Part Number Hot Search : 
RF4905 EB9024 2N3740A FOD07 6100A N2821AC F4001 CPH3243
Product Description
Full Text Search
 

To Download AD5060 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Fully Accurate 14-/16-Bit VOUT nanoDACTM SPI Interface 2.7 V to 5.5 V, in an SOT-23 AD5040/AD5060
FEATURES
Single 14-/16-bit DAC, 1 LSB INL Power-on reset to midscale or zero scale Guaranteed monotonic by design 3 power-down functions Low power serial interface with Schmitt-triggered inputs Small 8-lead SOT-23 package, low power Fast settling time of 4 s typically 2.7 V to 5.5 V power supply Low glitch on power-up SYNC interrupt facility
FUNCTIONAL BLOCK DIAGRAM
VREF VDD
POWER-ON RESET
BUF OUTPUT BUFFER
AD5040/ AD5060
DAC REGISTER
REF(+) DAC VOUT
AGND INPUT CONTROL LOGIC POWER-DOWN CONTROL LOGIC RESISTOR NETWORK
04767-001
APPLICATIONS
Process control Data acquisition systems Portable battery-powered instruments Digital gain and offset adjustment Programmable voltage and current sources Programmable attenuators
SYNC SCLK DIN DACGND
Figure 1.
GENERAL DESCRIPTION
The AD5040 and the AD5060, members of the ADI nanoDAC family, are low power, single 14-/16-bit buffered voltage-out DACs that operate from a single 2.7 V to 5.5 V supply. The AD5040/AD5060 parts offer a relative accuracy specification of 1 LSB and operation are guaranteed monotonic with a 1 LSB DNL specification. The parts use a versatile 3-wire serial interface that operates at clock rates up to 30 MHz and is compatible with standard SPI(R), QSPITM, MICROWIRETM, and DSP interface standards. The reference for both the AD5040 and AD5060 is supplied from an external VREF pin. A reference buffer is also provided on-chip. The AD5060 incorporates a power-on reset circuit that ensures the DAC output powers up to midscale or zero scale and remains there until a valid write takes place to the device. The AD5040 and the AD5060 both contain a power-down feature that reduces the current consumption of the device to typically 330 nA at 5 V and provides software-selectable output loads while in power-down mode. The parts are put into power-down mode over the serial interface. Total unadjusted error for the parts is <2 mV. Both parts exhibit very low glitch on power-up.
PRODUCT HIGHLIGHTS
1. 2. 3. 4. 5. 6. Available in a small, 8-lead SOT-23 package. 14-/16-bit accurate, 1 LSB INL. Low glitch on power-up. High speed serial interface with clock speeds up to 30 MHz. Three power-down modes available to the user. Reset to known output voltage (midscale, zero scale).
Table 1. Related Devices
Part No. AD5061 AD5062 AD5063 Description 2.7 V to 5.5 V, 16-bit nanoDAC D/A, 4 LSB INL, SOT-23 2.7 V to 5.5 V, 16-bit nanoDAC D/A,1 LSB INL, SOT-23 2.7 V to 5.5 V, 16-bit nanoDAC D/A, 1 LSB INL, MSOP
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c) 2005 Analog Devices, Inc. All rights reserved.
AD5040/AD5060 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Timing Characteristics..................................................................... 5 Absolute Maximum Ratings............................................................ 6 ESD Caution.................................................................................. 6 Pin Configuration and Function Descriptions............................. 7 Typical Performance Characteristics ............................................. 8 Terminology .................................................................................... 14 Theory of Operation ...................................................................... 15 DAC Architecture....................................................................... 15 Reference Buffer ......................................................................... 15 Serial Interface ............................................................................ 15 Power-On reset ........................................................................... 16 Software Reset............................................................................. 16 Power-Down Modes .................................................................. 17 Microprocessor Interfacing....................................................... 17 Applications..................................................................................... 19 Choosing a Reference for the AD5040/ AD5060................... 19 Bipolar Operation Using the AD5040/ AD5060.................... 19 Using the AD5040/AD5060 with a Galvanically Isolated Interface Chip ............................................................................. 20 Power Supply Bypassing and Grounding................................ 20 Outline Dimensions ....................................................................... 21 Ordering Guide .......................................................................... 21
REVISION HISTORY
10/05--Revision 0: Initial Version
Rev. 0 | Page 2 of 24
AD5040/AD5060 SPECIFICATIONS
VDD = 5.5 V, VREF = 4.096 V @ RL = unloaded, CL = unloaded; TMIN to TMAX, unless otherwise noted. Table 2.
Parameter STATIC PERFORMANCE Resolution Relative Accuracy (INL) 2 Total Unadjusted Error (TUE)2 Differential Nonlinearity (DNL)2 Min 16 14 0.5 0.5 0.1 0.1 0.5 0.5 Gain Error Gain Error Temperature Coefficient Offset Error Offset Error Temperature Coefficient Full-Scale Error 0.01 0.01 1 0.02 0.02 0.5 0.05 0.05 OUTPUT CHARACTERISTICS 3 Output Voltage Range Output Voltage Settling Time Output Noise Spectral Density Output Voltage Noise Digital-to-Analog Glitch Impulse Digital Feedthrough DC Output Impedance (Normal) DC Output Impedance (Power-Down) (Output Connected to 1 k Network) 4 (Output Connected to 100 k Network) Capacitive Load Stability Slew Rate Short-Circuit Current 1 1.5 2.0 2.0 1 1 0.02 0.03 1.5 2.0 2.0 2.0 % of FSR ppm of FSR/C mV V/C mV A, B Grade 1 Typ Max Unit Bits Bits LSB mV LSB Test Conditions/Comments AD5060 AD5040 -40C to +85C, AD5040/AD5060 -40C to +125C, AD5060 Y grade -40C to +85C, AD5040/AD5060 -40C to +125C, AD5060 Y grade Guaranteed monotonic, -40C to +85C, AD5040/AD5060 Guaranteed monotonic, -40C to +125C, Y grade TA = -40C to +85C, AD5040/AD5060 TA = -40C to +125C AD5060 Y grade TA = -40C to + 85C, AD5040/AD5060 TA = -40C to + 125C, AD5060 Y grade All 1s loaded to DAC register, AD5040 AD5060; TA = -40C to +85C All 1s loaded to DAC register, TA = -40C to +125C, AD5060 Y grade
0 4 64 6 2 0. 003 0. 015 1 100
VREF
V s nV/Hz V p-p nV-s nV-s k k
1/4 scale to 3/4 scale code transition to 1 LSB, RL = 5 k DAC code = midscale, 1 kHz DAC code = midscale , 0.1 Hz to 10 Hz bandwidth 1 LSB change around code 57386, RL = 5 k, CL = 200 pF DAC code = full scale Output impedance tolerance 10% Output impedance tolerance 400 Output impedance tolerance 20 k Loads used RL = 5 k, RL = 100 k, RL = 1/4 scale to 3/4 scale code transition to 1 LSB, RL = 5 k, CL = 200 pF DAC code = full scale, output shorted to GND, TA = 25C DAC code = zero scale, output shorted to VDD, TA = 25C Time to exit power-down mode to normal mode of AD5060, 24th clock edge to 90% of DAC final value, output unloaded VDD 10%, DAC code = full scale Output frequency = 10 kHz
1 1. 2 60 45
nF V/s ma
DAC Power-Up Time
4.5
s
DC Power Supply Rejection Ratio Wideband Spurious-Free Dynamic
-92.11 -67
Rev. 0 | Page 3 of 24
db db
AD5040/AD5060
Parameter Range (SFDR) REFERENCE INPUT/OUTPUT VREF Input Range 5 Input Current (Power-Down) Input Current (Normal) DC Input Impedance LOGIC INPUTS Input Current 6 VIL, Input Low Voltage VIH, Input High Voltage Pin Capacitance POWER REQUIREMENTS VDD IDD (Normal Mode) VDD = 2.7 V to 5.5 V Min A, B Grade 1 Typ Max Unit Test Conditions/Comments
2 0.1
VDD - 50 0.5 1 1 2 0.8 0.8
mV A A M A V V
Zero scale loaded
2.0 1.8 4 2.7 1.0 0. 82 5.5 1.2 1. 0
VDD = 4.5 V to 5.5 V VDD = 2.7 V to 3.6 V VDD = 2.7 V to 5.5 V VDD = 2.7 V to 3.6 V
pF V mA All digital inputs at 0 V or VDD DAC active and excluding load current VIN = VDD and VIL = GND, VDD = 5.0 V, VREF = 4.096 V, code = midscale VIN = VDD and VIL = GND, VDD = 3.0 V, VREF = 2.7 V, code = midscale VIH = VDD and VIL = GND, VDD = 5.5 V, VREF = 4.096 V, code = midscale VIH = VDD and VIL = GND, VDD = 3.0 V, VREF = 4.096 V, code = midscale
IDD (All Power-Down Modes) VDD = 2.5 V to 5.5 V
0.33 0.065
1
A
1 2
Temperature range for the B grade is -40C to + 85 C, typical at 25C; temperature range for the Y grade is -40C to +125C. Linearity calculated using a reduced code range (160 to code 65535 for AD5060 ) and (40 to code 16383 for AD5040). 3 Guaranteed by design and characterization, not production tested. 4 1 k power-down network not available with the AD5040. 5 The typical output supply headroom performance for various reference voltages at -40C can be seen in Figure 26. 6 Total current flowing into all pins.
Rev. 0 | Page 4 of 24
AD5040/AD5060 TIMING CHARACTERISTICS
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted. Table 3.
Parameter t1 2 t2 t3 t4 t5 t6 t7 t8 t9
1 2
Limit 1 33 5 3 10 3 2 0 12 9
Unit ns min ns min ns min ns min ns min ns min ns min ns min ns min
Test Conditions/Comments SCLK cycle time SCLK high time SCLK low time SYNC to SCLK falling edge setup time Data setup time Data hold time SCLK falling edge to SYNC rising edge Minimum SYNC high time SYNC rising edge to next SCLK fall ignore
All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. Maximum SCLK frequency is 30 MHz.
t4
SCLK
t2 t3
t1 t7
t9
t8
SYNC
t6
04767-002
t5
DIN D23 D22 D2 D1 D0 D23 D22
Figure 2. AD5060 Timing Diagram
Rev. 0 | Page 5 of 24
AD5040/AD5060 ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter VDD to GND Digital Input Voltage to GND VOUT to GND VREF to GND Operating Temperature Range Industrial (A, B Grade) Extended Automotive Temperature Range (Y Grade) Storage Temperature Range Maximum Junction Temperature SOT-23 Package Power Dissipation JA Thermal Impedance Jc Thermal Impedance Reflow Soldering (Pb-free) Peak Temperature Time-at-Peak Temperature ESD (AD5040/AD5060) Rating -0.3 V to +7.0 V -0.3 V to VDD + 0.3 V -0.3 V to VDD + 0.3 V -0.3 V to VDD + 0.3 V -40C to +85C -40C to +125C -65C to +150C 150C (TJ max - TA)/JA 206C/W 91C/W 260C 10 sec to 40 sec 1. 5 kV
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. This device is a high performance integrated circuit with an ESD rating of <2 kV. It is ESD sensitive. Proper precautions should be taken for handling and assembly.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 24
AD5040/AD5060 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
DIN 1 VDD 2 VREF 3 VOUT 4
8
SCLK SYNC DACGND AGND
04767-003
AD5040/ AD5060
TOP VIEW (Not to Scale)
7 6 5
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No. 1 2 3 4 5 6 7 Mnemonic DIN VDD VREF VOUT AGND DACGND SYNC Description Serial Data Input. These parts have a 16-/24-bit shift register. Data is clocked into the register on the falling edge of the serial clock input. Power Supply Input. These parts can be operated from 2.7 V to 5.5 V and VDD should be decoupled to GND. Reference Voltage Input. Analog Output Voltage from DAC. Ground Reference Point for Analog Circuitry. Ground Input to the DAC Core. Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When SYNC goes low, it enables the input shift register and data is transferred in on the falling edges of the following clocks. The DAC is updated following the 16th/24th clock cycle unless SYNC is taken high before this edge, in which case the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by the DAC. Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 30 MHz.
8
SCLK
Rev. 0 | Page 7 of 24
AD5040/AD5060 TYPICAL PERFORMANCE CHARACTERISTICS
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 160 10160 20160 30160 40160 DAC CODE 50160 60160 VDD = 5.5V VREF = 4.096V TA = 25C 0.6 0.5 0.4 0.3
INL ERROR (LSB)
VDD = 5.5V VREF = 4.096V TA = 25C
INL ERROR (LSB)
0.2 0.1 0 -0.1 -0.2 -0.3 -0.4
04767-040
-0.5 -0.6 160 2260 4360 6460 8560 10660 DAC CODE 12760 14860
Figure 4. Typical AD5060 INL Plot
1.6 1.4 1.2 1.0 0.8
DNL ERROR (LSB)
Figure 7. Typical AD5040 INL Plot
0.40 0.35 0.30 0.25 0.20
DNL ERROR (LSB)
VDD = 5.5V VREF = 4.096V TA = 25C
VDD = 5.5V VREF = 4.096V TA = 25C
0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 160
0.15 0.10 0.05 0 -0.05 -0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 160
04767-039
04767-061
10160
20160
30160 40160 DAC CODE
50160
60160
2260
4360
6460 8560 10660 DAC CODE
12760
14860
Figure 5. Typical AD5060 DNL Plot
0.10 0.08 0.06 VDD = 5.5V VREF = 4.096V TA = 25C
Figure 8. Typical AD5040 DNL Plot
0.020 0.015 0.010 VDD = 5.5V VREF = 4.096V TA = 25C
TUE ERROR (mV)
TUE ERROR (mV)
0.04 0.02 0 -0.02 -0.04
0.005 0 -0.005 -0.010
-0.06 -0.08 -0.10 160 10160 20160 30160 40160 DAC CODE 50160 60160
04767-041
04767-062
-0.015 -0.020 160
2260
4360
6460
8560 10660 12760 14860 16960 DAC CODE
Figure 6. Typical AD5060 TUE Plot
Figure 9. Typical AD5040 TUE Plot
Rev. 0 | Page 8 of 24
04767-060
AD5040/AD5060
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 2.0 2.5 3.0 3.5 4.0 4.5 REFERENCE VOLTAGE (V) 5.0 5.5 TA = 25C
1.8 1.6 VDD = 5.5V, VREF = 4.096V 1.4 VDD = 2.7V, VREF = 2.0V 1.2 MAX OFFSET ERROR @ 1.0 VDD = 2.7V MAX OFFSET ERROR @ 0.8 VDD = 5.5V 0.6 0.4 0.2 MIN OFFSET ERROR @ 0 VDD = 5.5V -0.2 -0.4 -0.6 MIN OFFSET ERROR @ -0.8 VDD = 2.7V -1.0 -1.2 -1.4 -1.6 -1.8 -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (C)
INL ERROR (LSB)
MAX INL ERROR @ VDD = 5.5V
MIN INL ERROR @ VDD = 5.5V
OFFSET ERROR (mV)
Figure 10. INL vs. Reference Input Voltage1
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 2.0 2.5 3.0 3.5 4.0 4.5 REFERENCE VOLTAGE (V) 5.0 5.5 TA = 25C
0.5 0.4 0.3
04767-009
Figure 13. Typical Offset Error vs. Temperature1
VDD = 5.5V, VREF = 4.096V VDD = 2.7V, VREF = 2.0V
GAIN ERROR (% FSR)
DNL ERROR (LSB)
0.2 0.1 0 -0.1 -0.2 -0.3
MAX DNL ERROR @ VDD = 5.5V
MAX GAIN ERROR @ VDD = 2.7V MAX GAIN ERROR @ VDD = 5.5V
MIN DNL ERROR @ VDD = 5.5V
MIN GAIN ERROR @ VDD = 5.5V MIN GAIN ERROR @ VDD = 2.7V
04767-066
04767-010
-0.4 -0.5 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120
140
Figure 11. DNL vs. Reference Input Voltage1
1.2 1.0 0.8 0.6
TUE ERROR (mV)
1.4
Figure 14. Typical Gain Error vs. Temperature1
VDD = 5.5V, VREF = 4.096V 1.2 VDD = 2.7V, VREF = 2.0V 1.0 0.8
TA = 25C
0.4 0.2 0 -0.2 -0.4 -0.6 -0.8
04767-011
MAX TUE ERROR @ VDD = 5.5V
INL ERROR (LSB)
0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -40
MAX INL ERROR @ VDD = 2.7V MAX INL ERROR @ VDD = 5.5V
MIN TUE ERROR @ VDD = 5.5V
MIN INL ERROR @ VDD = 5.5V
-1.0 -1.2 2.0 2.5 3.0 3.5 4.0 4.5 REFERENCE VOLTAGE (V) 5.0 5.5
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
140
Figure 12. TUE vs. Reference Input Voltage1
1
Figure 15. Typical INL Error vs. Temperature1
AD5060 only.
Rev. 0 | Page 9 of 24
04767-069
MIN INL ERROR @ VDD = 2.7V
04767-067
AD5040/AD5060
1.0 VDD = 5.5V, VREF = 4.096V 0.8 VDD = 2.7V, VREF = 2.0V 0.6
1.8 1.6 1.4
MAX DNL ERROR @ VDD = 2.7V
VDD = 5.5V VREF = 4.096V TA = 25C
FULL-SCALE THREE QUARTER SCALE
DNL ERROR (LSB)
0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -40
1.2
IDD (mA)
MAX DNL ERROR @ VDD = 5.5V MIN DNL ERROR @ VDD = 5.5V
1.0 0.8
MID-SCALE QUARTER-SCALE ZERO-SCALE
0.6
MIN DNL ERROR @ VDD = 2.7V
04767-071
0.4
04767-044
0.2 0 0 5M 10M 15M 20M 25M 30M FREQUENCY (Hz) 35M 40M
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
140
45M
Figure 16. Typical DNL Error vs. Temperature1
1.0 VDD = 5.5V, VREF = 4.096V 0.8 VDD = 2.7V, VREF = 2.0V 0.6 0.4 MAX TUE ERROR @ VDD = 5.5V
Figure 19. Typical Supply Current vs. Frequency @ 5.5 V1
1.6 1.4 1.2 FULL-SCALE
IDD (mA)
VDD = 3V VREF = 2.5V TA = 25C THREE QUARTER SCALE
TUE ERROR (mV)
0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 -40 -20 0 MIN TUE ERROR @ VDD = 2.7V
MAX TUE ERROR @ VDD = 2.7V MIN TUE ERROR @ VDD = 5.5V
1.0 0.8 0.6 ZERO-SCALE 0.4
04767-068 04767-045
MID-SCALE
QUARTER-SCALE
0.2 0
20 40 60 80 TEMPERATURE (C)
100
120
140
0
5M
10M
15M 20M 25M 30M FREQUENCY (Hz)
35M
40M
45M
Figure 17. Typical TUE Error vs. Temperature1
1.4 VDD = 5.5V, VREF = 4.096V VDD = 2.7V, VREF = 2.0V 1.2 MAX IDD @ VDD = 5.5V
Figure 20. Typical Supply Current vs. Frequency @ 3 V1
2.0 VREF = 2.5V 1.8 TA = 25C CODE = MIDSCALE 1.6 1.4 1.2
1.0 0.8 0.6 0.4 0.2 0 -40
IDD (mA)
MAX IDD @ VDD = 2.7V
IDD (A)
04767-072
1.0 0.8 0.6 0.4 0.2 0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 6.0
04767-015
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
140
Figure 18. Typical Supply Current vs. Temperature1
1
Figure 21. Typical Supply Current vs. Supply Voltage1
AD5060 only.
Rev. 0 | Page 10 of 24
AD5040/AD5060
3.00 2.75 2.50 2.25 2.00
IDD (mA)
TA = 25C
VDD = 3V DAC = FULL SCALE VREF = 2.7V TA = 25C
1.75 1.50 1.25 1.00 0.75 0.50
04767-014
VDD = 5.5V, VREF = 4.096V
VDD = 3.0V, VREF = 2.5V
04767-020
0.25 0 0 10000 20000 30000 40000 DAC CODE 50000 60000
Y AXIS = 2V/DIV X AXIS = 4s/DIV
70000
Figure 22. Typical Supply Current vs. Digital Input Code1
0.50
24TH CLOCK FALLING
Figure 25. 0.1 Hz to 10 Hz Noise Plot
0.45 0.40
HEADROOM (V)
CH1 = SCLK
0.35 0.30 0.25 0.20 0.15 0.10
04767-017
CH2 = VOUT
0.05 0 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5 REFERENCE VOLTAGE (V)
CH2 50mV/DIV
CH1 2V/DIV
TIME BASE 400ns/DIV
Figure 23. AD5060 Digital-to-Analog Glitch Impulse (See Figure 24)
0.117 0.116 0.115 0.114 0.113 0.112 0.111 0.110 0.109 0.108 0.107 0.106 0.105
04767-043
Figure 26. VDD Headroom vs. Reference Voltage
5.05
DAC OUTPUT VOLTAGE (V)
VDD = 5V VREF = 4.096V R = 5k C = 220pF CODE = 57386
5.00 4.95 4.90 4.85 4.80 4.75 4.70 4.65 4.60 4.55
VDD = 5.0V TA = 25C DAC = FULL-SCALE
AMPLITUDE
0.102 0.101
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525
4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00
SAMPLES
VREF (V)
Figure 24. AD5060 Digital-to-Analog Glitch Energy
Figure 27. Output Voltage vs. Reference Voltage
1
AD5060 only.
Rev. 0 | Page 11 of 24
04767-042
0.104 0.103
04767-091
AD5040/AD5060
5.005 VREF = 5V TA = 25C 5.000
C4 = 143mV p-p ZERO-SCALE 1k TO GND
DAC OUTPUT (V)
4.995
4.990
4.985
4.980
04767-065
04767-047
4.975
5.50 5.45 5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.05 5.00 VDD (V)
CH4 50.0mV
M4.00s
CH1
1.64V
Figure 28. Typical Output vs. Supply Voltage
Figure 31. Glitch upon Entering Software Power-Down to Zero Scale
CH3 = SCLK
1k TO GND
ZERO-SCALE
C4 = 50mV p-p
CH2 = VOUT
04767-019
CH1 2V/DIV CH2 2V/DIV
CH3 2V TIME BASE = 5.00s
CH4 20.0mV
M1.00s
CH1
1.64V
Figure 29. Time to Exit Power-Down to Midscale
Figure 32. Glitch upon Exiting Software Power-Down to Zero Scale
400 350 FULL-SCALE 300 250 200 150 100 50
3 2 T
NOISE SPECTRAL DENSITY (nV/ Hz)
VDD = 5V VREF = 4.096V TA = 25C
C2 25mV p-p C3 4.96V p-p C3 FALL 935.0s C3 RISE s NO VALID EDGE
04767-049
MID-SCALE
QUARTER-SCALE
T
04767-046
0 ZERO-SCALE -50 100 1k 10k FREQUENCY (Hz) 100k
1M
CH3 2.00V
CH2 50mV
M1.00ms
CH3
1.36V
Figure 30. Noise Spectral Density
Figure 33. Glitch upon Entering Hardware Power-Down to Three-State
Rev. 0 | Page 12 of 24
04767-048
CH1 = TRIGGER
AD5040/AD5060
2.1
C2 30mV p-p
2.0 1.9 1.8
VDD = 5.5V VREF = 4.096V 10% TO 90% RISE TIME = 0.688s SLEW RATE = 1.16V/s
2.04V
2 T
C3 4.96V p-p C3 FALL s NO VALID EDGE
1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 -10s -8s -6s -4s -2s 0 2s 4s 6s
04767-052
DAC OUTPUT
T
3
C3 RISE 946.2s
04767-050
1.04V
CH3 2.00V
CH2 50mV
M1.00ms
CH3
1.36V
8s 9.96s
Figure 34. Glitch upon Exiting Hardware Power-Down to Zero Scale
0.0010 0.0008 0.0006
12 16
Figure 37. Typical Output Slew Rate
CODE = MID-SCALE VDD = 5V, VREF = 4.096V VDD = 3V, VREF = 2.5V
14
VOLTAGE (V)
0.0004 0.0002 0 -0.0002 VDD = 5.5V -0.0004
04767-051
FREQUENCY
10 8 6 4
04767-075
-0.0006 VDD = 3V -0.0008 -25 -20 -15 -10 -5 0 5 10 CURRENT (mA) 15 20 25 30
2 0
0.83
0.84
0.85
0.86
0.87 0.88 BIN
0.89
0.90
0.91 MORE
Figure 35. Typical Output Load Regulation
0.10 0.08 0.06 VDD = 3V, VREF = 2.5V 0.04 CODE = MIDSCALE VDD = 5V, VREF = 4.096V VDD = 3V, VREF = 2.5V
Figure 38. IDD Histogram VDD = 3.0 V
14 12 10
FREQUENCY
VOUT (V)
0.02 0 -0.02 -0.04 -0.06
04767-063
8 6
4
VDD = 5V, VREF = 4.096V
-0.08 -0.10 -25 -20 -15 -10 -5 0 5 IOUT (mA) 10 15 20 25
30
0
1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11MORE BIN
Figure 36. Typical Current Limiting Plot
Figure 39. IDD Histogram VDD = 5.0 V
Rev. 0 | Page 13 of 24
04767-076
2
AD5040/AD5060 TERMINOLOGY
Relative Accuracy For the DAC, relative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the DAC transfer function. A typical AD5060 INL vs. code plot is shown in Figure 4. Differential Nonlinearity (DNL) Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB maximum ensures monotonicity. This DAC is guaranteed monotonic by design. A typical AD5060 DNL vs. code plot is shown in Figure 5. Offset Error Offset error is a measure of the output error when zero code (0x0000) is loaded to the DAC register. Ideally, the output should be 0 V. The zero-code error is always positive in the AD5040/AD5060 because the output of the DAC cannot go below 0 V. This is due to a combination of the offset errors in the DAC and output amplifier. Zero-code error is expressed in mV. Full-Scale Error Full-scale error is a measure of the output error when full-scale code (0xFFFF AD5060, 0x3FFF AD5040) is loaded to the DAC register. Ideally, the output should be VDD - 1 LSB. Full-scale error is expressed in percent of full-scale range. Gain Error This is a measure of the span error of the DAC. It is the deviation in slope of the DAC transfer characteristic from ideal, expressed as a percent of the full-scale range. Total Unadjusted Error (TUE) Total unadjusted error is a measure of the output error taking all the various errors into account. A typical AD5060 TUE vs. code plot is shown in Figure 6. Offset Error Drift This is a measure of the change in zero-code error with a change in temperature. It is expressed in V/C. Gain Error Drift This is a measure of the change in gain error with changes in temperature. It is expressed in (ppm of full-scale range)/C. Digital-to-Analog Glitch Impulse Digital-to-analog glitch impulse is the impulse injected into the analog output when the input code in the DAC register changes state. It is normally specified as the area of the glitch in nV-s and is measured when the digital input code is changed by 1 LSB at the worst case code 53786; see Figure 23 and Figure 24. The expanded view in Figure 23 shows the glitch generated following completion of the calibration routine; Figure 24 zooms in on this glitch. Digital Feedthrough Digital feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital inputs of the DAC, but is measured when the DAC output is not updated. It is specified in nV-s and measured with a full-scale code change on the data bus--that is, from all 0s to all 1s, and vice versa.
Rev. 0 | Page 14 of 24
AD5040/AD5060 THEORY OF OPERATION
The AD5040/AD5060 are single 14-/16-bit, serial input, voltage output DACs. The parts operate from supply voltages of 2.7 V to 5.5 V. Data is written to the AD5060 in a 24-bit word format, and to the AD5040 in a 16-bit word format, via a 3-wire serial interface. Both the AD5040 and AD5060 incorporate a power-on reset circuit that ensures the DAC output powers up to a known output state (midscale or zero-scale, see the Ordering Guide). The devices also have a software power-down mode that reduces the typical current consumption to less than 1 a.
SERIAL INTERFACE
The AD5060/AD5040 have a 3-wire serial interface (SYNC, SCLK, and DIN), which is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs. Figure 2 shows a timing diagram of a typical AD5060 write sequence. The write sequence begins by bringing the SYNC line low. For the AD5060, data from the DIN line is clocked into the 24-bit shift register on the falling edge of SCLK. The serial clock frequency can be as high as 30 MHz, making these parts compatible with high speed DSPs. On the 24th falling clock edge, the last data bit is clocked in and the programmed function is executed (that is, a change in the DAC output or a change in the mode of operation). At this stage, the SYNC line can be kept low or be brought high. In either case, it must be brought high for a minimum of 12 ns before the next write sequence so that a falling edge of SYNC can initiate the next write sequence. Because the SYNC buffer draws more current when VIH = 1.8 V than it does when VIH = 0.8 V, SYNC should be idled low between write sequences for an even lower power operation of the part. As previously indicated, however, it must be brought high again just before the next write sequence. The AD5040 requires 16 clock periods to update the input shift register. On the 16th falling clock edge, the last data bit is clocked in and the programmed function is executed (that is, a change in the DAC output or a change in the mode of operation).
DAC ARCHITECTURE
The DAC architecture of the AD5060 consists of two matched DAC sections. A simplified circuit diagram is shown in Figure 40. The 4 MSBs of the 16-bit data-word are decoded to drive 15 switches, E1 to E15. Each of these switches connects 1 of 15 matched resistors to either DACGND or the VREF buffer output. The remaining 12 bits of the data-word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.
VOUT 2R 2R S0 VREF 2R S1 2R S11 2R E1 2R E2 2R E15
12-BIT R-2R LADDER
FOUR MSBs DECODED INTO 15 EQUAL SEGMENTS
Figure 40. AD5060 DAC Ladder Structure
REFERENCE BUFFER
The AD5040 andAD5060 operate with an external reference. The reference input (VREF) has an input range of 2 V to VDD - 50 mV. This input voltage is then used to provide a buffered reference for the DAC core.
04767-027
Input Shift Register
The AD5060 input shift register is 24 bits wide; see Figure 41. PD1 and PD0 are control bits that control the operating mode of the part--normal mode or any one of three power-down modes (see the Power-Down Modes section for more detail). The next 16 bits are the data bits. These are transferred to the DAC register on the 24th falling edge of SCLK.
DB0 (LSB)
DB15 (MSB)
0
0
0
0
0
0
PD1
PD0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
DATA BITS
0 0 1 1
0 1 0 1
NORMAL OPERATION 3-STATE 100k TO GND 1k TO GND POWER-DOWN MODES
04767-028
Figure 41. AD5060 Input Register Content
Rev. 0 | Page 15 of 24
AD5040/AD5060
The AD5040 input shift register is 16 bits wide; see Figure 42. PD1 and PD0 are control bits that control the operating mode of the part--normal mode or any one of two power-down modes (see Power-Down Modes section for more detail). The next 14 bits are the data bits. These are transferred to the DAC register on the 16th falling edge of SCLK.
POWER-ON RESET
The AD5040 and AD5060 both contain a power-on reset circuit that controls the output voltage during power-up. The DAC register is filled with the zero-scale code or midscale code and the output voltage is set to zero scale or midscale (see the Ordering Guide for more details on the reset model). It remains there until a valid write sequence is made to the DAC. This is useful in applications where it is important to know the output state of the DAC while it is in the process of powering up.
SYNC Interrupt
In a normal write sequence for the AD5060, the SYNC line is kept low for at least 24 falling edges of SCLK, and the DAC is updated on the 24th falling edge. However, if SYNC is brought high before the 24th falling edge, the write sequence is interrupted. The shift register is reset and the write sequence is considered invalid. Neither an update of the DAC register contents nor a change in the operating mode occurs; see Figure 43. In a normal write sequence for the AD5040, the SYNC line is kept low for at least 16 falling edges of SCLK, and the DAC is updated on the 16th falling edge. However, if SYNC is brought high before the 16th falling edge, the write sequence is interrupted. The shift register is reset and the write sequence is considered invalid. Neither an update of the DAC register contents nor a change in the operating mode occurs.
SOFTWARE RESET
The AD5060 device can be put into software reset by setting all bits in the DAC register to 1; this includes writing 1s to Bit D23 and Bit D16, which is not the normal mode of operation. For the AD5040 this includes writing 1s to Bit D15 and Bit D14, which is also not the normal mode of operation. Note that the SYNC interrupt command cannot be performed if a software reset command is started in the AD5040 or AD5060.
DB13 (MSB) PD1 PD0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2
DB0 (LSB) D1 D0
DATA BITS
Figure 42. AD5040 Input Register Content
SCLK
SYNC
04767-074
0 0 1
0 1 0
NORMAL OPERATION 3-STATE POWER-DOWN MODES 100k TO GND
DIN
DB23
DB0
DB23
DB0
INVALID WRITE SEQUENCE: SYNC HIGH BEFORE 24TH FALLING EDGE
VALID WRITE SEQUENCE, OUTPUT UPDATES ON THE 24TH FALLING EDGE
Figure 43. AD5060 SYNC Interrupt Facility
Rev. 0 | Page 16 of 24
04767-031
AD5040/AD5060
POWER-DOWN MODES
The AD5060 features four operating modes, and the AD5040 features three operating modes. These modes are software programmable by setting two bits in the control register (Bit DB17 and Bit DB16 in the AD5060 and Bit DB15 and Bit DB14 in the AD5040). Table 6 and Table 7 show how the state of the bits corresponds to the operating mode of the two devices. Table 6. Operating Modes for the AD5060
DB17 0 0 1 1 DB16 0 1 0 1 Operating Mode Normal operation Power-down modes: 3-state 100 k to GND 1 k to GND
MICROPROCESSOR INTERFACING
AD5040/AD5060 to ADSP-2101/ADSP-2103 Interface
Figure 45 shows a serial interface between the AD5040/AD5060 and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103 should be set up to operate in the SPORT transmit alternate framing mode. The ADSP-2101/ADSP-2103 sport is programmed through the SPORT control register and should be configured for internal clock operation, active low framing, and 16-bit word length. Transmission is initiated by writing a word to the Tx register after the SPORT has been enabled.
ADSP-2101/ ADSP-21031
TFS DT SYNC DIN SCLK
04767-030
AD5040/ AD50601
Table 7. Operating Modes for the AD5040
DB15 0 0 1 1 DB14 0 1 0 1 Operating Mode Normal operation Power-down modes: 3-state 100 k to GND See Software Reset section
SCLK
1ADDITIONAL PINS OMITTED FOR CLARITY
Figure 45. AD5040/AD5060 to ADSP-2101/ADSP-2103 Interface
AD5040/AD5060 to 68HC11/68L11 Interface
Figure 46 shows a serial interface between the AD5040/ AD5060 and the 68HC11/68L11 microcontroller. SCK of the 68HC11/68L11 drives the SCLK pin of the AD5040/AD5060, while the MOSI output drives the serial data line of the DAC. The SYNC signal is derived from a port line (PC7). The setup conditions for correct operation of this interface require that the 68HC11/68L11 be configured so that its CPOL bit is 0 and its CPHA bit is 1. When data is being transmitted to the DAC, the SYNC line is taken low (PC7). When the 68HC11/68L11 is configured where its CPOL bit is 0 and its CPHA bit is 1, data appearing on the MOSI output is valid on the falling edge of SCK. Serial data from the 68HC11/68L11 is transmitted in 8-bit bytes with only 8 falling clock edges occurring in the transmit cycle. Data is transmitted MSB first. In order to load data to the AD5040/AD5060, PC7 is left low after the first eight bits are transferred, and a second serial write operation is performed to the DAC. PC7 is taken high at the end of this procedure.
68HC11/ 68L111
In both the AD5060 and the AD5040, when the two most significant bits are set to 0, the part has normal power consumption. However, for the three power-down modes of the AD5060 and the two power down modes of the AD5040, the supply current falls to less than 1A at 5 V (65 nA at 3 V). Not only does the supply current fall, but the output stage is also internally switched from the output of the amplifier to a resistor network of known values. This is advantageous because the output impedance of the part is known while the part is in power-down mode. The output is connected internally to GND through a 1 k resistor (AD5060 only) or a 100 k resistor, or it is left open-circuited (three-stated). The output stage is illustrated in Figure 44.
AD5040/ AD5060
DAC OUTPUT BUFFER VOUT
AD5040/ AD50601
PC7 SYNC SCLK DIN
04767-032
POWER-DOWN CIRCUITRY
04767-029
RESISTOR NETWORK
SCK MOSI
Figure 44. Output Stage During Power-Down
1ADDITIONAL
PINS OMITTED FOR CLARITY
The bias generator, the DAC core, and other associated linear circuitry are all shut down when power-down mode is activated. However, the contents of the DAC register are unaffected when in power-down. The time to exit power-down is typically 2.5 s for VDD = 5 V, and 5 s for VDD = 3 V; see Figure 29.
Rev. 0 | Page 17 of 24
Figure 46. AD5040/AD5060 to 68HC11/68L11 Interface
AD5040/AD5060
AD5040/AD5060 to Blackfin(R) ADSP-BF53x Interface
Figure 47 shows a serial interface between the AD5040/ AD5060 and the Blackfin ADSP-53x microprocessor. The ADSP-BF53x processor family incorporates two dual-channel synchronous serial ports, SPORT1 and SPORT0, for serial and multiprocessor communications. Using SPORT0 to connect to the AD5040/AD5060, the setup for the interface is: DT0PRI drives the SDIN pin of the AD5040/AD5060, while TSCLK0 drives the SCLK of the part; the SYNC is driven from TFS0.
ADSP-BF53x1
AD5040/AD5060 to MICROWIRE Interface
Figure 49 shows an interface between the AD5040/AD5060 and any MICROWIRE-compatible device. Serial data is shifted out on the falling edge of the serial clock and is clocked into the AD5040/AD5060 on the rising edge of the SK.
MICROWIRE1
AD5040/ AD50601
CS SK SYNC SCLK DIN
04767-035
AD5040/ AD50601
DIN SCLK SYNC
04767-033
SO
DT0PRI TSCLK0 TFS0
1ADDITIONAL
PINS OMITTED FOR CLARITY
Figure 49. AD5040/AD5060 to MICROWIRE Interface
1ADDITIONAL
PINS OMITTED FOR CLARITY
Figure 47. AD5040/AD5060 to Blackfin(R) ADSP-BF53x Interface
AD5040/AD5060 to 80C51/80L51 Interface
Figure 48 shows a serial interface between the AD5060/ AD5040 and the 80C51/80L51 microcontroller. The setup for the interface is: TxD of the 80C51/80L51 drives SCLK of the AD5040/AD5060 while RxD drives the serial data line of the part. The SYNC signal is again derived from a bitprogrammable pin on the port. In this case, Port Line P3.3 is used. When data is to be transmitted to the AD5040, P3.3 is taken low. The 80C51/80L51 transmits data only in 8-bit bytes; thus only 8 falling clock edges occur in the transmit cycle. To load data to the DAC, P3.3 is left low after the first eight bits are transmitted, and a second write cycle is initiated to transmit the second byte of data. P3.3 is taken high following the completion of this cycle. The 80C51/80L51 outputs the serial data in a format which has the LSB first. The AD5040/AD5060 require data to be received with the MSB as the first bit. The 80C51/80L51 transmit routine should take this into account.
80C51/80L511
AD5040/ AD50601
P3.3 TxD RxD SYNC SCLK DIN
04767-034
1ADDITIONAL
PINS OMITTED FOR CLARITY
Figure 48. AD5040/AD5060 to 80C51/80L51 Interface
Rev. 0 | Page 18 of 24
AD5040/AD5060 APPLICATIONS
CHOOSING A REFERENCE FOR THE AD5040/ AD5060
To achieve the optimum performance from the AD5040/ AD5060, carefully choose a precision voltage reference. The AD5040/AD5060 have just one reference input, VREF. The voltage on the reference input is used to supply the positive input to the DAC. Therefore, any error in the reference is reflected in the DAC. There are four possible sources of error to consider when choosing a voltage reference for high accuracy applications: initial accuracy, ppm drift, long-term drift, and output voltage noise. Initial accuracy on the output voltage of the DAC leads to a full-scale error in the DAC. To minimize these errors, a reference with high initial accuracy is preferred. Also, choosing a reference with an output trim adjustment, such as an ADR43x device, allows a system designer to trim out system errors by setting a reference voltage to a voltage other than the nominal. The trim adjustment can also be used at temperature to trim out any errors. Because the supply current required by the AD5040/AD5060 is extremely low, the parts are ideal for low supply applications. The ADR395 voltage reference is recommended. This requires less than 100 A of quiescent current and can, therefore, drive multiple DACs in one system, if required. It also provides very good noise performance at 8 V p-p in the 0.1 Hz to 10 Hz range.
7V 5V
output noise in the 0.1 Hz to 10 Hz region. Table 8 shows examples of recommended precision references for use as a supply to the AD5040/AD5060. Table 8. Precision References for the AD5040/AD5060
Initial Accuracy (mV max) 2 2 3 3 5 Temp. Drift (ppm/C max) 3 (SO-8) 3 (SO-8) 3 (SO-8) 3 (SC70) 9 (TSOT-23) 0.1 Hz to 10 Hz Noise (V p-p typ) 8 3.4 10 10 8
Part No. ADR435 ADR425 ADR02 ADR02 ADR395
BIPOLAR OPERATION USING THE AD5040/ AD5060
The AD5040/AD5060 have been designed for single-supply operation, but a bipolar output range is also possible using the circuit in Figure 51. The circuit shown yields an output voltage range of 5 V. Rail-to-rail operation at the amplifier output is achievable using an AD8675/AD820/AD8032 or an OP196/ OP295. The output voltage for any input code can be calculated as
D R1 + R 2 R 2 VO = V DD x x - V DD x 65536 R1 R1 where D represents the input code in decimal (0 to 65536, AD5060). With VREF = 5 V, R1 = R2 = 10 k:
ADR395
04767-036
3-WIRE SERIAL INTERFACE
SYNC SCLK DIN
AD5040/ AD5060
VOUT = 0V TO 5V
10 x D VO = -5V 65536 Using the AD5060, this is an output voltage range of 5 V with 0x0000 corresponding to a -5 V output and 0xFFFF corresponding to a +5 V output .
R2 = 10k +5V +5V R1 = 10k
Figure 50. ADR395 as Reference to AD5060/AD5040
Long-term drift is a measure of how much the reference drifts over time. A reference with a tight long-term drift specification ensures that the overall solution remains relatively stable during its entire lifetime. The temperature coefficient of a reference output voltage affects INL, DNL, and TUE. A reference with a tight temperature coefficient specification should be chosen to reduce the temperature dependence of the DAC output voltage on ambient conditions. In high accuracy applications, which have a relatively low noise budget, reference output voltage noise needs to be considered. It is important to choose a reference with as low an output noise voltage as practical for the system noise resolution required. Precision voltage references, such as the ADR435, produce low
10F
0.1F
VREF
AD5040/ AD5060
- AD820/ OP295 +
VOUT -5V
5V
3-WIRE SERIAL INTERFACE
Figure 51. Bipolar Operation with the AD5040/AD5060
Rev. 0 | Page 19 of 24
04767-037
AD5040/AD5060
USING THE AD5040/AD5060 WITH A GALVANICALLY ISOLATED INTERFACE CHIP
In process control applications in industrial environments, it is often necessary to use a galvanically isolated interface to protect and isolate the controlling circuitry from any hazardous common-mode voltages that can occur in the area where the DAC is functioning. iCoupler(R) provides isolation in excess of 2.5 kV. Because the AD5040/AD5060 use a 3-wire serial logic interface, the ADuM130x family provides an ideal digital solution for the DAC interface. The ADuM130x isolators provide three independent isolation channels in a variety of channel configurations and data rates. They operate across the full range from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. Figure 52 shows a typical galvanically isolated configuration using the AD5040/AD5060. The power supply to the part also needs to be isolated; this is accomplished by using a transformer. On the DAC side of the transformer, a 5 V regulator provides the 5 V supply required for the AD5040/AD5060.
5V REGULATOR POWER
POWER SUPPLY BYPASSING AND GROUNDING
When accuracy is important in a circuit, it is helpful to carefully consider the power supply and ground return layout on the board. The printed circuit board containing the AD5040/ AD5060 should have separate analog and digital sections, each having its own area of the board. If the AD5040/AD5060 are in a system where other devices require an AGND-to-DGND connection, the connection should be made at one point only. This ground point should be as close as possible to the AD5040/AD5060. The power supply to the AD5040/AD5060 should be bypassed with 10 F and 0.1 F capacitors. The capacitors should be physically as close as possible to the device with the 0.1 F capacitor ideally right up against the device. The 10 F capacitors are the tantalum bead type. It is important that the 0.1 F capacitor has low effective series resistance (ESR) and effective series inductance (ESI), as do common ceramic types of capacitors. This 0.1 F capacitor provides a low impedance path to ground for high frequencies caused by transient currents due to internal logic switching. The power supply line itself should have as large a trace as possible to provide a low impedance path and reduce glitch effects on the supply line. Clocks and other fast switching digital signals should be shielded from other parts of the board by a digital ground. Avoid crossover of digital and analog signals, if possible. When traces cross on opposite sides of the board, ensure that they run at right angles to each other to reduce feedthrough effects on the board. The best board layout technique is the microstrip technique where the component side of the board is dedicated to the ground plane only, and the signal traces are placed on the solder side. However, this is not always possible with a two-layer board.
10F
0.1F
VDD SCLK V1A V0A SCLK
ADuM1300
SDI V1B V0B SYNC
AD5040/ AD5060
VOUT
GND
Figure 52. AD5040/AD5060 with a Galvanically Isolated Interface
04767-038
DATA
V1C
V0C
DIN
Rev. 0 | Page 20 of 24
AD5040/AD5060 OUTLINE DIMENSIONS
2.90 BSC
8
7
6
5
1.60 BSC
1 2 3 4
2.80 BSC
PIN 1 INDICATOR 0.65 BSC 1.30 1.15 0.90 1.95 BSC
1.45 MAX 0.38 0.22
0.22 0.08 8 4 0
0.15 MAX
SEATING PLANE
0.60 0.45 0.30
COMPLIANT TO JEDEC STANDARDS MO-178-BA
Figure 53. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8) Dimensions shown in millimeters
ORDERING GUIDE
Model AD5040BRJZ-500RL7 1 AD5040BRJZ-REEL71 AD5060ARJZ-1500RL71 AD5060ARJZ-1REEL71 AD5060ARJZ-2REEL71 AD5060ARJZ-2500RL71 AD5060BRJZ-1500RL71 AD5060BRJZ-1REEL71 AD5060BRJZ-2REEL71 AD5060BRJZ-2500RL71 AD5060YRJZ-1500RL71 AD5060YRJZ-1REEL71 EVAL-AD5060EB EVAL-AD5040EB
1
Temperature Range -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +125C -40C to +125C
INL 1 LSB 1 LSB 2 LSB 2 LSB 2 LSB 2 LSB 1 LSB 1 LSB 1 LSB 1 LSB 1 LSB 1 LSB
Description 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to midscale 2.7 V to 5.5 V, reset to midscale 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to midscale 2.7 V to 5.5 V, reset to midscale 2.7 V to 5.5 V, reset to 0 V 2.7 V to 5.5 V, reset to 0 V
Package Description 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 8 Lead SOT-23 Evaluation Board Evaluation Board
Package Option RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8 RJ-8
Branding D4C D4C D3Z D3Z D41 D41 D3W D3W D3X D3X D6F D6F
Z = Pb-free part.
Rev. 0 | Page 21 of 24
AD5040/AD5060 NOTES
Rev. 0 | Page 22 of 24
AD5040/AD5060 NOTES
Rev. 0 | Page 23 of 24
AD5040/AD5060 NOTES
(c) 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04767-0-10/05(0)
T T
Rev. 0 | Page 24 of 24


▲Up To Search▲   

 
Price & Availability of AD5060

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X