 ADT1-1WT PTMICRO4 10 F Digi-Key Corporation Mouser Electronics Digi-Key Corporation Samtec, Inc. 409-1717-1-ND 517-6111TG ARFX1231-ND TSW-120-08-L-D-RA XX XX 36 Digi-Key Corporation Mini-Circuits Newark Electronics P36JCT-ND ADT1-1WT Parts not populated. Rev. 0 | Page 36 of 40 AD9445 OUTLINE DIMENSIONS 0.75 0.60 0.45 1.20 MAX 100 1 PIN 1 16.00 BSC SQ 14.00 BSC SQ 76 75 76 75 100 1 TOP VIEW (PINS DOWN) EXPOSED PAD 9.50 SQ 1.05 1.00 0.95 0 MIN 0.15 0.05 SEATING PLANE 0.20 0.09 7 3.5 0 0.08 MAX COPLANARITY 25 26 50 49 51 50 BOTTOM VIEW (PINS UP) 26 25 VIEW A 0.50 BSC LEAD PITCH 0.27 0.22 0.17 VIEW A ROTATED 90 CCW COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD NOTES 1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED. 2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS. Figure 71. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-3) Dimensions shown in millimeters ORDERING GUIDE Model AD9445BSVZ-125 1 AD9445BSVZ-1051 AD9445-IF-LVDS/PCB AD9445-BB-LVDS/PCB 1 Temperature Range -40C to +85C -40C to +85C Package Description 100-Lead TQFP_EP 100-Lead TQFP_EP AD9445-125 IF (>100 MHz) LVDS Mode Evaluation Board AD9445-125 Baseband (<100 MHz) LVDS Mode Evaluation Board Package Option SV-100-3 SV-100-3 Z = Pb-free part. Rev. 0 | Page 37 of 40 AD9445 NOTES Rev. 0 | Page 38 of 40 AD9445 NOTES Rev. 0 | Page 39 of 40 AD9445 NOTES (c) 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05489-0-10/05(0) Rev. 0 | Page 40 of 40 |
Price & Availability of AD9445
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |