![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
LT1215/LT1216 23MHz, 50V/s, Single Supply Dual and Quad Precision Op Amps FEATURES s s s DESCRIPTIO s s s s s s s s s APPLICATI s s s s s s Note: For applications requiring less slew rate, see the LT1211/LT1212 and LT1213/LT1214 data sheets. 2.5V Full-Scale 12-Bit Systems 10V Full-Scale 16-Bit Systems Active Filters Photo Diode Amplifiers DAC Current to Voltage Amplifiers Battery-Powered Systems TYPICAL APPLICATI 5V VIN- Single Supply Instrumentation Amplifier 0.1F NOTE: 0.1% RESISTORS GIVE CMRR 68dB. GAIN IS 10.0V/V. COMMON-MODE INPUT RANGE IS FROM 0.3V TO 3.0V. BANDWIDTH IS 2.8MHz. 30 20 10 0 GAIN (dB) + 1/2 LT1215 - 1020 113 1020 113 -10 -20 -30 -40 -50 COMMON-MODE INPUT - VIN+ 1/2 LT1215 VOUT -60 -70 1k 10k 100k 1M FREQUENCY (Hz) 10M 1215/16 TA02 + 1215/16 TA01 UO Slew Rate 50V/s Typ Gain-Bandwidth Product 23MHz Typ Fast Settling to 0.01% 2V Step to 200V 250ns Typ 10V Step to 1mV 480ns Typ Excellent DC Precision in All Packages Input Offset Voltage 450V Max Input Offset Voltage Drift 10V/C Max Input Offset Current 120nA Max Input Bias Current 600nA Max Open-Loop Gain 1000V/mV Min Single Supply Operation Input Voltage Range Includes Ground Output Swings to Ground While Sinking Current Low Input Noise Voltage 12.5nV/Hz Typ Low Input Noise Current 0.5pA/Hz Typ Specified on 3.3V, 5V and 15V Large Output Drive Current 30mA Min Low Supply Current per Amplifier 6.6mA Max Dual in 8-Pin DIP and SO8 Quad in 14-Pin DIP and NARROW SO16 The LT1215 is a dual, single supply precision op amp with a 23MHz gain-bandwidth product and a 50V/s slew rate. The LT1216 is a quad version of the same amplifier. The DC precision of the LT1215/LT1216 eliminates trims in most systems while providing high frequency performance not usually found in single supply amplifiers. The LT1215/LT1216 will operate on any supply greater than 2.5V and less than 36V total. These amplifiers are specified on single 3.3V, single 5V and 15V supplies, and only require 5mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without damage or phase reversal of the output. The minimum output drive is 30mA, ideal for driving low impedance loads. Frequency Response DIFFERENTIAL INPUT U S VOS 0.75 LSB VOS 3 LSB UO 1 LT1215/LT1216 ABSOLUTE AXI U RATI GS Storage Temperature Range ................ - 65C to 150C Junction Temperature (Note 2) Plastic Package (CN8, CS8, CN, CS)................ 150C Ceramic Package (MJ8) .................................. 175C Lead Temperature (Soldering, 10 sec)................. 300C Total Supply Voltage (V + to V -) ............................. 36V Input Current ..................................................... 15mA Output Short-Circuit Duration (Note 1) ........ Continuous Operating Temperature Range LT1215C/LT1216C ............................ - 40C to 85C LT1215M ......................................... - 55C to 125C PACKAGE/ORDER I FOR ATIO TOP VIEW OUT A 1 -IN A 2 +IN A 3 V- 4 J8 PACKAGE 8-LEAD CERAMIC DIP B A 8 V+ 7 OUT B 6 -IN B 5 +IN B ORDER PART NUMBER LT1215CN8 LT1215ACN8 LT1215MJ8 LT1215AMJ8 N8 PACKAGE 8-LEAD PLASTIC DIP TJMAX = 175C, JA = 100C/W (J) TJMAX = 150C, JA = 100C/W (N) TOP VIEW OUT A 1 -IN A 2 +IN A 3 V+ 4 +IN B 5 -IN B 6 OUT B 7 B C A D 14 OUT D 13 -IN D 12 +IN D 11 V - 10 +IN C 9 8 -IN C OUT C ORDER PART NUMBER LT1216CN N PACKAGE 14-LEAD PLASTIC DIP TJMAX = 150C, JA = 70C/W AVAILABLE OPTIO S NUMBER OF OP AMPS Two (Dual) TA RANGE - 40C to 85C MAX VOS (25C) 300V 450V 450V 300V 450V 450V MAX TC VOS (VOS /T) 2.5V/C 5V/C 10V/C 2.5V/C 5V/C 10V/C CERAMIC (J) PACKAGE PLASTIC DIP (N) LT1215ACN8 LT1215CN8 SURFACE MOUNT (S) Two (Dual) Four (Quad) - 55C to 125C - 40C to 85C 2 U U W WW U U W TOP VIEW OUT A 1 -IN A 2 +IN A 3 V- 4 A B 8 V+ 7 OUT B 6 -IN B 5 +IN B ORDER PART NUMBER LT1215CS8 S8 PART MARKING 1215 ORDER PART NUMBER LT1216CS S8 PACKAGE 8-LEAD PLASTIC SOIC TJMAX = 150C, JA = 150C/W TOP VIEW OUT A 1 -IN A 2 +IN A 3 V+ 4 B C A D 16 OUT D 15 -IN D 14 +IN D 13 V- +IN B 5 -IN B 6 OUT B 7 NC 8 12 +IN C 11 -IN C 10 OUT C 9 NC S PACKAGE 16-LEAD PLASTIC SOIC TJMAX = 150C, JA = 100C/W LT1215CS8 LT1215AMJ8 LT1215MJ8 LT1216CN LT1216CS LT1215/LT1216 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25C, unless otherwise noted. LT1215AC LT1215AM MIN TYP MAX 125 300 0.8 35 420 400 15.0 12.5 7.0 0.5 40 200 10 3.2 - 0.2 108 115 600 4.39 4.30 3.75 0.005 0.030 0.630 50 30 23 4.75 2.2 2.6 16 25 13 250 40 0.001 80 500 LT1215C/LT1215M LT1216C MIN TYP MAX 150 450 1.0 35 420 400 15.0 12.5 7.0 0.5 40 200 10 3.2 - 0.2 108 115 600 4.39 4.30 3.75 0.005 0.030 0.630 50 30 23 4.75 2.2 2.6 16 25 13 250 40 0.001 120 600 SYMBOL VOS VOS Time IOS IB en in PARAMETER Input Offset Voltage Long-Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Input Resistance (Note 3) Input Capacitance Input Voltage Range CONDITIONS UNITS V V/Mo nA nA nVP-P nV/Hz nV/Hz pA/Hz pA/Hz M M pF V V dB dB V/mV V V V V V V mA V/s MHz mA V MHz ns % ns ns % 0.1Hz to 10Hz fO = 10Hz fO = 1000Hz fO = 10Hz fO = 1000Hz Differential Mode Common Mode f = 1MHz 10 10 CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) IO SR GBW IS tr, tf OS tPD tS THD Maximum Output Current Slew Rate Gain-Bandwidth Product Supply Current Per Amplifier Minimum Supply Voltage Full Power Bandwidth Rise Time, Fall Time Overshoot Propagation Delay Settling Time Open-Loop Output Resistance Total Harmonic Distortion VCM = 0V to 3V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500 Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 30mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 30mA (Note 9) AV = - 2 f = 100kHz Single Supply AV = 1, VO = 2.5VP-P AV = 1, 10% to 90%, VO = 100mV AV = 1, VO = 100mV AV = 1, VO = 100mV 0.01%, AV = 1, VO = 2V IO = 0mA, f = 10MHz AV = 1, VO = 1VRMS, 20Hz to 20kHz 3.0 0 90 96 150 4.30 4.20 3.60 3.0 0 86 93 150 4.30 4.20 3.60 0.008 0.050 1.000 30 0.008 0.050 1.000 30 3.6 6.6 2.5 3.6 6.6 2.5 3 LT1215/LT1216 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0C TA 70C, unless otherwise noted. SYMBOL VOS VOS T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) CONDITIONS 8-Pin DIP Package 14-Pin DIP, SOIC Package MIN LT1215AC TYP MAX 200 350 1 2.5 35 450 3.1 - 0.1 108 114 600 4.33 4.24 3.89 0.006 0.035 0.500 5.2 100 530 LT1215C/LT1216C MIN TYP MAX 250 550 2 5 3 10 35 140 450 630 2.9 3.1 0.1 - 0.1 85 108 92 114 100 600 4.20 4.33 4.10 4.24 3.70 3.89 0.006 0.009 0.035 0.055 0.500 0.725 3.3 5.2 7.5 UNITS V V/C V/C nA nA V V dB dB V/mV V V V V V V mA CMRR PSRR AVOL VCM = 0.1V to 2.9V VS = 2.6V to 12.5V VO = 0.05V to 3.7V, RL = 500 Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA 2.9 0.1 89 95 100 4.20 4.10 3.70 IS Supply Current Per Amplifier 3.3 0.009 0.055 0.725 7.5 VS = 5V, VCM = 0.5V, VOUT = 0.5V, - 40C TA 85C, unless otherwise noted. (Note 5) SYMBOL VOS VOS T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) CONDITIONS 8-Pin DIP Package 14-Pin DIP, SOIC Package MIN LT1215AC TYP MAX 200 400 1 2.5 35 450 3.0 0 108 114 600 4.30 4.16 3.82 0.006 0.035 0.500 5.3 110 550 LT1215C/LT1216C MIN TYP MAX 250 600 2 5 3 10 35 150 450 650 2.8 3.0 0.2 0 84 108 91 114 100 600 4.10 4.30 4.00 4.16 3.60 3.82 0.006 0.010 0.035 0.060 0.500 0.750 2.9 5.3 7.6 UNITS V V/C V/C nA nA V V dB dB V/mV V V V V V V mA CMRR PSRR AVOL VCM = 0.2V to 2.8V VS = 2.7V to 12.5V VO = 0.05V to 3.7V, RL = 500 Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA 2.8 0.2 88 94 100 4.10 4.00 3.60 IS Supply Current Per Amplifier 2.9 0.010 0.060 0.750 7.6 4 LT1215/LT1216 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, - 55C TA 125C, unless otherwise noted. SYMBOL VOS VOS T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) CONDITIONS MIN LT1215AM TYP MAX 250 450 1 2.5 35 450 3.0 0.2 108 114 100 4.20 4.10 3.80 0.007 0.040 0.700 5.5 150 600 2.8 0.4 82 90 50 4.00 3.90 3.50 0.012 0.070 1.000 8.4 MIN LT1215M TYP MAX 350 750 2 5 35 450 3.0 0.2 108 114 100 4.20 4.10 3.80 0.007 0.040 0.700 5.5 200 700 UNITS V V/C nA nA V V dB dB V/mV V V V mV mV mV mA CMRR PSRR AVOL VCM = 0.4V to 2.8V VS = 2.7V to 12.5V VO = 0.05V to 3.7V, RL = 500 Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA 2.8 0.4 87 93 50 4.00 3.90 3.50 IS Supply Current Per Amplifier 2.3 2.3 0.012 0.070 1.000 8.4 +15V ELECTRICAL CHARACTERISTICS - VS = 15V, VCM = 0V, VOUT = 0V, TA = 25C, unless otherwise noted. SYMBOL VOS IOS IB PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing Maximum Output Current Slew Rate Gain-Bandwidth Product Supply Current Per Amplifier Channel Separation Minimum Supply Voltage Full-Power Bandwidth Settling Time CONDITIONS LT1215AC LT1215AM MIN TYP 225 30 360 13.0 13.2 -15.0 - 15.2 90 108 96 110 1000 3500 13.5 13.75 -14 -14.4 30 50 40 50 15 23 3.6 5.7 128 140 1.7 750 480 MAX 500 80 500 LT1215C/LT1215M LT1216C MIN TYP MAX 250 650 30 110 360 550 13.0 13.2 -15.0 - 15.2 86 108 93 110 1000 3500 13.5 13.75 -14 -14.4 30 50 40 50 15 23 3.6 5.7 8 128 140 1.7 2 750 480 UNITS V nA nA V V dB dB V/mV V V mA V/s MHz mA dB V kHz ns CMRR PSRR AVOL IO SR GBW IS VCM = -15V to 13V VS = 2V to 18V VO = 0V to 10V, RL = 2k Output High, ISOURCE = 30mA Output Low, ISINK = 30mA (Note 9) AV = - 2 (Note 6) f = 100kHz VO = 10V, RL = 2k Equal Split Supplies AV = 1, VO = 20VP-P 0.01%, AV = 1, VO = 10V 8 2 5 LT1215/LT1216 +15V ELECTRICAL CHARACTERISTICS - SYMBOL VOS VOS T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing Supply Current Per Amplifier CONDITIONS 8-Pin DIP Package 14-Pin DIP, SOIC Package VS = 15V, VCM = 0V, VOUT = 0V, 0C TA 70C, unless otherwise noted. MIN LT1215AC TYP MAX 325 550 1 2.5 30 360 13.1 -15.1 108 110 3000 13.9 - 14.5 6.3 100 530 LT1215C/LT1216C MIN TYP MAX 400 750 2 5 3 10 30 130 360 580 12.9 13.1 -14.9 -15.1 85 108 92 110 800 3000 13.7 13.9 - 14.2 - 14.5 3.3 6.3 9.2 UNITS V V/C V/C nA nA V V dB dB V/mV V V mA CMRR PSRR AVOL VCM = -14.9V to 12.9V VS = 2.1V to 18V VO = 0V to 10V, RL = 2k Output High, ISOURCE = 20mA Output Low, ISINK = 20mA IS 12.9 -14.9 89 95 800 13.7 - 14.2 3.3 9.2 VS = 15V, VCM = 0V, VOUT = 0V, - 40C TA 85C, unless otherwise noted. (Note 5) SYMBOL VOS VOS T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing Supply Current Per Amplifier CONDITIONS 8-Pin DIP Package 14-Pin DIP, SOIC Package MIN LT1215AC TYP MAX 325 600 1 2.5 30 360 13.0 -15.0 108 110 2500 13.8 - 14.5 6.5 110 550 LT1215C/LT1216C MIN TYP MAX 400 800 2 5 3 10 30 140 360 600 12.8 13.0 -14.8 -15.0 84 108 91 110 800 2500 13.6 13.8 - 14.1 - 14.5 2.9 6.5 9.5 UNITS V V/C V/C nA nA V V dB dB V/mV V V mA CMRR PSRR AVOL VCM = - 14.8V to 12.8V VS = 2.2V to 18V VO = 0V to 10V, RL = 2k Output High, ISOURCE = 20mA Output Low, ISINK = 20mA IS 12.8 -14.8 88 94 800 13.6 - 14.1 2.9 9.5 VS = 15V, VCM = 0V, VOUT = 0V, - 55C TA 125C, unless otherwise noted. SYMBOL VOS VOS T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing Supply Current Per Amplifier CONDITIONS MIN LT1215AM TYP MAX 350 650 1 2.5 30 360 13.0 -14.8 108 110 2000 13.8 -14.5 7 150 600 12.8 -14.6 82 90 500 13.4 -14 2.3 MIN LT1215M TYP MAX 500 950 2 5 30 360 13.0 -14.8 108 110 2000 13.8 -14.5 7 200 700 UNITS V V/C nA nA V V dB dB V/mV V V mA CMRR PSRR AVOL VCM = - 14.6V to 12.8V VS = 2.2V to 15V VO = 0V to 10V, RL = 2k Output High, ISOURCE = 20mA Output Low, ISINK = 20mA IS 12.8 -14.6 87 93 500 13.4 -14 2.3 10.3 10.3 6 LT1215/LT1216 3.3V ELECTRICAL CHARACTERISTICS VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25C, unless otherwise noted. (Note 7) LT1215AC LT1215AM TYP MAX 125 300 1.5 - 0.2 2.69 2.60 2.05 0.005 0.008 0.035 0.050 0.700 1.000 50 LT1215C/LT1215M LT1216C MIN TYP MAX 150 450 1.3 1.5 0 - 0.2 2.60 2.69 2.50 2.60 1.90 2.05 0.005 0.008 0.035 0.050 0.700 1.000 30 50 SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS MIN 1.3 0 2.60 2.50 1.90 UNITS V V V V V V V V V mA IO Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 30mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 30mA Maximum Output Current 30 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0C TA 70C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS MIN 1.2 0.1 2.50 2.40 2.00 LT1215AC TYP 200 1.4 - 0.1 2.63 2.54 2.19 0.006 0.035 0.500 MAX 350 LT1215C/LT1216C MIN TYP MAX 250 550 1.2 1.4 0.1 - 0.1 2.50 2.63 2.40 2.54 2.00 2.19 0.006 0.009 0.035 0.055 0.500 0.725 UNITS V V V V V V V V V Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA 0.009 0.055 0.725 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, - 40C TA 85C, unless otherwise noted. (Note 5, 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS MIN 1.1 0.2 2.40 2.30 1.90 LT1215AC TYP 200 1.3 0 2.50 2.46 2.12 0.006 0.035 0.500 MAX 400 LT1215C/LT1216C MIN TYP MAX 250 600 1.1 1.3 0.2 0 2.40 2.50 2.30 2.46 1.90 2.12 0.006 0.010 0.035 0.060 0.500 0.750 UNITS V V V V V V V V V Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA 0.010 0.060 0.750 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, - 55C TA 125C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS MIN 1.1 0.4 2.30 2.20 1.80 LT1215AM TYP MAX 250 450 1.3 0.2 2.50 2.40 2.10 0.007 0.012 0.040 0.070 0.700 1.000 MIN 1.1 0.4 2.30 2.20 1.80 LT1215M TYP 350 1.3 0.2 2.50 2.40 2.10 0.007 0.040 0.700 MAX 750 UNITS V V V V V V V V V Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA 0.012 0.070 1.000 7 LT1215/LT1216 ELECTRICAL CHARACTERISTICS Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely. Note 2: TJ is calculated from the ambient temperature TA and power dissipation PD according to the following formulas: LT1215MJ8, LT1215AMJ8: TJ = TA + (PD x 100C/W) LT1215CN8, LT1215ACN8: TJ = TA + (PD x 100C/W) LT1215CS8: TJ = TA + (PD x 150C/W) LT1216CN: TJ = TA + (PD x 70C/W) LT1216CS: TJ = TA + (PD x 100C/W) Note 3: This parameter is not 100% tested. Note 4: Guaranteed by correlation to 3.3V and 15V tests. Note 5: The LT1215/LT1216 are not tested and are not quality-assurance sampled at - 40C and at 85C. These specifications are guaranteed by design, correlation and/or inference from - 55C, 0C, 25C, 70C and/or 125C tests. Note 6: Slew rate is measured between 8.5V on an output swing of 10V on 15V supplies. Note 7: Most LT1215/LT1216 electrical characteristics change very little with supply voltage. See the 5V tables for characteristics not listed in the 3.3V table. Note 8: Guaranteed by correlation to 5V and 15V tests. Note 9: Guaranteed by correlation to 3.3V tests. TYPICAL PERFOR A CE CHARACTERISTICS Distribution of Input Offset Voltage 50 45 40 PERCENT OF UNITS (%) VS = 5V LT1215 N8 PACKAGE LT1215 J8 PACKAGE 40 35 30 25 20 15 10 5 0 -525 -375 -225 -75 75 225 375 INPUT OFFSET VOLTAGE (V) 525 PERCENT OF UNITS (%) PERCENT OF UNITS (%) Distribution of Input Offset Voltage 50 45 40 VS = 5V LT1215 S8 PACKAGE LT1216 N PACKAGE LT1216 S PACKAGE PERCENT OF UNITS (%) 35 30 25 20 15 10 5 0 -525 -375 -225 -75 75 225 375 INPUT OFFSET VOLTAGE (V) 525 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 8 UW 1215/16 G04 1215/16 G07 Distribution of Offset Voltage Drift with Temperature 50 VS = 5V LT1215 N8 PACKAGE LT1215 J8 PACKAGE Distribution of Input Offset Voltage 30 VS = 15V 25 20 15 10 5 0 -750 LT1215 N8 PACKAGE LT1215 J8 PACKAGE 30 20 10 0 12 345 -5 -4 -3 -2 -1 0 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (V/C) 1215/16 G05 -450 -150 150 450 INPUT OFFSET VOLTAGE (V) 750 1215/16 G06 Distribution of Offset Voltage Drift with Temperature 50 VS = 5V 40 LT1215 S8 PACKAGE LT1216 N PACKAGE LT1216 S PACKAGE 30 25 20 15 10 5 Distribution of Input Offset Voltage VS = 15V LT1215 S8 PACKAGE LT1216 N PACKAGE LT1216 S PACKAGE 30 20 10 0 24 6 8 10 -10 -8 -6 -4 -2 0 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (V/C) 1215/16 G08 0 -750 -450 -150 150 450 INPUT OFFSET VOLTAGE (V) 750 1215/16 G09 LT1215/LT1216 TYPICAL PERFOR A CE CHARACTERISTICS Voltage Gain vs Frequency 140 120 VOLTAGE GAIN (dB) 60 GAIN-BANDWIDTH PRODUCT (MHz) CL = 20pF RL = 2k 40 100 VOLTAGE GAIN (dB) 80 60 40 20 0 -20 1 10 100 1k VS = 5V 10k 100k 1M 10M 100M FREQUENCY (Hz) 1215/16 G10 VS = 15V Slew Rate vs Temperature 60 TA = 25C AV = -2 RL = 10k VS = 15V 65 55 50 SLEW RATE (V/s) SLEW RATE (V/s) OVERSHOOT (%) 40 VS = 5V 30 20 10 -50 -25 25 0 50 75 TEMPERATURE (C) Undistorted Output Swing vs Frequency, VS = 5V 5 AV = -1 4 OUTPUT SWING (VP-P) TOTAL HARMONIC DISTORTION AND NOISE (%) OUTPUT SWING (VP-P) AV = 1 3 2 1 0 1k 10k 100k FREQUENCY (Hz) 1M 1215/16 G16 UW 100 125 1215/16 G13 Voltage Gain, Phase vs Frequency 100 PHASE VS = 15V GAIN 20 VS = 5V VS = 15V 0 CL = 20pF RL = 2k -20 100k VS = 5V 1M 10M FREQUENCY (Hz) -60 100M 1215/16 G11 Gain-Bandwidth Product, Phase Margin vs Supply Voltage 23 22 21 20 19 18 17 TA = 25C, 125C TA = -55C 60 50 40 30 20 10 1 3 5 7 10 20 TOTAL SUPPLY VOLTAGE (V) 0 30 40 TA = 125C PHASE MARGIN (DEG) TA = -55C TA = 25C 80 60 PHASE SHIFT (DEG) 40 20 0 -20 -40 1215/16 G12 Slew Rate vs Supply Voltage 80 AV = -2 RL = 10k TA = 125C 70 TA = 25C 60 50 40 30 20 15 5 0 4 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) 36 10 0 Capacitive Load Handling VS = 5V 45 35 25 TA = -55C AV = 1 AV = 5 AV = 10 10 100 CAPACITIVE LOAD (pF) 1000 1216/ G15 1215/16 G14 Undistorted Output Swing vs Frequency, VS = 15V 30 VS = 5V 0.1 Total Harmonic Distortion and Noise vs Frequency VS = 5V VO = 3VP-P RL = 1k 0.01 AV = 10 28 26 24 22 20 18 16 14 12 10 1k VS = 15V 10k 100k FREQUENCY (Hz) 1M 1215/16 G17 AV = -1 AV = 1 0.001 AV = 1 0.0001 10 100 1k 10k FREQUENCY (Hz) 100k 1215/16 G18 9 LT1215/LT1216 TYPICAL PERFOR A CE CHARACTERISTICS Open-Loop Voltage Gain vs Supply Voltage 7k RL = 2k OPEN-LOOP VOLTAGE GAIN (V/mV) 6k 5k 4k 3k 2k 1k 0 0 4 TA = -55C SATURATION VOLTAGE, V + - VOUT (V) INPUT, 5V/DIV TA = 25C TA = 125C 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) Voltage Gain vs Load Resistance 10k TA = 25C SATURATION VOLTAGE, VOUT - V - (mV) OPEN-LOOP VOLTAGE GAIN (V/mV) INPUT, 5V/DIV 1k VS = 5V VS = 15V 100 10 10 100 1k LOAD RESISTANCE () 10k 1215/16 G22 Channel Separation vs Frequency 140 130 120 110 100 90 80 70 60 50 40 30 10k 100k 1M FREQUENCY (Hz) 10M 1215/16 G25 OUTPUT SHORT-CIRCUIT CURRENT (mA) VS = 15V TA = 25C CHANNEL SEPARATION (dB) 60 OUTPUT IMPEDANCE () 10 UW 36 1215/16 G19 Open-Loop Gain, VS = 5V 1.6 RL = 2k Positive Output Saturation Voltage vs Temperature VS = 5V 1.4 ISOURCE = 30mA 1.2 1.0 ISOURCE = 10mA 0.8 ISOURCE = 1mA 0.6 0.4 -50 -25 ISOURCE = 10A 50 25 75 0 TEMPERATURE (C) 100 125 RL = 500 0 1 2 3 OUTPUT (V) 4 1215/16 G20 1215/16 G21 Open-Loop Gain, VS = 15V 1000 Negative Output Saturation Voltage vs Temperature ISINK = 30mA ISINK = 10mA 100 ISINK = 1mA RL = 2k RL = 500 10 ISINK = 10A -10 0 OUTPUT (V) 10 1215/16 G23 VS = 5V 1 -50 -25 0 25 50 75 TEMPERATURE (C) 100 125 1215/16 G24 Output Short-Circuit Current vs Temperature 70 Output Impedance vs Frequency 1000 VS = 15V VS = 5V SOURCING 100 10 AV = 100 1 AV = 10 0.1 AV = 1 50 VS = 15V SINKING OR SOURCING 40 30 -50 -25 50 100 25 75 0 CASE TEMPERATURE (C) 125 0.01 10k 100k 1M FREQUENCY (Hz) 10M 1215/16 G27 1215/16 G26 LT1215/LT1216 TYPICAL PERFOR A CE CHARACTERISTICS 5V Small-Signal Response 3V 20mV/DIV 50ns/DIV VS = 5V AV = 1 1215/16 G34 15V Small-Signal Response 20mV/DIV VS = 15V AV = 1 50ns/DIV 1215/16 G34 5V Settling 500mV/DIV OUTPUT STEP (V) 2V/DIV 50ns/DIV VS = 5V AV = 1 1215/16 G30 UW 5V Large-Signal Response 3V 5V Large-Signal Response 0V 200ns/DIV VS = 5V AV = 1 1215/16 G28 0V 100ns/DIV VS = 5V AV = -1 RF = RG = 1k CF = 20pF 1215/16 G31 15V Large-Signal Response 15V Large-Signal Response 10V 10V 0V 0V -10V -10V VS = 15V AV = 1 200ns/DIV 1215/16 G29 VS = 15V AV = -1 RF = RG = 1k 200ns/DIV 1215/16 G32 15V Settling 10 8 6 4 2 0 -2 -4 -6 -8 1215/16 G33 Settling Time to 0.01% vs Output Step VS = 15V 250V/DIV 1mV/DIV NONINVERTING INVERTING VS = 15V AV = -1 100ns/DIV -10 200 400 300 SETTLING TIME (ns) 500 1215/16 G36 11 LT1215/LT1216 TYPICAL PERFOR A CE CHARACTERISTICS Supply Current vs Supply Votage 6.5 SUPPLY CURRENT PER AMPLIFIER (mA) 7 6 5 VS = 5V 4 3 2 -50 -25 VS = 15V 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 0 1 2 3 4 SUPPLY VOLTAGE (V) 5 1215/16 G01 CHANGE IN OFFSET VOLTAGE (V) 6.0 SUPPLY CURRENT PER AMPLIFIER (mA) TA = 125C TA = 25C TA = -55C Input Bias Current vs Temperature 400 VS = 5V 380 360 340 320 300 280 260 240 -50 -25 IOS +IB -200 COMMON-MODE RANGE (V) INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA) -IB 50 25 75 0 TEMPERATURE (C) Input Noise Current, Noise Voltage Density vs Frequency 20 INPUT NOISE CURRENT DENSITY (pA/Hz) INPUT NOISE VOLTAGE DENSITY (nV/Hz) 110 18 16 14 12 10 8 6 4 2 0 10 COMMON-MODE REJECTION RATIO (dB) POWER SUPPLY REJECTION RATIO (dB) VS = 15V TA = 25C RS = 0 VOLTAGE NOISE CURRENT NOISE 100 1k 10k FREQUENCY (Hz) 100k 1215/16 G40 12 UW 100 1215/16 G37 Supply Current vs Temperature 8 20 15 10 5 0 -5 -10 -15 -20 Warm-Up Drift vs Time VS = 2.5V RL = 4 TYPICAL AMPLIFIERS 0 20 40 60 80 100 120 140 160 180 200 TIME AFTER POWER-UP (SEC) 1215/16 G03 25 0 50 75 TEMPERATURE (C) 100 125 1215/16 G02 Input Bias Current vs Common-Mode Voltage 0 VS = 5V -100 V + -1 V+ Common-Mode Range vs Temperature V + -2 V - +1 -300 TA = 25C -400 TA = 125C V- TA = -55C V - -1 -500 125 -1 0 2 3 1 COMMON-MODE VOLTAGE (V) 4 1215/16 G38 -50 -25 50 25 75 0 TEMPERATURE (C) 100 125 1215/16 G39 Common-Mode Rejection Ratio vs Frequency 120 VS = 5V 100 90 80 70 60 50 40 30 20 10 10k 100k 1M FREQUENCY (Hz) 10M 1215/16 G41 Input Referred Power Supply Rejection Ratio vs Frequency 110 100 90 80 70 60 50 40 30 20 1k 10k 100k 1M FREQUENCY (Hz) 10M 1215/16 G42 VS = 15V AV = 100 POSITIVE SUPPLY NEGATIVE SUPPLY LT1215/LT1216 APPLICATI Supply Voltage S I FOR ATIO The LT1215/LT1216 op amps are fully functional and all internal bias circuits are in regulation with 2.2V of supply. The amplifiers will continue to function with as little as 1.5V, although the input common-mode range and the phase margin are about gone. The minimum operating supply voltage is guaranteed by the PSRR tests which are done with the input common mode equal to 500mV and a minimum supply voltage of 2.5V. The LT1215/LT1216 are guaranteed over the full - 55C to 125C range with a minimum supply voltage of 2.7V. The positive supply pin of the LT1215/LT1216 should be bypassed with a small capacitor (about 0.01F) within an inch of the pin. When driving heavy loads and for good settling time, an additional 4.7F capacitor should be used. When using split supplies, the same is true for the negative supply pin. Power Dissipation The LT1215/LT1216 amplifiers combine high speed and large output current drive into very small packages. Because these amplifiers work over a very wide supply range, it is possible to exceed the maximum junction temperature under certain conditions. To insure that the LT1215/ LT1216 are used properly, calculate the worst case power dissipation, define the maximum ambient temperature, select the appropriate package and then calculate the maximum junction temperature. The worst case amplifier power dissipation is the total of the quiescent current times the total power supply voltage plus the power in the IC due to the load. The quiescent supply current of the LT1215/LT1216 has a positive temperature coefficient. The maximum supply current of each amplifier at 125C is given by the following formula: ISMAX = 8.4 + 0.076 x (VS - 5) in mA VS is the total supply voltage. The power in the IC due to the load is a function of the output voltage, the supply voltage and load resistance. The worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply. U For example, calculate the worst case power dissipation while operating on 15V supplies and driving a 500 load. ISMAX = 8.4 + 0.076 x (30 - 5) = 10.3mA PDMAX = 2 x VS x ISMAX + (VS - VOMAX) x VOMAX/RL PDMAX = 2 x 15V x 10.3mA + (15V - 7.5V) x 7.5V/500 = 0.309 + 0.113 = 0.422 Watt per Amp If this is the dual LT1215, the total power in the package is twice that, or 0.844W. Now calculate how much the die temperature will rise above the ambient. The total power dissipation times the thermal resistance of the package gives the amount of temperature rise. For this example, in the SO-8 surface mount package, the thermal resistance is 150C/W junction-to-ambient in still air. Temperature Rise = PDMAX x JA = 0.844W x 150C/W = 126.6C The maximum junction temperature allowed in the plastic package is 150C. Therefore the maximum ambient allowed is the maximum junction temperature less the temperature rise. Maximum Ambient = 150C - 126.6C = 23.4C That means the SO8 dual can only be operated at or below room temperature on 15V supplies with a 500 load. Obviously this is not recommended. Lowering the supply voltage is recommended, or use the DIP packaged part. As a guideline to help in the selection of the LT1215/ LT1216, the following table describes the maximum supply voltage that can be used with each part based on the following assumptions: 1. The maximum ambient is 70C or 125C depending on the part rating. 2. The load is 500, includes the feedback resistors. 3. The output can be anywhere between the supplies. PART LT1215MJ8 LT1215CN8 LT1215CS8 LT1216CN LT1216CS W U UO MAX SUPPLIES 15.0V or 10.3V 20.3V or 14.5V 15.7V or 10.8V 16.4V or 11.4V 13.0V or 8.7V MAX POWER AT MAX TA 500mW 800mW 533mW 1143mW 800mW 13 LT1215/LT1216 APPLICATI Inputs Typically at room temperature, the inputs of the LT1215/ LT1216 can common mode 400mV below ground (V -) and to within 1.5V of the positive supply with the amplifier still functional. However the input bias current and offset voltage will shift as shown in the characteristic curves. For full precision performance, the common-mode range should be limited between ground (V -) and 2V below the positive supply. When either of the inputs is taken below ground (V -) by more than about 700mV, that input current will increase dramatically. The current is limited by internal 100 resistors between the input pins and diodes to each supply. The output will remain low (no phase reversal) for inputs 1.3V below ground (V -). If the output does not have to sink current, such as in a single supply system with a 1k load to ground, there is no phase reversal for inputs up to 8V below ground. There are no clamps across the inputs of the LT1215/ LT1216 and therefore each input can be forced to any voltage between the supplies. The input current will remain constant at about 360nA over most of this range. When an input gets closer than 2V to the positive supply, that input current will gradually decrease to zero until the input goes above the supply, then it will increase due to the previously mentioned diodes. If the inverting input is held more positive than the noninverting input by 200mV or more, while at the same time the noninverting input is within 300mV of ground (V -), then the supply current will increase by 5mA and the noninverting input current will increase to about 100A. This should be kept in mind in comparator applications where the inverting input stays above ground (V -) and the noninverting input does not. Output The output of the LT1215/LT1216 will swing to within 0.61V of the positive supply with no load. The open-loop output resistance, when the output is driven hard into the positive rail, is about 100 as the output starts to source S I FOR ATIO 14 U current; this resistance drops to about 20 as the current increases. Therefore when the output sources 1mA, the output will swing to within 0.7V of the positive supply. While sourcing 30mA, it is within 1.25V of the positive supply. The output of the LT1215/LT1216 will swing to within 5mV of the negative supply while sinking zero current. Thus, in a typical single supply application with the load going to ground, the output will go to within 5mV of ground. The open-loop output resistance when the output is driven hard into the negative rail is about 25 at low currents and reduces to about 21 at high currents. Therefore when the output sinks 1mA, the output is about 30mV above the negative supply and while sinking 30mA, it is about 630mV above it. The output of the LT1215/LT1216 has reverse-biased diodes to each supply. If the output is forced beyond either supply, unlimited currents will flow. If the current is transient and limited to several hundred mA, no damage will occur. Feedback Components Because the input currents of the LT1215/LT1216 are less than 600nA, it is possible to use high value feedback resistors to set the gain. However, care must be taken to insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the stability of the amplifier. For example, if a single supply, noninverting gain of two is set with two 10k resistors, the LT1215/LT1216 will probably oscillate. This is because the amplifier goes open-loop at 7MHz (6dB of gain) and has 50 of phase margin. The feedback resistors and the 10pF input capacitance generate a pole at 3MHz that introduces 67 of phase shift at 7MHz! The solution is simple, lower the values of the resistors or add a feedback capacitor of 10pF or more. W U UO LT1215/LT1216 APPLICATI S I FOR ATIO Comparator Applications Sometimes it is desirable to use an op amp as a comparator. When operating the LT1215/LT1216 on a single 3.3V or 5V supply, the output interfaces directly with most TTL and CMOS logic. The response time of the LT1215/LT1216 is a strong function of the amount of input overdrive as shown in the LT1215 Comparator Response (+) 20mV, 10mV, 5mV, 2mV Overdrives LT1215 Comparator Response (-) 20mV, 10mV, 5mV, 2mV Overdrives 4 OUTPUT (V) OUTPUT (V) INPUT (mV) 5s/DIV VS = 5V RL = 1215/16 AI01 2 0 INPUT (mV) 100 0 SI PLIFIED SCHE ATIC V+ I1 I2 I3 I4 I5 I6 Q3 -IN Q1 Q7 Q4 +IN Q2 Q11 RF CF Q10 Q12 Q8 Q9 CI Q5 Q6 Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. U following photos. These amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic being driven may oscillate due to the long transition time. The output can be speeded up by adding 20mV or more of hysteresis (positive feedback), but the offset is then a function of the input direction. 4 2 0 100 0 5s/DIV VS = 5V RL = 1215/16 AI02 W W U UO W CM BIAS Q13 Q14 Q15 OUT Q16 I7 CO I8 V- 1215/16 SS 15 LT1215/LT1216 TYPICAL APPLICATI Single Supply, AC Coupled Input, RMS Calibrated, Average Detector AC TO DC BIASED DIFFERENTIAL SIGNAL 5V 20k DIFFERENTIAL INPUT, ABSOLUTE VALUE CIRCUIT 22pF DC OUTPUT VOLTAGE vs AC INPUT VOLTAGE 10k A LT1216 VB - B LT1216 DC OUT (mV) + - 11.3k 22pF R1 10k + 10F 1k D LT1216 VA VIN - 11.3k 22pF 2V + 1/4 LT1216 VOUT - 5.1k I TO V BANDWIDTH = 7MHz PACKAGE DESCRIPTIO For package description please see other Linear Technology data sheets or databooks. 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7487 (408) 432-1900 q FAX: (408) 434-0507 q TELEX: 499-3977 U UO 5V 8pF S 1000 VS = 5V R1 10k R1 10k 2 x R2 20k 2 x R2 20k 100 f = 1kHz f = 100kHz + R2 10k 10 1 + C LT1216 R1 10k R2 x R1 VA - VB 10 AC IN (mVRMS) 100 1215/16 GA06 100k - R2 10k + DC OUT 1F + 22pF 1215/16 TA05 LT1216 Photo Diode Amplifier TRANSIENT RESPONSE 1215/16 TA03 1215/16 TA05 LTC/GP 0593 10K REV 0 (c) LINEAR TECHNOLOGY CORPORATION 1993 |
Price & Availability of LT1216
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |