![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
DATA SHEET MOS FIELD EFFECT TRANSISTOR PA1721 SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE PACKAGE DRAWING (Unit : mm) 8 5 1,2,3 ; Source ; Gate 4 5,6,7,8 ; Drain DESCRIPTION The PA1721 is N-Channel MOS Field Effect Transistor designed for DC/DC converters and power management applications of notebook computers. FEATURES * Low on-resistance RDS(on)1 = 10.5 m MAX. (VGS = 10 V, ID = 5.0 A) 1.44 1 5.37 MAX. +0.10 -0.05 4 6.0 0.3 4.4 0.8 RDS(on)2 = 14.0 m MAX. (VGS = 4.5 V, ID = 5.0 A) * Low Ciss: Ciss = 2200 pF TYP. * Built-in G-S protection diode * Small and surface mount package (Power SOP8) 1.8 MAX. RDS(on)3 = 17.0 m MAX. (VGS = 4.0 V, ID = 5.0 A) 0.15 0.05 MIN. 0.5 0.2 0.10 1.27 0.78 MAX. 0.40 +0.10 -0.05 0.12 M ORDERING INFORMATION PART NUMBER PACKAGE Power SOP8 PA1721G ABSOLUTE MAXIMUM RATINGS (TA = 25C, All terminals are connected.) Drain to Source Voltage (VGS = 0 V) Gate to Source Voltage (VDS = 0 V) Drain Current (DC) Drain Current (pulse) Note1 Note2 EQUIVALENT CIRCUIT Drain VDSS VGSS ID(DC) ID(pulse) PT Tch Tstg 30 20 10 40 2.0 150 -55 to +150 V V A A W C C Gate Protection Diode Source Gate Body Diode Total Power Dissipation (TA = 25C) Channel Temperature Storage Temperature Notes 1. PW 10 s, Duty Cycle 1 % * 2. Mounted on ceramic substrate of 1200 mm x 2.2 mm Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device. 2 The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. G13889EJ1V0DS00 (1st edition) Date Published November 1999 NS CP(K) Printed in Japan The mark 5 shows major revised points. (c) 1998,1999 PA1721 ELECTRICAL CHARACTERISTICS (TA = 25 C, All terminals are connected.) CHARACTERISTICS Drain to Source On-state Resistance SYMBOL RDS(on)1 RDS(on)2 RDS(on)3 Gate to Source Cut-off Voltage Forward Transfer Admittance Drain Leakage Current Gate to Source Leakage Current Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain Charge Body Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge VGS(off) | yfs | IDSS IGSS Ciss Coss Crss td(on) tr td(off) tf QG QGS QGD VF(S-D) trr Qrr TEST CONDITIONS VGS = 10 V, ID = 5.0 A VGS = 4.5 V, ID = 5.0 A VGS = 4.0 V, ID = 5.0 A VDS = 10 V, ID = 1 mA VDS = 10 V, ID = 5.0 A VDS = 30 V, VGS = 0 V VGS = 20 V, VDS = 0 V VDS = 10 V VGS = 0 V f = 1 MHz ID = 5.0 A VGS(on) = 10 V VDD = 15 V RG = 10 ID = 10 A VDD = 24 V VGS = 10 V IF = 10 A, VGS = 0 V IF = 10 A, VGS = 0 V di/dt = 100 A/ s 2200 710 270 30 90 90 50 39 6.3 10.0 0.8 40 50 1.5 7.0 MIN. TYP. 8.0 10.0 12.0 2.0 14.0 10 10 MAX. 10.5 14.0 17.0 2.5 UNIT m m m V S A A pF pF pF ns ns ns ns nC nC nC V ns nC TEST CIRCUIT 1 SWITCHING TIME TEST CIRCUIT 2 GATE CHARGE D.U.T. D.U.T. RL PG. RG RG = 10 VDD ID 90 % 90 % ID 0 10 % td(on) ton tr td(off) toff 10 % tf VGS IG = 2 mA VGS(on) 90 % VGS Wave Form RL VDD 0 10 % PG. 50 VGS 0 = 1 s Duty Cycle 1 % ID Wave Form 2 Data Sheet G13889EJ1V0DS00 PA1721 * TYPICAL CHARACTERISTICS (TA = 25 C) DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREA 2.8 TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE dT - Percentage of Rated Power - % PT - Total Power Dissipation - W 100 80 60 40 20 2.4 2.0 1.6 1.2 0.8 0.4 0 20 40 60 80 Mounted on ceramic substrate of 1200mm 2 x2.2mm 0 20 40 60 80 100 120 140 160 100 120 140 160 TA - Ambient Temperature - C TA - Ambient Temperature - C FORWARD BIAS SAFE OPERATING AREA 100 100 s ID(pulse) RD (V S(on) G S= Lim 10 ite V) d 1m 10 m Note Mounted on ceramicsubstrate of 1200 mm x 2.2 mm 2 ID - Drain Current - A s 10 s ID(DC) 10 0m s Po we rD iss 1 TA = 25 C Single Pulse 0.1 0.1 1 10 0.01 VDS - Drain to Source Voltage - V ip at io n Li rth(t) - Transient Thermal Resistance - C/W TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH 1000 Rth(ch-A) = 62.5C/W m ite d 100 100 10 1 Mounted on ceramic substrate of 1200 mm2 to 2.2 mm Single Pulse, TA = 25 C Channel to Ambient 0.1 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 PW - Pulse Width - s Data Sheet G13889EJ1V0DS00 3 PA1721 DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE Pulsed 4.5 V 4.0 V FORWARD TRANSFER CHARACTERISTICS 100 Pulsed 50 ID - Drain Current - A ID - Drain Current - A 10 TA = 150C 75C 25C -25C 40 30 20 10 VGS = 10 V 1 0.1 0 1 2 VDS = 10 V 3 4 0.0 0.2 0.4 0.6 0.8 VGS - Gate to Source Voltage - V FORWARD TRANSFER ADMITTANCE vs. DRAIN CURRENT VDS - Drain to Source Voltage - V |yfs| - Forward Transfer Admittance - S 100 RDS(on) - Drain to Source On-state Resistance - m DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE 100 90 80 70 60 50 40 30 20 10 0 0 5 10 15 ID = 5 A ID = 10 A 10 TA = -25C 25C 75C 150C 1 0.1 0.01 0.1 1 VDS =10 V Pulsed 10 100 ID- Drain Current - A DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT 40 36 32 28 24 20 16 12 8 4 0 0.1 1 10 100 4.5 V 10 V VGS = 4.0 V Pulsed VGS - Gate to Source Voltage - V GATE TO SOURCE CUT-OFF VOLTAGE vs. CHANNEL TEMPERATURE 4 VDS = 10 V ID = 1 mA RDS(on) - Drain to Source On-state Resistance - m VGS(off) - Gate to Source Cut-off Voltage - V 3 2 1 0 -100 -50 0 50 100 150 ID - Drain Current - A Tch - Channel Temperature - C 4 Data Sheet G13889EJ1V0DS00 PA1721 RDS(on) - Drain to Source On-state Resistance - m DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE 20 VGS = 4.0 V 4.5 V 10 V SOURCE TO DRAIN DIODE FORWARD VOLTAGE Pulsed ISD - Diode Forward Current - A 18 16 14 12 10 8 6 4 2 0 100 10 VGS = 10 V 0V 1 ID = 5 A -50 0 50 100 150 Tch - Channel Temperature - C 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD - Source to Drain Voltage - V CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE 10000 REVERSE RECOVERY TIME vs. DRAIN CURRENT 1 000 Ciss 1000 Coss 100 Crss trr - Reverse Recovery Diode - ns Ciss, Coss, Crss - Capacitance - pF VGS = 0 V f = 1 MHz di/dt = 100A /s VGS = 0 V 100 10 10 0.1 1 10 100 1 0.1 1 10 100 VDS - Drain to Source Voltage - V ID - Drain Current - A VDS - Drain to Source Voltage - V 14 30 VDD = 24 V 15 V 6V 12 10 VGS 8 6 10 4 2 0 0 5 VDS 10 15 20 35 40 45 0 50 20 QG - Gate Charge - nC VGS - Gate to Source Voltage - V DYNAMIC INPUT/OUTPUT CHARACTERISTICS 40 16 Data Sheet G13889EJ1V0DS00 5 PA1721 [MEMO] 6 Data Sheet G13889EJ1V0DS00 PA1721 [MEMO] Data Sheet G13889EJ1V0DS00 7 PA1721 * The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. * No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. * NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. * Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. * While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. * NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8 |
Price & Availability of UPA1721
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |