![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PC928 PC928 s Features 1. Built-in IGBT shortcircuit protector circuit 2. Built-in direct drive circuit for IGBT drive (Peak output current ... I O1P , I O2P : MAX. 0.4A) 3. High isolation voltage (Viso : 4 000Vrms ) 4. Half lead pin pitch (p=1.27 mm) package type 5. Recognized by UL, file NO. E64380 Shortcircuit Protector Circuit Built-in OPIC Photocoupler Suitable for Inverter-Driving IGBT s Outline Dimensions 14 13 12 11 10 9 8 g TUV ( VDE 0884 ) approved type is also available as an option. (Unit : mm) Primary side mark 1 2 3 4 5 6 7 s Application 1. IGBT control for inverter drive 9.22 7.62 3.5 6.5 0.35 0.26 1.0 10.0 PC928 14 - 0.6 12 - 1.27 1.0 Internal connection diagram 14 13 12 11 10 98 1 2 3 4 5 6 7 Anode Anode Cathode NC NC NC NC 8 9 10 11 12 13 14 FS C GND O2 O1 VCC GND s Absolute Maximum Ratings (Ta=Topr unless otherwise specified) Unit mA V V A A A A V mW V mA V mA mW Vrms C C C Constant voltage circuit IGBT protector circuit Interface Amp. 3 4 5 6 7 Parameter Symbol Rating *1 Forward current IF 25 Input Reverse voltage VR 6 (Ta= 25C) Supply voltage VCC 35 O1 output current IO1 0.1 *4 IO1P 0.4 O1 peak output current IO2 O2 output current 0.1 *4 IO2P 0.4 O2 peak output current Output O1 output voltage VO1 35 *2 Power dissipation PO 500 Overcurrent detecting voltage VC VCC Overcurrent detecting current IC 30 Error signal output voltage VFS VCC Error signal output current IFS 20 *3 Total power dissipation Ptot 550 *5 Isolation voltage Viso 4 000 - 25 to + 80 Operating temperature Topr Storage temperature Tstg - 55 to + 125 Soldering temperature Tsol 260 (for 10 sec) Terminals 4 to 7 : Shortcircuit in element 1 2 * "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal processing circuit integrated onto a single chip. Operation truth table is shown on the next page. *1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs. 1 and 2. *4 Pulse width<=0.15 s, Duty ratio=0.01 *5 40 to 60% RH, AC for 1 minute, Ta=25C " In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device." PC928 s Electro-optical Characteristics (1) Parameter Input Forward voltage Reverse current Terminal capacitance Operating supply voltage O1 low level output voltage Output O2 high level output voltage O2 low level output voltage O1 leak current High level supply current Low level supply current *7 (Ta=Topr unless otherwise specified) Conditions Ta = 25C, IF = 20mA Ta = 25C, IF = 0.2mA Ta = 25C, VR = 4V Ta = 25C, V = 0, f = 1kHz Ta = - 10 to60C VCC1 = 12V, VCC2 = - 12V IO1 = 0.1A, IF = 10mA *8 VCC = VO1 = 24V, IO2 = - 0.1A IF = 10mA *8 VCC = VO1 = 24V, IO2 = 0.1A, IF = 0mA *8 Ta = 25C, VCC = VO1 = 35V, IF = 0mA *8 Ta = 25C, VCC = VO1 = 24V, IF = 10mA *8 VCC = VO1 = 24V, IF = 10mA *8 Ta = 25C, VCC = VO1 = 24V, IF = 0mA *8 VCC = VO1 = 24V, IF = 0mA *8 Ta = 25C, VCC = VO1 = 24V *8 VCC = VO1 = 24V *8 Ta = 25C, DC500V, 40 to60% RH Ta = 25C, VCC = VO1 = 24V RG = 47 , CG = 3 000pF, IF = 10mA *8 Ta = 25C, VCC = VO1 = 24V, IF = 10mA VCM = 600V( peak ) , VO2H = 2.0V *8 Ta = 25C, VCC = VO1 = 24V, IF = 0mA VCM = 600V( peak ) , VO2L = 2.0V *8 MIN. 0.6 15 15 20 TYP. 1.2 0.9 30 0.2 22 MAX. 1.4 10 250 30 24 0.4 2.0 500 17 19 18 20 7.0 10 2.0 2.0 0.5 0.5 Unit V V A pF V V V V V A mA mA mA mA mA mA s s s s V/ s (7) 1 500 V/ s Test circuit (1) (2) (3) (4) Symbol VF1 VF2 IR Ct VCC VO1L VO2H VO2L IO1L ICCH ICCL IFLH RISO tPLH tPHL tr tf CMH CML "LowHigh" threshold input current Isolation resistance "LowHigh" propagation delay time "HighLow" propagation delay time Rise time Fall time Instantaneous common mode rejection voltage "Output : High level" Instantaneous common mode rejection voltage "Output : Low level" Transfer characteristics 1.2 10 11 1.0 4.0 0.6 5 x 1010 1 x 1011 1.0 1.0 0.2 0.2 - 1 500 - (6) (5) - Response time (8) *6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01 F or more) between Vcc 13 and GND 14 near the device. *7 I FLH represents forward current when O 2 output goes from "Low" to "High". *8 FS=OPEN, VC =0V s Truth Table Input ON OFF C Input/output Low level High level Low level High level O2 Output High level Low level Low level Low level FS Output High level Low level High level High level For protective operation PC928 s Electro-optical Characteristics (2) *9 (Ta=Topr unless otherwise specified) Conditions Ta = 25C, IF = 10mA VCC = VO1 = 24V, RG = 47 CG = 3 000pF, FS = OPEN Ta = 25C VCC = VO1 = 24V, IF = 10mA CG = 3 000pF, RG = 47 CP = 1 000pF, RC = 1k FS = OPEN Ta = 25C, IF = 10mA, IFS = 10mA VCC = VO1 = 24V, RG = 47 , CG = 3 000pF, C = OPEN Ta = 25C, IF = 10mA, VFS = 24V, VCC = VO1 = 24V, RG = 47 , CG = 3 000pF, VC = 0V Ta = 25C, RFS = 1.8k VCC = VO1 = 24V, IF = 10mA CG = 3 000pF, RG = 47 CP = 1 000pF, RC = 1k MIN. TYP. MAX. VCC - VCC - VCC 6.5 6.0 5.5 1 2 3 2 4 5 0.2 10 2 0.4 Unit V V s (13) s V V (10) (11) Test circuit (9) Protective output Overcurrent detection *10 Parameter Overcurrent detecting voltage Overcurrent detecting voltage hysteresis width O2 "HighLow" delay time at protection from overcurrent O2 fall time at protection from overcurrent O2 output voltage at protection from overcurrent Low level error signal voltage High level error signal current Error signal "HighLow" delay time Error signal output pulse width Symbol VCTH VCHIS tPCOHL tPCOtf VOE VFSL *9 *9 Error signal output IFSH tPCFHL tFS 20 1 35 100 5 - A s (12) (14) s *9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01 F or more) between VCC 13 and GND 14 near the device. *10 VCTH represents C-terminal voltage when O 2 output goes from "High" to "Low". Precautions for Operation 1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed. Thus, use together a resistance of about 1k set between Vcc and C-terminal. The C-terminal rise time varies with the time constant of CR added. Make it clear before use. 2. The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND. When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the GND potential at all times. PC928 s Test Circuit Diagram (1) 12 IF 3 PC928 13 12 11 14 10 (2) V VO1L IO1 V CC1 VCC2 IF 3 12 PC928 13 12 11 14 10 9 8 A I O1L VOUT IO2 VCC V VO2H 9 8 (3) 12 IF 3 PC928 13 12 11 14 10 9 8 V VO2L IO2 VCC (4) 12 IF 3 PC928 13 12 11 14 10 9 8 VCC (5) 12 IF variable 3 PC928 13 12 11 14 10 9 8 V VO2 VCC (6) 12 IF 3 PC928 13 12 11 14 10 9 8 A I CC VCC 13 (7) A SW B 12 12 11 V VO2 VCC (8) 12 t r = t f = 0.01 s VIN Pulse width : 5 s Duty ratio=50% 3 13 12 RG VCC CG PC928 14 10 3 9 8 + VCM 11 PC928 14 10 9 8 VCM (Peak) V IN waveform VCM waveform CMH , V O2 waveform SW at A, I F = 10mA VO2L CM L , V O2 waveform SW at B, I F = 0mA VO2L GND GND VO2H VO2H VOUT waveform tpLH tpHL 50% 90% 50% 10% tr tf (9) 12 IF 3 13 12 RG V VOUT VCC CG V VCTH (10) 12 IF 3 13 12 RG V VOE CP VCC CG VC RL 11 PC928 14 10 9 8 11 PC928 14 10 9 8 PC928 s Test Circuit Diagram (11) (12) 13 1 2 12 RG IF 11 PC928 14 10 3 9 8 V VFSL IFS VCC CG IF PC928 1 2 13 12 RG 11 14 10 3 9 IFSH 8 A VCC CG VFS (13) 13 1 tr = tf = 0.01 s VIN Pulse width : 25 s Duty ratio=25% 3 2 12 11 PC928 14 10 9 8 V VOUT CP (14) 13 1 RG VCC CG RC tr = tf = 0.01 s VIN Pulse width : 25 s Duty ratio=25% 3 2 12 11 PC928 14 10 9 8 V RFS RC RG VCC CG IF (Input current) t pCOTF 90% 50% t pCOHL 90% VOE VO2 (O2 output voltage) 10% Error detecting threshold voltage (V CTH ) C (Detecting terminal) 10% t pCFHL t FS FS (Error signal output) 50% 50% PC928 Fig. 1 Forward Current vs. Ambient Temperature 60 Fig. 2 Power Dissipation vs. Ambient Temperature 600 550 Total power dissipation Output side power dissipation 40 Power dissipation Ptot, Po (mW) 0 25 50 75 80 100 125 50 500 Forward current I F (mA) 400 30 300 20 200 10 0 - 25 100 0 - 25 0 25 50 75 80 100 125 Ambient temperature Ta(C) Ambient temperature Ta(C) Fig. 3 Forward Current vs. Forward Voltage 500 200 Ta = 75C 50C 25C 0C - 20C Fig. 4 "L-H" Relative Threshold Input Current vs. Supply Voltage 1.6 Relative threshold input current I FLH Ta = 25C 1.4 Forward current I F (mA) 100 50 20 10 5 2 1 0 0.5 1.0 1.5 1.2 Value of VCC =24V assumes 1. 1 0.8 2.0 2.5 3.0 3.5 0.6 15 18 21 24 27 30 Forward voltage VF (V) Supply voltage VCC (V) Fig. 5 "L-H" Relative Threshold Input Current vs. Ambient Temperature 1.3 Fig. 6 O1 Low Level Output Voltage vs. O1 Output Current 1 Relative threshold input current I FLH 1.2 O1 low level output voltage VO1L (V) VCC = 24V Ta = 25C VCC1 = 12V VCC2 = 12V IF = 10mA 0.1 1.1 I FLH = 1 at Ta=25C 1 0.01 0.9 0.8 - 25 0 25 50 75 100 0.001 0.01 0.1 1 Ambient temperature Ta (C) O1 output current IO1 (A) PC928 Fig. 7 O1 Low Level Output Voltage vs. Ambient Temperature 0.25 Fig. 8 O1 Leak Current vs. Ambient Temperature 10 -6 O1 low level output voltage VO1L (V) 0.20 VCC1 = 12V VCC2 = - 12V IF = 10mA O1 leak current I O1L (A) 75 100 10 -7 0.15 I O1 = 0.1A 0.10 10 -8 0.05 0.00 - 25 10 0 25 50 -9 - 25 0 25 50 75 100 Ambient temperature Ta (C ) Ambient temperature Ta (C ) Fig. 9 O2 High Level Output Voltage vs. Supply Voltage 35 Fig. 10 O2 High Level Output Voltage vs. Ambient Temperature 24 O2 high level output voltage VO2H (V) 30 O2 high level output voltage V O2H (V) Ta = 25C IF = 10mA IO2 = - 0.1A VCC = 24V IF = 10mA 23 IO2 = 0A 22 - 0.1A 21 25 20 15 10 5 15 20 18 21 24 27 30 19 - 25 0 25 50 75 100 Supply voltage VCC (V) Ambient temperature Ta (C ) Fig. 11 O2 Low Level Output Voltage vs. Output Current 10 Fig. 12 O2 Low Level Output Voltage vs. Ambient Temperature 1.3 O2 low level output voltage VO2L (V) O2 low level output voltage VO2L (V) VCC = 24V Ta = 25C VCC = 24V IF = 10mA 1.2 1 1.1 IO2 = 0.1A 1 0.1 0.9 0.01 0.01 0.1 1 0.8 - 25 0 25 50 75 100 Output current IO2 (A) Ambient temperature Ta (C ) PC928 Fig. 13 High Level Supply Current vs. Supply Voltage 14 Fig. 14 Low Level Supply Current vs. Supply Voltage 16 IF = 0mA Ta = - 25C High level supply current I CCH (mA) IF = 10mA 12 Low level supply current I CCL (mA) Ta = - 25C 14 10 25C 12 25C 10 80C 8 8 80C 6 4 15 18 21 24 27 30 6 15 18 21 24 27 30 Supply voltage VCC (V) Supply voltage VCC (V) Fig. 15 Propagation Delay Time vs. Forward Current 3.5 Fig. 16 Propagation Delay Time vs. Ambient Temperature 2.5 Propagation delay time tPHL, tPLH ( s) 3 2.5 tPLH 2 1.5 1 0.5 tPHL 0 0 5 10 15 Propagation delay time tPHL, tPLH ( s) Ta = 25C VCC = 24V RG = 47 CG = 3 000pF 2 VCC = 24V RG = 47 CG = 3 000pF IF = 10mA 1.5 tPLH 1 0.5 tPHL 0 - 25 20 25 0 25 50 75 100 Forward current IF (mA) Ambient temperature Ta (C ) Fig. 17 Overcurrent Detecting Voltage vs. Ambient Temperature 30 Fig. 18 O2 Output Fall Time at Protection from Overcurrent/O2 "H-L" Delay Time at Protection from Overcurrent vs. Ambient temperature O2 output fall time at protection from overcurrent tpcotf/ O2 "H-L" delay time at protection from overcurrent tpcoHL ( s) 10 VCC = 24V IF = 10mA RG = 47 C = 3 000pF 8G RC = 1k CP = 1 000pF Overcurrent detecting voltage VCTH (V) 25 VCC = 24V RG = 47 CG = 3 000pF IF = 10mA t pcotf 20 6 t pcoHL 15 4 10 5 0 - 25 2 0 25 50 75 100 0 - 25 0 25 50 75 100 Ambient temperature Ta (C ) Ambient temperature Ta (C ) PC928 Fig. 19 Error Signal "H-L" Delay Time vs. Ambient Temperature 1.5 Fig. 20 O2 Output Voltage at Protection from Overcurrent vs. Ambient Temperature O2 output voltage at protection from overcurrent VOE (V) 2 VCC = 24V IF = 10mA RG = 47 CG = 3 000pF RC = 1k CP = 1 000pF Error signal "H-L" delay time tpcfHL ( s) 1.2 0.9 VCC = 24V IF = 10mA RFS = 1.8k RG = 47 CG = 3 000pF RC = 1k CP = 1 000pF 1.6 1.2 0.6 0.8 0.3 0.4 0 - 25 0 25 50 75 100 0 - 25 0 25 50 75 100 Ambient temperature Ta (C) Ambient temperature Ta (C) Fig. 21 Low Level Error Signal Voltage vs. Ambient Temperature 0.5 Fig. 22 High Level Error Signal Current vs. Ambient Temperature 10 -6 Low level error signal voltage VFSL (V) High level error signal current IFSH (A) VCC = 24V IF = 10mA IFS = 10mA 0.4 RG = 47 CG = 3 000pF C = OPEN 0.3 10 -7 VCC = 24V IF = 10mA VFS = 24V RG = 47 CG = 3 000pF VC = 0V 0.2 10 -8 0.1 0 - 25 10 0 25 50 75 100 -9 - 25 0 25 50 75 100 Ambient temperature Ta (C) Ambient temperature Ta (C) Fig. 23 Error Signal Output Pulse Width vs. Ambient Temperature 50 Error signal output pulse width tFS ( s) VCC = 24V IF = 10mA RFS = 1.8k 40 RG = 47 CG = 3 000pF RC = 1k CP = 1 000pF 30 20 10 0 - 25 0 25 50 75 100 Ambient temperature Ta (C) PC928 Fig. 24 Overcurrent Detecting Voltage vs. Supply Voltage 25 Overcurrent Detecting Voltage Supply Voltage Characteristics Test Circuit Anode VCC Overcurrent detecting voltage VCTH (V) Cathode O2 RG 10 0.5k 1k V C RC VO2 5 1.5k 0 15 18 21 24 27 30 CP FS GND CG V VC Supply voltage Vcc (V) Application Circuit (IGBT Drive for Inverter) Anode Anode Cathode O1 + RG RC C FS GND + VCC2 = 12V CP VCC1 = 12V IGBT (+) VCC PC928 TTL, microcomputer, etc. U V W (-) Feedback to primary side s Operations of Shortcircuit Protector Circuit PC928 14 GND V 13 CC O1 12 11 O2 RG RC 9 8 10 C FS GND VEE Feedback to primary side CP IGBT VCC Anode Light emitting diode 1 3 Anode 2 Cathode TTL, microcomputer, etc. Photodiode Constant voltage circuit Amp. Interface IGBT protector circuit 1. Detection of increase in VCE(sat) of IGBT due to overcurrent by means of C-terminal ( 9 terminal) 2. Reduction of the IGBT gate voltage, and suppression of the collector current 3. Simultaneous issue of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer In the case of instantaneous shortcircuit, run continues. 4. Judgement and processing by the microcomputer At fault, input to the photocoupler is cut off, and IGBT is turned OFF. Power supply O2 Added resistance Ta = 25C IF = 10mA VCC = 24V 20 RG = 47 CG = 3 000pF RC = 1k FS = OPEN 15 C = 1 000pF P Added resistance=0 IF O1 VCC PC928 |
Price & Availability of PC928
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |