![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DATA SHEET MOS FIELD EFFECT TRANSISTOR 2SK3116 SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE Description The 2SK3116 is N channel DMOS FET device that features a low gate charge and excellent switching characteristics, and designed for high voltage applications such as switching power supply, AC adapter. Ordering Information Part number 2SK3116 2SK3116-S 2SK3116-ZJ Package TO-220 TO-262 TO-263 Features *Low gate charge QG = 26 nC TYP. (VDD = 450 V, VGS = 10 V, ID = 7.5 A) *Gate voltage rating 30 V *Low on-state resistance RDS(on) = 1.2 (MAX.) (VGS = 10 V, ID = 3.75 A) *Avalanche capability ratings Absolute Maximum Rating (TA = 25C) Drain to source voltage (VGS = 0 V) Gate to source voltage (VDS = 0 V) Drain current (DC) (TC = 25C) Drain current (pulse) Note1 VDSS VGSS ID(DC) ID(pulse) PT1 PT2 Tch Tstg 600 30 7.5 30 1.5 70 150 -55 to +150 7.5 37.5 3.5 V V A A W W C C A mJ V/ns Total power dissipation (TA = 25C) Total power dissipation (TC = 25C) Channel temperature Storage temperature Single avalanche current Single avalanche energy Diode recovery dv/dt Note2 Note2 IAS EAS dt/dt Note3 Notes 1. PW 10 s, Duty cycle 1 % 2. Starting Tch = 25C, VDD = 150 V, RG = 25 , VGS = 20 V0 V 3. IF 3.0 A, Vclamp = 600 V, di/dt 100 A/s, TA = 25C The information in this document is subject to change without notice. Document No. D13339EJ1V0DS00 (1st edition) Date Published September 1998 NS CP (K) Printed in Japan (c) 1998 2SK3116 Electrical Characteristics (TA = 25C) Characteristics Drain leakage current Gate leakage current Gate cut-off voltage Forward transfer admittance Drain to source on-state resistance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Total gate charge Gate to source charge Gate to drain charge Diode forward voltage Reverse recovery time Reverse recovery charge Symbol IDSS IGSS VGS(off) MIN. TYP. MAX. 100 100 Unit Test Conditions VDS = 600 V, VGS = 0 V VGS = 30 V, VDS = 0 V VDS = 10 V, ID = 1 mA VDS = 10 V, ID = 3.75 A VGS = 10 V, ID = 3.75 A VDS = 10 V VGS = 0 V f = 1 MHz VDD = 150 V, ID = 3.75 A VGS(on) = 10 V RG = 10 RL = 50 VDD = 450 V VGS = 10 V ID = 7.5 A IF = 7.5 A, VGS = 0 V IF = 7.5 A, VGS = 0 V di/dt = 50 A/s A nA V S 2.5 2.0 0.9 1100 200 20 18 15 50 15 26 6 10 1.0 1.6 7.6 3.5 | yfs | RDS(on) Ciss Coss Crss td(on) tr td(off) tf QG QGS QGD VF(S-D) Trr Qrr 1.2 pF pF pF ns ns ns ns nC nC nC V s C Test circuit 1 Avalanche capability D.U.T. RG = 25 PG. VGS = 20 0 V 50 Test circuit 2 Switching time D.U.T. L VDD PG. RG RG = 10 RL VGS Wave Form VGS 0 10 % VGS(on) 90 % VDD ID 90 % 90 % ID BVDSS IAS ID VDD VDS VGS 0 = 1 s Duty Cycle 1 % ID Wave Form 0 10 % td(on) ton tr td(off) toff 10 % tf Starting Tch Test circuit 3 Gate charge D.U.T. IG = 2 mA PG. 50 RL VDD 2 2SK3116 Typical Characteristics(TA = 25C) DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE Pulsed 25 20 15 6V 10 5 FORWARD TRANSFER CHARACTERISTICS 100 ID - Drain Current - A VGS = 10 V 8V Tch = 125 C 75 C 10 Tch = 25 C -25 C ID - Drain Current - A 1.0 0.1 VDS = 10 V Pulsed 15 0 30 VDS - Drain to Source Voltage - V 10 20 40 0 5 10 VGS - Gate to Source Voltage - V GATE TO SOURCE CUTOFF VOLTAGE vs. CHANNEL TEMPERATURE FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT VGS(off) - Gate to Source Cutoff Voltage - V | yfs | - Forward Transfer Admittance - S 5.0 10 Tch = -25 C 25 C 75 C 125 C 1.0 4.0 3.0 2.0 1.0 VDS = 10 V ID = 1 mA 0 -50 0 50 100 150 0.1 0.1 VDS = 10 V Pulsed 1.0 ID - Drain Current - A 10 Tch - Channel Temperature - C RDS (on) - Drain to Source On-State Resistance - RDS(on) - Drain to Source On-State Resistance - DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE 3.0 Pulsed DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT 3.0 Pulsed 2.0 ID = 4.0 A 7.5 A 1.0 2.0 VGS = 10 V 20 V 1.0 0 0 5 10 15 0 1.0 VGS - Gate to Source Voltage - V 10 ID - Drain Current - A 100 3 2SK3116 RDS (on) - Drain to Source On-State Resistance - DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 4.0 SOURCE TO DRAIN DIODE FORWARD VOLTAGE ISD - Diode Forward Current - A 100 3.0 ID = 7.5 A 4.0 A 10 2.0 1.0 VGS = 10 V 0V 1.0 VGS = 10 V Pulsed 0 50 100 150 Tch - Channel Temperature - C 0.1 0 -50 0 0.5 1.0 Pulsed 1.5 VSD - Source to Drain Voltage - V CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE 100 SWITCHING CHARACTERISTICS td(on), tr, td(off), tf - Switching Time - ns Ciss, Coss, Crss - Capacitance - pF td(off) tf 10 td(on) 10 000 Ciss 1 000 100 Coss tr 1 VDD = 150 V VGS = 10 V RG = 10 1 ID - Drain Current - A 10 10 VGS= 0 V f=1 MHz 10 100 Crss 1 000 1 1.0 0.1 0.1 REVERSE RECOVERY TIME vs. DRAIN CURRENT 10 000 trr - Reverse Recovery Time - ns VDS - Drain to Source Voltage - V 600 1 000 VDD = 450 V 300 V 150 V 12 VGS 10 8 6 400 100 200 VDS 4 2 12 20 0 32 10 0.1 1.0 10 100 0 8 ID - Drain Current - A Qg - Gate Charge - nC 4 VGS - Gate to Source Voltage - V di/dt = 50 A/s VGS = 0 V DYNAMIC INPUT/OUTPUT CHARACTERISTICS 16 ID = 7.5 A 14 2SK3116 DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA 100 80 TOTAL POWER DISSIPATION vs. CASE TEMPERATURE dT - Percentage of Rated Power - % PT - Total Power Dissipation - W 20 40 60 80 100 120 140 160 70 60 50 40 30 20 10 0 20 40 60 80 100 120 140 160 80 60 40 20 0 0 Tch - Channel Temperature - C TC - Case Temperature - C FORWARD BIAS SAFE OPERATING AREA 100 ID(pulse) PW ID - Drain Current - A 10 RD S( o L n) im d ite ID(DC) 10 0 s 1m s 3 10 ms m =1 0 s Po we r 1 10 m s Di ss D 0 mss ipa C tio n Lim ite d 30 0.1 1 TC = 25C Single Pulse 10 100 1 000 VDS - Drain to Source Voltage - V TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH rth(t) - Transient Thermal Resistance - C/W 100 Rth(CH-A) = 62.5 C/W 10 Rth(CH-C) = 3.57 C/W 1 0.1 0.01 10 100 1m 10m 100m 1 10 100 1 000 PW - Pulse Width - s 5 2SK3116 100 IAS - Single Avalanche Energy - mJ SINGLE AVALANCHE ENERGY vs. INDUCTIVE LOAD SINGLE AVALANCHE ENERGY DERATING FACTOR 120 10 Energy Defrating Factor - % 100 80 60 40 20 0 25 VDD = 150 V RG = 25 VGS = 20V0V IAS 7.5A IAS = 7.5 A EAS =3 7.5 mJ 1.0 RG = 25 VDD = 150 V VGS = 20 V 0 V Starting Tch = 25 C 0.1 100 10 1m 10m 50 75 100 125 150 L - Inductive Load - H Starting Tch - Starting Channel Temperature - C 6 2SK3116 Package Drawing (Unit : mm) 1)TO-220AB (MP-25) 3.00.3 10.6 MAX. 10.0 5.9 MIN. 15.5 MAX. 4.8 MAX. 2)TO-262 (TO-220 Fin Cut:MP-25S) 1.00.5 3.60.2 4.8 MAX. 1.30.2 1.30.2 (10) 4 1 2 3 4 123 6.0 MAX. 1.30.2 1.30.2 12.7 MIN. 12.7 MIN. 8.50.2 0.750.3 2.54 TYP. 0.50.2 2.54 TYP. 1.Gate 2.Drain 3.Source 4.Fin (Drain) 2.80.2 0.750.1 2.54 TYP. 0.50.2 2.54 TYP. 1.Gate 2.Drain 3.Source 4.Fin (Drain) 2.80.2 3)TO-263 (JEDEC TYPE:MP-25ZJ) (10) 4 1.00.5 8.50.2 4.8 MAX. 1.30.2 Equivalent Circuit Drain (D) 5.70.4 1.40.2 0.70.2 2.54 TYP. 1 2 (0 .5R ) 3 2.54 TYP. ( R 0.8 ) 0.50.2 Gate (G) Body Diode Remark Strong electric field, when exposed to this device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. 2.80.2 1.Gate 2.Drain 3.Source 4.Fin (Drain) Source (S) 7 2SK3116 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5 |
Price & Availability of 2SK3116
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |