![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
CXD2303AQ 8-bit 3-channel 50 MSPS Video A/D Converter with clamp function Description The CXD2303AQ is an 8-bit 3-channel CMOS A/D converter for video with synchronizing digital clamp function. The adoption of 2 step-parallel method achieves low power consumption and a maximum conversion rates of 50 MSPS. Features * Resolution : 8 bit1/2 LSB (DL) * Maximum sampling frequency : 50 MSPS * Low power consumption : 400 mW (at 50 MSPS Typ.) (Reference current excluded) * Synchronizing digital clamp function * Clamp ON/OFF function * Reference voltage self-bias circuit * Input CMOS/TTL compatible * 3-state TTL compatible output * Single 5 V power supply or dual 5 V/3.3 V power supplies * Low input capacitance 15 pF * Reference impedance : 370 (Typ.) * Different digital output multiplex format: - 4 : 4 : 4 format - 4 : 2 : 2 format - 4 : 1 : 1 format Applications Wide range of applications that require high-speed A/D conversion such as monitor, TV and VCR. Structure Silicon gate CMOS IC 80 pin QFP (Plastic) Absolute Maximum Ratings (Ta=25 C) * Supply voltage AVDD, DVDD 7 V * Input voltage Vin Digital output pins DVDD+0.5 to DVSS-0.5 V Other pins AVDD+0.5 to AVSS-0.5 V * Storage temperature Tstg -55 to +150 C Recommended Operating Conditions * Supply voltage AVDD, AVSS 4.75 to 5.25 V DVDD, DVSS 3.0 to 5.5 V | DVSS-AVSS | 0 to 100 mV * Reference input voltage VARB, VBRB, VCRB 0 or more V VART, VBRT, VCRT 2.7 or less V * Analog input AIN, BIN, CIN 1.7 Vp-p or more * Clock pulse width Tpw1, Tpw0 9 ns (min.) to 1.1 s (max.) * Operating ambient temperature Topr -20 to +85 C Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. --1-- E98220A89 CXD2303AQ Block Diagram DVDD DVDD AVDD DVDD DVDD AVDD AVDD AVDD DVSS AVDD DVSS 12 AVDD 30 35 41 42 62 68 22 23 1 2 11 71 72 DVSS ARTS 32 ART 31 AIN 28 ARB 26 9 9-bit DAC A-ch 8-bit ADC Digital Clamp Circuit 8 13 A0 (LSB) DVSS 20 A7 (MSB) ARBS 25 AIO 29 44 XAOE BRTS 33 BRT 34 BIN 37 BRB 39 9 9-bit DAC B-ch 8-bit ADC Digital Clamp Circuit 8 Data Selector + Latch 3 10 B0 (LSB) B7 (MSB) BRBS 40 BIO 36 45 XBOE CRTS 70 CRT 69 C-ch 8-bit ADC Digital Clamp Circuit 8 73 C0 (LSB) CIN 66 CRB CRBS CIO 64 63 67 80 9 C7 (MSB) 9-bit DAC 46 XCOE 21 AVSS AVSS AVSS 24 27 38 Clamp Control Decoder 49 50 60 61 65 52 58 53 51 54 57 59 43 47 TGR CTL0 CTL2 SY REF0 --2-- REF3 TEST TEST AVSS AVSS AVSS CLK CLE CLP SEL Pin Configuration CRBS XBOE XAOE TEST AVDD TEST REF3 REF2 REF1 REF0 AVSS CRB AVSS SEL SY XCOE AVDD CLP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 AVSS 65 CIN 66 CIO 67 AVDD 68 CRT 69 CRTS 70 DVSS 71 DVSS 72 C0 73 C1 74 C2 75 C3 76 C4 77 C5 78 C6 79 C7 80 40 BRBS 39 BRB 38 AVSS 37 BIN 36 BIO 35 AVDD 34 BRT 33 BRTS 32 ARTS 31 ART 30 AVDD 29 AIO 28 AIN 27 AVSS 26 ARB 25 ARBS 1 B3 B2 B1 B0 DVDD DVDD 2 3 5 6 4 CLE 7 B4 8 B5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 B7 B6 A0 A1 A2 A3 A4 A5 A6 A7 TGR DVSS DVSS DVDD DVDD AVSS CLK CTL2 CTL1 CTL0 AVDD --3-- CXD2303AQ CXD2303AQ Pin Description Pin No. 1, 2, 22, 23 Symbol DVDD I/O -- DVDD Equivalent circuit Description Digital power supply. +5 V or +3.3 V Digital output. A0 (LSB) to A7 (MSB) B0 (LSB) to B7 (MSB) C0 (LSB) to C7 (MSB) Trigger output. 13 to 20 3 to 10 73 to 80 A0 to A7 B0 to B7 C0 to C7 O 21 TGR O DVSS See the Tables and Timing Chart II described in the Output Format section. Digital ground. Analog ground. 11, 12, 71, 72 24, 27, 38, 60, 61, 65 25 40 63 26 39 64 31 34 69 32 33 70 DVSS AVSS ARBS BRBS CRBS ARB BRB CRB ART BRT CRT ARTS BRTS CRTS -- -- AVDD 32 33 26 RT 31 RREF 25 RB 40 63 39 64 -- Shorting these pins to AVSS generates voltage of about 0.5 V at the ARB, BRB and CRB pins. Reference voltage (bottom). -- 70 -- 34 69 Reference voltage (top). Shorting these pins to AVDD generates voltage of about 2.5 V at the ART, BRT and CRT pins. -- AVSS AVDD 28 37 66 AIN BIN CIN 28 I 37 66 Analog input. AVSS --4-- CXD2303AQ Pin No. Symbol I/O Equivalent circuit Description AVDD 29 36 67 AIO BIO CIO 29 about 200 O 36 67 Analog output. The digital clamp circuit comprises a D/A converter whose outputs are available on these pins. AVSS 30, 35, 41, 42, 62, 68 43 59 AVDD Analog +5 V power supply. Normally open. Pull-down resistors are incorporated. Output enable input. When these pins are Low, data is output from the digital output pins. When these pins are High, the digital output pins are high impedance. The A, B and C channels can be controlled separately. Also, these pins are not synchronized with the clock signal. Pull-down resistors are incorporated. Determines the digital output mode. See the Mode Tables and Timing Charts. Pull-down resistors are incorporated. Controls the digital output mode switching timing. The mode is switched by detecting the transition point where this pin changes from Low to High. See the Mode Tables and Timing Charts for details. A pull-down resistor is incorporated. TEST I 44 45 46 XAOE XBOE XCOE I AVDD 47 48 49 CTL0 CTL1 CTL2 I AVSS 50 SY I --5-- CXD2303AQ Pin No. Symbol I/O Equivalent circuit Description 51 SEL I Controls the CLP signal polarity. When this pin is Low, CLP is High active. When this pin is High, CLP is Low active. This pin has a built-in pull-down resistor. Clock input. A pull-down resistor is incorporated. Clamp pulse input. The polarity can be set to either High or Low by setting SEL. This pin has a built-in pull-down resistor. Determines the clamp circuit reference data. See the Mode Tables for the set data. These pins are not synchronized with the clock input signal. Pull-down resistors are incorporated. 52 CLK I AVDD 53 CLP I 54 55 56 57 REF0 REF1 REF2 REF3 I AVSS 58 CLE I Clamp enable. When this pin is Low, the clamp circuit does not operate. When this pin is High, the clamp circuit operates. A pull-down resistor is incorporated. --6-- CXD2303AQ Digital output The following table shows the relationship between analog input voltage and digital output code. Input signal voltage VART, VBRT, VCRT : : : : VARB, VBRB, VCRB Timing Chart I tr 4ns tf 4ns 90% Clock input 1.3V 10% 0V 3V Digital input 2.2V 0.8V 0V tH Digital output 0.7VDD 0.3VDD tpLH, tpHL tS 3V Step 0 : 127 128 : 255 Digital output code MSB LSB 11111111 : 10000000 01111111 : 00000000 Timing Chart I-1. tr=4.5ns tf=4.5ns 90% 3V XAOE XBOE XCOE input 1.3V 10% tpLZ tpZL VOH 0V Output 1 10% tpHZ 90% Output 2 tpZH 1.3V VOL (DVSS) VOH (DVDD) 1.3V VOL Timing Chart I-2. --7-- Tpw1 Tpw0 Clock input 1.3V tsd N+2 N+5 N+8 N+9 N+6 N+7 N+3 N+4 Analog input N+10 N 4.5CLK N-3 N-2 N-1 N N+1 N+2 N+3 N+4 N+1 N+11 Digital output N-5 N-4 N+5 N+6 --8-- Timing Chart I-3 : Analog signal sampling point CXD2303AQ CXD2303AQ Electrical Characteristics Analog characteristics Item (Fc=50 MSPS, AVDD=5 V, DVDD=3 to 5.5 V, VRB=0.5 V, VRT=2.5 V, Ta=25 C) Symbol Conditions AVDD=4.75 to 5.25 V Ta=-20 to +85 C VIN=0.5 to 2.5 V FIN=1 kHz triangular wave Envelop -1 dB RIN=33 -3 dB End point Potential difference to ART, BRT, CRT Potential difference to ARB, BRB, CRB Min. Typ. Max. Unit Conversion rate Fc 0.5 50 MSPS Analog input band width Differential non-linearity error Integral non-linearity error Offset voltage (1) Differential gain error Differential phase error Sampling delay BW ED EL EOT EOB DG DP tsd 60 100 0.3 0.7 -50 0 3 1.5 3 MHz 0.5 1.5 -10 40 LSB mV % deg ns 1 LSB NTSC 40 IRE mod ramp, Fc=14.3 MSPS VIN=DC CIN=10 F tpcw=2.75 s FC=14.3 MHz FCLP=15.75 kHz Ref. Data= "00010000" Ref. Data= "10000000" Clamp offset voltage EOC 1 0.5 % Full-scale input ratio (2) FIN=150 kHz FIN=500 kHz FIN=1 MHz FIN=3 MHz FIN=10 MHz FIN=20 MHz FIN=150 kHz FIN=500 kHz FIN=1 MHz FIN=3 MHz FIN=10 MHz FIN=20 MHz FIN=1 MHz sin wave 43 42 42 41 38 35 59 59 55 49 44 41 52 Signal-to-noise ratio SNR dB Spurious free dynamic range SFDR dB Cross talk CT dB (1) The offset voltage EOB is a potential difference between ARB, BRB, CRB and a point of position where the voltage drops equivalent to 1/2 LSB of the voltage when the output data changes from "00000000" to "00000001". EOT is a potential difference between ART, BRT, CRT and a potential of point where the voltage rises equivalent to 1/2 LSB of the voltage when the output data changes from "11111111" to "11111110". (2 V+EOT-EOB) of each channel Average of (2 V+EOT-EOB) of each channel (2) Full-scale input ratio = -1 x100 (%) --9-- CXD2303AQ DC characteristics Item Analog Digital Supply current Analog Digital Reference current Reference resistance (RT to RB) (Fc=50 MSPS, AVDD=5 V, DVDD=5 V or 3.3 V, VRB=0.5 V, VRT=2.5 V, Ta=25 C) Symbol IAD+IDD IAD IDD IAD+IDD IAD IDD IREF RREF VRB1 NTSC ramp wave input CLE=High FCLP=15.75 kHz Conditions DVDD=5 V DVDD=3.3 V Min. NTSC ramp DVDD=5 V wave input DVDD=3.3 V CLE=Low For every channel For every channel 4.1 260 0.50 1.80 Typ. 80 70 5 70 60 5 5.4 370 0.54 1.92 13 16 30 15 Max. 100 90 10 90 80 10 7.7 480 0.58 Unit mA mA Self-bias Analog input resistance Input capacitance Output capacitance Digital input voltage Digital input current Shorts AVSS and ARBS, BRBS, CRBS. Shorts AVDD and ARTS, BRTS, VRT1-VRB1 CRTS. Fc=50 MHz RIN AIN, BIN, CIN Fc=35 MHz Fc=20 MHz AIN, BIN, CIN, CAI1 VIN=1.5 V+0.07 Vrms ARTS, ART, ARB, ABFS, CAI2 BRTS, BRT, BRB, BRBS, CRTS, CRT, CRB, CRBS CDIN Digital input pin CAO AIO, BIO, CIO CDO Digital output pin AVDD=4.75 to 5.25 V VIH DVDD=3 to 5.5 V VIL Ta=-20 to +75 C IIH VI=0 V to AVDD IIL Ta=-20 to +75 C IOH IOL IOH XOE=0 V DVDD=5 V Ta=-20 to 75 C XOE=0 V DVDD=3.3 V Ta=-20 to 75 C XOE=3 V DVDD=3 to 5.5 V Ta=-20 to 75 C VOL=0.4 V VOH=DVDD-0.8 V VOL=0.4 V VOH=DVDD VOH=DVDD-0.8 V V 2.04 k 9 9 11 11 2.2 pF pF V 0.8 -40 240 -2 4 mA -1.2 2.4 -40 40 A A Digital output current IOL IOZH IOZL VOL=0 V --10-- CXD2303AQ DC Characteristic (Continue) Item Symbol VOH VOL Digital output voltage VOH VOL XOE=0 V IOH=-1.2 mA DVDD=3.3 V Ta=-20 to 75 C IOL=2.4 mA Conditions XOE=0 V IOH=-2 mA DVDD=5 V Ta=-20 to 75 C IOL=4 mA Min. DVDD -0.8 Typ. Max. Unit 0.4 DVDD -0.8 0.4 V Timing Item (Fc=50 MSPS, AVDD=5 V, DVDD=5 V or 3.3 V, VRB=0.5 V, VRT=2.5 V, Ta=25 C) Symbol tpLH tpHL tpLH tpHL tpZH tpZL tpZH tpZL tpHZ tpLZ tpHZ tpLZ tS tH tH Conditions CL=15 pF XOE=0 V DVDD=5 V DVDD=3.3 V Min. 4.5 3.8 4.2 3.5 3.6 2.9 3.5 4.5 2 1 Typ. 8.5 7.4 10.0 6.7 7.1 8.0 8.4 7.2 6.8 6.3 6.8 6.0 Max. 11.0 ns 13.8 11.3 ns 12.8 9.5 ns 10.5 ns ns Cycle Unit Output data delay Tri-state output enable time DVDD=5 V RL=1 k CL=15 pF XOE=3 V 0 V DVDD=3.3 V RL=1 k DVDD=5 V CL=15 pF XOE=0 V 3 V DVDD=3.3 V CTL0 to 2, CLP, SY CLK conversion CLP SY Tri-state output disable time Setup time Hold time Pulse width Electrical Characteristics Measurement Circuit Output data delay measurement circuit Tri-state output measurement circuit Measurement point DVDD To output pin Measurement point CL To output pin RL CL RL Note) CL includes capacitance of probes. --11-- CXD2303AQ Integral non-linearity error Differential non-linearity error Offset voltage +V measurement circuit Analog input resistance measurement circuit +5V 2.5V S2 S1 : ON IF AA S1 AVDD, DVDD ART, BRT, CRT A -V AIN BIN CIN DVM CLK (50MHZ) CONTROLLER 8 8 A DUT CXD2303AQ B AIN, BIN, CIN ARB, BRB, CRB AB COMPARATOR A8 B8 to to A1 B1 A0 B0 "1" 000***00 TO 111***10 8 8 8 8 V BUFFER 0.5V CLK AVSS, DVSS C "0" Differential gain error Differential phase error measurement circuit CX20202A-1 AIN 8 A 8 DUT CXD2303AQ B 8 C 8 TTL ECL 8 10-bit D/A 620 CLK -5.2V 0.5V 620 -5.2V D.G D.P. VECTOR SCOPE NTSC SIGNAL SOURCE BIN AMP 100 40 IRE MODULATION BURST 0 -40 SYNC CIN 2.5V IRE S.G. (CW) FC TTL ECL Digital output current measurement circuit +4.75V +4.75V AVDD, DVDD 2.5V ART, BRT, CRT AIN, BIN, CIN 0.5V ARB, BRB, CRB CLK OE AVSS, DVSS VOL Data out IOL 2.5V AVDD, DVDD ART, BRT, CRT AIN, BIN, CIN IOH Data out A 0.5V ARB, BRB, CRB CLK OE AVSS, DVSS A VOL --12-- CXD2303AQ Cross talk measurement circuit CXD2303AQ SG AMP BIN, CIN AIN An 8 Bn 8 Cn SG CLK 8 FFT sine wave Note : This diagram shows the case where the channel A is measured. The same as for measuring the channels B and C. Description of Operation 1. Output Format The CXD2303AQ can select six different types of output formats through a combination of the CTL0, CTL1 and CTL2 inputs as shown in the table below. Output is synchronized to the SY input signal transition from Low to High. Table 1. Setting values and output formats Setting CTL2 CTL1 CTL0 L L L L L H L H L L H H H L L H L H H H L H H H Mode 0 1 2 3 4 5 6 7 Output Format 4:4:4 4 : 2 : 2 (8 fs) 4 : 2 : 2 (D2) 4 : 2 : 2 (Special) 4:1:1 4 : 1 : 1 (Special) Simple boundary scan 1 Simple boundary scan 2 Note that when the SY input is open or Low level, the output format is mode #0 (4 : 4 : 4). However, when the SY input signal temporarily goes to Low level for the mode switching, the mode changes as shown in Timing Chart II. When digital data is being output in the mode n output format, if the SY input signal changes from High level to Low level, the digital data continues to be output in the mode n output format for the following two clocks. The output format for the digital data output from the third to fifth clocks is not established, so its use is prohibited. If the SY input signal remains Low level, the digital data is output in the mode #0 output format from the sixth clock. After the SY input signal changes from Low level to High level, the digital data is output in the mode m output format from the sixth clock. At this time, the data output at the sixth clock is the data A/D converted from the analog input signal that was sampled at the falling edge of the clock input signal immediately after the SY input signal changes from Low level to High level. The output format control input signals CTL2, CTL1 and CTL0 are fetched only in sync with the rising edge of the clock input signal after the SY input signal has risen. --13-- N-5 N-4 N-3 N-2 N-1 N N+1 N+2 N+3 N+4 N+5 N+6 Clock input 1.3V SY CTL2 to CTL0 Mode n Mode m 2CLK N-8 N-4 N-3 N-2 5CLK 5CLK N-1 N N+1 N+2 Digital output N-10 N-9 --14-- Prohibited Mode n Mode #0 Mode m Timing Chart II CXD2303AQ CXD2303AQ Mode #0 4:4:4 Bit A73 Sampling timing () ADC channel ADC channel A B C Output A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Data A70 A60 A50 A40 A30 A20 A10 A00 B70 B60 B50 B40 B30 B20 B10 B00 C70 C60 C50 C40 C30 C20 C10 C00 Low A71 A61 A51 A41 A31 A21 A11 A01 B71 B61 B51 B41 B31 B21 B11 B01 C71 C61 C51 C41 C31 C21 C11 C01 A72 A62 A52 A42 A32 A22 A12 A02 B72 B62 B52 B42 B32 B22 B12 B02 C72 C62 C52 C42 C32 C22 C12 C02 A73 A63 A53 A43 A33 A23 A13 A03 B73 B63 B53 B43 B33 B23 B13 B03 C73 C63 C53 C43 C33 C23 C13 C03 A74 A64 A54 A44 A34 A24 A14 A04 B74 B64 B54 B44 B34 B24 B14 B04 C74 C64 C54 C44 C34 C24 C14 C04 A75 A65 A55 A45 A35 A25 A15 A05 B75 B65 B55 B45 B35 B25 B15 B05 C75 C65 C55 C45 C35 C25 C15 C05 A76 A66 A56 A46 A36 A26 A16 A06 B76 B66 B56 B46 B36 B26 B16 B06 C76 C66 C56 C46 C36 C26 C16 C06 A77 A67 A57 A47 A37 A27 A17 A07 B77 B67 B57 B47 B37 B27 B17 B07 C77 C67 C57 C47 C37 C27 C17 C07 TGR Note () : See Timing Chart II. --15-- CXD2303AQ Mode #1 4 : 2 : 2 (8 fs) Bit A73 Sampling timing () ADC channel ADC channel A B C Output A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Data A70 A60 A50 A40 A30 A20 A10 A00 B70 B60 B50 B40 B30 B20 B10 B00 B70 B60 B50 B40 B30 B20 B10 B00 High A70 A60 A50 A40 A30 A20 A10 A00 B70 B60 B50 B40 B30 B20 B10 B00 A70 A60 A50 A40 A30 A20 A10 A00 Low A72 A62 A52 A42 A32 A22 A12 A02 C70 C60 C50 C40 C30 C20 C10 C00 C70 C60 C50 C40 C30 C20 C10 C00 A72 A62 A52 A42 A32 A22 A12 A02 C70 C60 C50 C40 C30 C20 C10 C00 A72 A62 A52 A42 A32 A22 A12 A02 A74 A64 A54 A44 A34 A24 A14 A04 B74 B64 B54 B44 B34 B24 B14 B04 B74 B64 B54 B44 B34 B24 B14 B04 High A74 A64 A54 A44 A34 A24 A14 A04 B74 B64 B54 B44 B34 B24 B14 B04 A74 A64 A54 A44 A34 A24 A14 A04 Low A76 A66 A56 A46 A36 A26 A16 A06 C74 C64 C54 C44 C34 C24 C14 C04 C74 C64 C54 C44 C34 C24 C14 C04 A76 A66 A56 A46 A36 A26 A16 A06 C74 C64 C54 C44 C34 C24 C14 C04 A76 A66 A56 A46 A36 A26 A16 A06 TGR Note () : See Timing Chart II. --16-- CXD2303AQ Mode #2 4 : 2 : 2 (D2) Bit A73 Sampling timing () ADC channel ADC channel A B C Output A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Data A70 A60 A50 A40 A30 A20 A10 A00 B70 B60 B50 B40 B30 B20 B10 B00 HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ High A71 A61 A51 A41 A31 A21 A11 A01 C70 C60 C50 C40 C30 C20 C10 C00 A72 A62 A52 A42 A32 A22 A12 A02 B72 B62 B52 B42 B32 B22 B12 B02 A73 A63 A53 A43 A33 A23 A13 A03 C72 C62 C52 C42 C32 C22 C12 C02 A74 A64 A54 A44 A34 A24 A14 A04 B74 B64 B54 B44 B34 B24 B14 B04 A75 A65 A55 A45 A35 A25 A15 A05 C74 C64 C54 C44 C34 C24 C14 C04 A76 A66 A56 A46 A36 A26 A16 A06 B76 B66 B56 B46 B36 B26 B16 B06 A77 A67 A57 A47 A37 A27 A17 A07 C76 C66 C56 C46 C36 C26 C16 C06 TGR Low High Low High Low High Low HiZ : High impedance Note () : See Timing Chart II. --17-- CXD2303AQ Mode #3 4 : 2 : 2 (Special) Bit A73 Sampling timing () ADC channel ADC channel A B C Output A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Data A70 A60 A50 A40 A30 A20 A10 A00 B70 B60 B50 B40 B30 B20 B10 B00 HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ High A71 A61 A51 A41 A31 A21 A11 A01 C71 C61 C51 C41 C31 C21 C11 C01 A72 A62 A52 A42 A32 A22 A12 A02 B72 B62 B52 B42 B32 B22 B12 B02 A73 A63 A53 A43 A33 A23 A13 A03 C73 C63 C53 C43 C33 C23 C13 C03 A74 A64 A54 A44 A34 A24 A14 A04 B74 B64 B54 B44 B34 B24 B14 B04 A75 A65 A55 A45 A35 A25 A15 A05 C75 C65 C55 C45 C35 C25 C15 C05 A76 A66 A56 A46 A36 A26 A16 A06 B76 B66 B56 B46 B36 B26 B16 B06 A77 A67 A57 A47 A37 A27 A17 A07 C77 C67 C57 C47 C37 C27 C17 C07 TGR Low High Low High Low High Low HiZ : High impedance Note () : See Timing Chart II. --18-- CXD2303AQ Mode #4 4:1:1 Bit A73 Sampling timing () ADC channel ADC channel A B C Output A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Data A70 A60 A50 A40 A30 A20 A10 A00 B70 B60 C70 C60 HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ High A71 A61 A51 A41 A31 A21 A11 A01 B50 B40 C50 C40 A72 A62 A52 A42 A32 A22 A12 A02 B30 B20 C30 C20 A73 A63 A53 A43 A33 A23 A13 A03 B10 B00 C10 C00 A74 A64 A54 A44 A34 A24 A14 A04 B74 B64 C74 C64 A75 A65 A55 A45 A35 A25 A15 A05 B54 B44 C54 C44 A76 A66 A56 A46 A36 A26 A16 A06 B34 B24 C34 C24 A77 A67 A57 A47 A37 A27 A17 A07 B14 B04 C14 C04 TGR Low High Low HiZ : High impedance Note () : See Timing Chart II. --19-- CXD2303AQ Mode #5 4 : 1 : 1 (Special) Bit A73 Sampling timing () ADC channel ADC channel A B C Output A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Data A70 A60 A50 A40 A30 A20 A10 A00 B30 B20 B10 B00 HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ HiZ High A71 A61 A51 A41 A31 A21 A11 A01 B70 B60 B50 B40 A72 A62 A52 A42 A32 A22 A12 A02 C32 C22 C12 C02 A73 A63 A53 A43 A33 A23 A13 A03 C72 C62 C52 C42 A74 A64 A54 A44 A34 A24 A14 A04 B34 B24 B14 B04 A75 A65 A55 A45 A35 A25 A15 A05 B74 B64 B54 B44 A76 A66 A56 A46 A36 A26 A16 A06 C36 C26 C16 C06 A77 A67 A57 A47 A37 A27 A17 A07 C76 C66 C56 C46 TGR Low High Low HiZ : High impedance Note () : See Timing Chart II. --20-- CXD2303AQ Mode #6, 7 simple boundary scan 1 and 2 The CXD2303AQ has a simple boundary scan function. Table 2. Simple boundary scan Bits A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 Output data MODE #6 MODE #7 H L L H H L L H H L L H H L L H Note : CLK and SY must be set. 2. Clamp Function The following two points should be noted when using the digital clamp circuit. -The clamp pulse must be supplied externally. -The clamp circuit is not designed for V cycle clamping. 16 different reference levels can be selected for the digital clamp circuit through a combination of the REF0, REF1, REF2 and REF3 inputs as shown in the table below. Note that the REF0, REF1, REF2 and REF3 input signals are fetched asynchronously with the clock input signal. Table 3. Setting values and reference levels Setting REF3 L L L L L L L L H H H H H H H H REF2 L L L L H H H H L L L L H H H H REF1 L L H H L L H H L L H H L L H H REF0 L H L H L H L H L H L H L H L H Reference level Mode Channel A Channels B and C Decimal Binary Decimal Binary 0 16 00010000 128 10000000 1 32 00100000 128 10000000 2 48 00110000 128 10000000 3 64 01000000 128 10000000 4 1 00000001 1 00000001 5 16 00010000 16 00010000 6 32 00100000 32 00100000 7 48 00110000 48 00110000 8 239 11101111 127 01111111 9 223 11011111 127 01111111 A 207 11001111 127 01111111 B 191 10111111 127 01111111 C 254 11111110 254 11111110 D 239 11101111 239 11101111 E 223 11011111 223 11011111 F 207 11001111 207 11001111 --21-- CXD2303AQ The digital clamp circuit operates in the way the average value of the A/D-converted analog input signal data sampled during the 32 clock cycles after the clamp pulse is input and the reference data set by REF0 to REF3 are compared, and the result difference becomes smaller (See Timing Chart III). Therefore, take notice that when there is the fixed noise and others during the 32 cycles of the clock signal, the digital clamp circuit deals with the noise portion as the signal and it comes to the stable state still including the error. Photos 1 and 2 show the clamp circuit responses for the Application Circuit 1. Photo 2 shows that inputting the clamp pulse during the vertical hold has no effect on the input signal. 2CLK (min.) CLP CLK 32CLK Noise Input This input level is desired to be clamped. Timing III (When SEL=low) Photo 1. Response waveform of clamp circuit (When FCLK=50 MSPS, clamp pulse is NTSC SYNC and reference data is 128) Upper: Analog input pin waveform (H: 5 ms/div., V: 500 mV/div.) Lower: Analog input signal waveform (H: 5 ms/div., V: 2 V/div.) Photo 2. Response waveform of clamp circuit (FCLK=50 MSPS, clamp pulse is NTSC SYNC and reference data is 128) Upper: Analog input pin waveform (H: 200 s/div., V: 5 V/div.) Lower: Vertical hold pulse (H: 200 s/div., V: 500 mV/div.) --22-- CXD2303AQ RBS RB RTS RT Reference Supply Lower Sampling Comparator (4bits) Lower Encoder (4bits) Upper Data Latch Data0 (LSB) Data1 Data2 Data3 Lower Encoder (4bits) Analog in Lower Sampling Comparator (4bits) Data4 Upper Sampling Comparator (4bits) External clock Clock Generator Upper Encoder (4bits) Upper Data Latch Data5 Data6 Data7 (MSB) Fig. 1. 8-bit ADC block diagram --23-- CXD2303AQ Vi (1) Vi (2) Vi (3) Vi (4) Analog input External clock (1) (2) (3) (4) Upper comparators block S (1) C (1) S (2) C (2) S (3) C (3) S (4) C (4) Upper data MD (0) MD (1) MD (2) MD (3) Lower reference voltage RV (0) RV (1) RV (2) RV (3) Lower comparators A block S (1) H (1) C (1) S (3) H (3) C (3) Lower data A LD (-1) LD (1) Lower comparators B block H (0) C (0) S (2) H (2) C (2) S (4) H (4) Lower data B LD (-1) LD (0) LD (2) Data0 to Data7 Data (-2) Data (-1) Data (0) Data (1) Timing Chart IV 3. 8-bit ADC Operation (See Fig.1 and Timing Chart IV) 1) The CXD2303AQ includes 3 channels of the 8-bit A/D converter. This converter has the 2-step parallel system, composed of a 4-bit upper comparator and two 4-bit lower comparator blocks. The reference voltage that is equal to the voltage between RT-RB/16 is constantly applied to the upper 4-bit comparator block. Voltage corresponded to the upper data is fed to the lower 4-bit comparator block through the reference supply . RTS and RBS pins serve for the self- generation of RT (Reference voltage top) and RB (Reference voltage bottom), and they are also used as the sense pins as shown in the Application Circuit 3. --24-- CXD2303AQ 2) This IC uses an offset cancel type comparator that operates synchronously with an external clock. It features the following operating modes which are respectively indicated on the Timing Chart IV with S, H, C symbols. That is input sampling (auto zero) mode, input hold mode and comparison mode. 3) The operation of respective parts is as indicated in the Timing Chart IV. For instance the input voltage Vi (1) is sampled at the falling edge of the external clock (1) by means of the upper comparator bock and the lower comparator A block. The upper comparator block establishes comparison data MD (1) at the rising edge of the external clock (2). Simultaneously the reference supply generates the lower reference voltage RV (1) corresponded to the upper results. The lower comparator A block establishes comparison data LD (1) at the rising edge of the external clock (3). MD (1) and LD (1) are combined and output as Out (1) at the rising edge of the external clock (4). Accordingly, there is a 2.5 clock delay from the analog input sampling point to the A/D converter digital data output. Note that there is a 4.5 clock delay from the analog input sampling point to the digital data output because the output data selector circuit is located at the stage after the A/D converter circuit. (See the item 5 of Notes on Operation) Notes on Operation 1. Power supply and ground To reduce the effects of noise, separate the analog and digital systems around the device. Bypass both the digital and analog power supply pins to the respective grounds using ceramic capacitors of about 0.1 F set as close to the pin as possible. 2. Analog input Compared with flash type A/D converters, the input capacitance of the analog input is rather small. However, driving must be performed with an amplifier featuring sufficient bands and drive capability. When driving with an amplifier of low output impedance, parasitic oscillation may occur. This can be prevented by inserting resistance of about 33 in series between the amplifier output and A/D input. When the input signals of Pins 28, 37 and 66 are monitored, the kickback noise of the clock can be found. However, this has no effect on the A/D conversion characteristics. 3. Clock input The clock line wiring should be as short as possible and should be separated from other circuits to avoid any interference with other signals. 4. Reference input Voltages ART to ARB, BRT to BRB and CRT to CRB supports dynamic range of the analog input. Stable characteristics can be obtained by bypassing these pins to GND using capacitors of about 0.1 F. The selfbias function that generates VRT=about 2.5 V and VRB=about 0.6 V is activated by shorting ARTS, BRTS and CRTS to AVDD and ARBS, BRBS and CRBS to AVSS, respectively. 5. Timing Analog input is sampled at the falling edge of CLK and output as digital data synchronized with a delay of 4.5 clocks at its rising edge (see Timing Chart I-3 ). The delay from the clock rising edge to the data output is about 9 ns (DVDD=5 V). 6. Output enable pins Pins 13 to 20 (A0 to A7) are in the output mode by leaving XAOE open or connecting it to DVSS, and these pins are in the high impedance mode by connecting XAOE to DVDD. Pins 3 to 10 (B0 to B7) have the same relationship with XBOE, and Pins 73 to 80 (C0 to C7) with XCOE, respectively. --25-- Application Circuit 1. When clamp and self-bias are used +5V (Analog) REF1 CLP SEL REF2 CTL2 CTL1 CTL0 REF0 CLK 0.01 61 60 40 0.01 39 38 37 36 35 34 33 32 31 30 29 28 27 0.01 26 25 33 0.01 0.1 0.01 0.1 33 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 REF3 SY 10 0.1 0.1 64 63 62 10 65 66 C-ch input 33 67 68 69 10 0.1 0.01 B-ch input 70 71 72 B2 A5 B3 A6 B4 B5 A0 B6 A1 B7 A2 B0 A3 B1 A4 A7 VDD (Digital) 0.1 GND (Digital) 0.1 10 CXD2303AQ Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. TGR --26-- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 C0 73 C1 74 C2 75 C3 76 C4 77 C5 78 10 A-ch input C6 79 C7 80 20 21 22 23 24 1 GND (Analog) 2. When self-bias is used, and clamp is not used +5V (Analog) CLK CTL2 0.01 61 60 40 0.01 39 38 37 36 35 34 33 32 31 30 29 28 27 0.01 26 25 33 0.01 0.1 0.01 0.1 33 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 SY CTL1 CTL0 10 0.1 0.1 64 63 62 65 66 C-ch 33 input 67 68 69 0.1 0.01 B-ch input 70 71 72 C0 73 B2 A5 B3 A6 B4 B5 A0 B6 A1 B7 A2 B0 A3 B1 A4 A7 VDD (Digital) 0.1 GND (Digital) 0.1 10 CXD2303AQ Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. TGR --27-- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 C1 74 C2 75 C3 76 C4 77 C5 78 A-ch input C6 79 C7 80 20 21 22 23 24 GND (Analog) 3. When clamp and self-bias are not used +5V (Analog) CLK CTL2 0.01 0.1 61 60 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 33 0.01 0.1 0.01 0.1 33 0.01 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 CRB 64 63 62 65 66 SY CTL1 CTL0 10 0.1 BRB C-ch 33 input 67 0.1 68 0.01 B-ch input 69 CRT 70 71 72 BRT C0 73 B2 A5 B3 A6 B4 B5 A0 B6 A1 B7 A2 B0 A3 B1 A4 A7 VDD (Digital) 0.1 10 0.1 GND (Digital) CXD2303AQ Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. TGR --28-- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 C1 74 ART C2 75 C3 76 C4 77 A-ch input C5 78 C6 79 ARB C7 80 22 23 24 1 0.01 GND (Analog) CXD2303AQ Example of Representative Characteristics Ambient temperature vs. Supply current 75 FC=50MHz NTSC ramp wave input AVDD=DVDD=5V CLE=Low 90 80 Supply voltage vs. Supply current Supply current [mA] 70 Supply current [mA] 65 70 FC=50MHz NTSC ramp wave input AVDD=DVDD CLE=High Ta=25C 4.75 5 Supply voltage [V] Input frequency vs. Supply current 5.25 -40 -20 0 25 50 75 85 Ambient temperature [C] Sampling frequency vs. Supply current 100 80 NTSC ramp wave input AVDD=DVDD=5V Ta=25C Supply current [mA] Supply current [mA] 85 FC=50MHz Sine wave 1.6Vp-p AVDD=DVDD=5V Ta=25C CLE=Low 0.1 1 10 25 50 70 10 20 30 40 50 0.01 Sampling frequency [MSPS] Input frequency [MHz] Supply voltage vs. Maximum conversion rate 67 65 NTSC ramp wave input AVDD=DVDD Maximum conversion rate [MSPS] 70 FIN=1kHz, triangular wave input AVDD=DVDD=5V 65 Maximum conversion rate [MSPS] Ambient temperature vs. Maximum conversion rate 60 63 -20 0 25 50 75 4.75 5 Supply voltage [V] 5.25 Ambient temperature [C] Ambient temperature vs. Sampling delay 4 FC=10MHz AVDD=DVDD=5V 0 Analog input band FC=50MHz Sine wave 1Vp-p input AVDD=DVDD=5V Ta=25C Sampling delay [ns] Output level [dB] 3 -1 2 -3 -40 -20 0 25 50 75 85 0.1 1 10 100 Ambient temperature [C] Analog input frequency [MHz] --29-- CXD2303AQ Analog input frequency vs. SNR, effective bit FC=50MHz AVDD=DVDD=5V VIN=2Vp-p Ta=25C Analog input frequency vs. SFDR FC=50MHz AVDD=DVDD=5V VIN=2Vp-p Ta=25C Effective bit [bit] 8 7 6 5 50 60 40 SFDR [dB] SNR [dB] 50 30 40 0.1 1 10 0.1 1 Analog input frequency [MHz] 10 Analog input frequency [MHz] Ambient temperature vs. Output data delay Ambient temperature vs. Output data delay Output data delay [ns] 12 10 8 Output data delay [ns] Fc=10MHz AVDD=DVDD=5V CL=15pF tpLH 12 10 8 6 tpHL -40 -20 0 25 50 75 85 tpLH Fc=10MHz AVDD=5V DVDD=3.3V CL=15pF tpHL 6 -40 -20 0 25 50 75 85 Ambient temperature [C] Ambient temperature [C] Load capacitance vs. Output data delay Load capacitance vs. Output data delay 14 Output data delay [ns] Output data delay [ns] 12 10 8 Fc=10MHz AVDD=DVDD=5V Ta=25C tpLH 12 10 8 6 tpHL 0 5 10 15 20 25 tpLH Fc=10MHz AVDD=5V DVDD=3.3V Ta=25C tpHL 6 0 5 10 15 20 25 Load capacitance [pF] Load capacitance [pF] DVDD supply voltage vs. Output data delay Analog input voltage vs. Input current Output data delay [ns] 12 10 8 6 3 3.5 4 4.5 FC=10MHz AVDD=5V CL=15pF Ta=25C Analog input current IAI [mA] 80 FC=50MHz AVDD=DVDD=5V VRT=2.5V VRB=0.5V Ta=25C 0 -80 5 5.5 0.5 1.5 2.5 DVDD supply voltage [V] Analog input voltage VIN [V] --30-- CXD2303AQ Input frequency vs. Cross talk 50 FC=50MHz AVDD=DVDD=5V VIN=1.6Vp-p Ta=25C Cross talk CT [dB] 40 30 0.1 1 10 24 Input frequency FIN [MHz] --31-- CXD2303AQ CXD2303Q Evaluation Board Evaluation boards are available for the CMOS converter CXD2303AQ. Block Diagram External Clamp clock pulse +5V GND -5V Digital Circuit Mount Portion Buffers Analog Circuit Mount Portion CXD1178Q 3ch 8-bit DAC CXD2303AQ Data Latch Analog output Analog Input Interface Analog input Digital Circuit Mount Portion Digit SW Analog Circuit Mount Portion Characteristics * Resolution * Maximum conversion rate * Supply voltage 8 bits 50 MHz 5.0 V (Single +5 V power supply possible at self-bias use) Supply voltage Item +5 V -5 V Min. Typ. Max. 185 20 Unit mA Clock input Either 1 or 2 should be used. 1. TTL Pulse width TCW1 9 ns (min.) TCW0 9 ns (min.) 2. Sine wave --32-- CXD2303AQ Analog Output (CXD1178Q) Item Analog output Full-scale output ratio () Min. 1.8 0 Typ. 2.0 1.5 (RL = 200 ) Max. 2.2 3 Unit V % Full-scale output ratio = Full-scale voltage of each channel Average of the full-scale voltage of each channel -1 x 100 [%] Output Format (CXD2303AQ) The table shows the output format of AD converter. Analog input voltage VART, VBRT, VCRT : : : : VARB, VBRB, VCRB Timing Chart Analog input Step 0 : 127 128 : 255 Digital output code MSB LSB 11111111 : 10000000 01111111 : 00000000 External clock tPW1 tPW0 AD clock 1.3V tPD (AD) AD output tPD Latch output DA input tH tS DA clock 1.3V tPD (DA) 100% DA output 50% 0% --33-- CXD2303AQ Item External clock () Clock High time Clock Low time Data delay (AD) Data delay (latch) Setup time Hold time Propagation delay time (DA) Symbol TPW1 TPW0 tPD (AD) tDD tS th tPD (DA) Min. 1 9 9 4.5 5 10 Typ. Max. 1100 1100 11.0 9.5 10 10 Unit V ns ns ns ns ns ns ns In the case of a sine wave, the effects of jitter increase as the input voltage decreases. List of Parts Resistor R20 R21 R30A, B, C R31A, B, C R32A, B, C R33A, B, C R34A, B, C R35A, B, C R50 R51 R52 R53 VR20 VR21 VR30A, B, V VR31A, B, V VR50 Transistor Q30A, B, C Q31A, B, C Q32A, B, C IC IC1 IC2 IC3 IC4 IC5 IC6 75 75 510 510 510 100 k 75 33 k 3.3 k 200 200 200 2 k 2 k 2 k 2 k 1 k Capacitor C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C20 C21 C22 C30A, B, C C31A, B, C C30A, B, C C50 C51 C52 C53 Others Connector DIP SW 2SC2785 2SC2785 2SC2785 CXD2303AQ 74F821 74F574 74F574 74F04 CXD1178Q 0.1 F 0.1 F 10 F 0.1 F 0.1 F 10 F 0.1 F 0.1 F 0.1 F 0.1 F 0.1 F 0.1 F 0.1 F 47 F 47 F 0.1 F 0.1 F 0.1 F 47 F 0.1 F 470 F 10 F 0.1 F 0.1 F 0.1 F 0.1 F 0.1 F BNC-LR-PC-3 (Hirose Electric Co.,Ltd.) --34-- +5V +5V GND +5V -5V CRT Adjust Q31C CRT R32C 510 CRB VR31C 2k Q30C R30C 510 VR30C 2k R31C 510 Video Signal IN C-ch Q32C TP30C CRB Adjust 12 10 5 1 [IC5]74F04 14 C22 CIN J8 CRB 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 C6 10 C12 CLP 2 3 4 CLK 6 analog +5V 8 digital +5V C14 47 C15 47 External Clock Input 0.1 C20 Clamp Pulse Input J9 75 R20 75 R21 47 C21 R35C C31C 10 33 C13 7 J15 R34C 75 C7 C6 C5 C4 C3 C2 C1 C0 C1 J14 C17 CRT CIN VR20 2k C11 J7 VR21 2k C3 10 C30C 470 R33C 100k BRT Adjust Q31B BRT VR31B 2k R32B 510 BRB [IC4]74F574 C0 C1 C2 C3 C4 C5 C6 C7 B0 B1 B2 B3 B4 B5 B6 B7 [IC1] CXD2303AQ (3ch 8-bit ADC) CLE REF3 REF2 REF1 REF0 BRB Adjust R30B 510 Q30B VR30B 2k R31B 510 Video Signal IN B-ch Q32B TP30B BIN R35B C31B 33 10 R34B 75 CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 C40C 19 18 17 16 15 14 13 12 20 10 2 3 4 5 6 7 8 9 11 1 Aout Bout Cout 36 35 34 33 32 31 30 29 28 27 26 25 [IC3]74F574 ARB C51 AIN ART BRT BIN BRB J2 J5 J11,12 C52 J10 J13 1 2 3 4 5 6 7 8 9 10 11 12 AB0 AB1 AB2 AB3 AB4 AB5 AB6 AB7 TGB J1 21 20 19 18 17 16 15 14 [IC2]74F821 CLE REF3 REF2 REF1 REF0 SEL SY CTL2 CTL1 CTL0 XCOE XBOE XAOE C53 C40A AB0 AB1 AB2 AB3 AB4 AB5 AB6 AB7 BB0 BB1 BB2 BB3 --35-- BB0 BB1 BB2 BB3 BB4 BB5 BB6 BB7 C40B 19 18 17 16 15 14 13 12 20 10 2 3 4 5 6 7 8 9 11 1 A0 A1 A2 A3 A4 A5 A6 A7 TGR C2 B0 B1 B2 B3 B4 B5 B6 B7 C4 24 23 22 21 20 19 18 17 16 15 14 13 4 5 6 7 8 9 10 11 C5 A0 A1 A2 A3 A4 A5 A6 A7 TGR CB7 CB6 CB5 CB4 CB3 CB2 CB1 CB0 BB7 BB6 BB5 BB4 C7 J3 C8 J4 C9 C10 22 23 13 1 3 2 12 24 10bit digit SW 1234567890 VR50 1k R50 3.3k C50 SEL SY CTL2 CTL1 CTL0 XCOE XBOE XAOE C30B 470 R33B 100k R53 R52 R51 200 200 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 C16 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 [IC6] CXD1178Q (3ch 8-bit DAC) ART Adjust Q31A ART J6 R32A 510 ARB VR31A 2k ARB Adjust Q30A R30A 510 VR30A 2k R31A 510 Video Signal IN A-ch Q32A AIN R35A C31A 33 10 R34A 75 TP30A 37 38 39 40 41 42 43 44 45 46 47 48 C30A 470 R33A 100k CXD2303AQ Note : Unless otherwise specified, all capacitor values are 0.1. CXD2303AQ Adjustment 1. Vref adjustment (VR30, VR31) Adjustment of A/D converter reference voltage. ARB, BRB and CRB are adjusted though VR30A, VR30B and VR30C, respectively, and ART, ARB and CRT through VR31A, VR31B and VR31C. When self-bias is used, there is no need for adjustment. Reference voltage is set through self-bias delivery. 2. DAC output full-scale adjustment (VR50) Full-scale voltage of D/A converter output is adjusted to about 2 V at the PCB shipment. 3. Clamp pulse and clock signal DC voltage adjustment (VR20, VR21) The clamp pulse and the clock signal DC voltages are adjusted. 4. DIP switches All DIP switches other than CLE are set of OFF when the PCB is shipped from the factory. Only CLE is set to ON. Notes on Operation 1. Reference voltage When ARTS, BRTS and CRTS are connected to AVDD and at the same time ARBS, BRBS and CRBS are connected to AVSS, the self-bias function causes the ART, BRT and CRT voltage to become about 2.5 V, and the ARB, BRB, and CRB voltage to become about 0.5 V. On the evaluation board, either self-bias or the external reference voltage can be selected depending on the junction method of the jumper line. When shipped from the factory, the reference voltage is set to self-bias. To select the external reference voltage, adjust the dynamic range (VRT-VRB) to 1.7 Vp-p or more. 2. Clock input The clock signal should be supplied externally. 3. The three latch ICs (74F574, 74F821) are not absolutely necessary for the evaluation of the ADC and DAC. That is, operation is performed normally if the ADC output data is directly input to the DAC input. However, as the ADC output data is hardly ever D/A converted without executing digital signal processing, it was mounted on the main board to indicate an example layout of digital signal processing IC. Use the latch IC output when the ADC output data is used. 4. When clamp is not used Turning CLE to Low will set the clamp function OFF. In this case, the DC element is cut off by means of C31A, C31B and C31C on the main board and DC voltage on the ADC side of C31A, C31B and C31C turns to about (VART+VARB) /2, (VBRT+VBRB) /2, and (VCRT+VCRB) 2. To transfer DC elements of input signals, short C31A, C31B and C31C. At that time, it is necessary to bias input signals, but keeping R34A, R34B and R34C open, Q32A, Q32B, Q32C can also be used as buffer. Use the open space for the bias circuit. 5. Clamp pulse latch The latch is incorporated in the CLP pin of the CXD2303AQ. 6. Peripheral through hole There is a group of through holes on the analog input, output and logic. They are to be used when mounting additional circuits to the evaluation board. Use when necessary. The connector hole on the DAC part is used to mount the test chassis mount jack. --36-- CXD2303AQ Package Outline Unit : mm 80PIN QFP (PLASTIC) 23.9 0.4 + 0.4 20.0 - 0.1 64 41 + 0.1 0.15 - 0.05 0.15 65 40 + 0.4 14.0 - 0.1 17.9 0.4 A 80 25 + 0.2 0.1 - 0.05 0.8 0.2 M + 0.15 0.35 - 0.1 + 0.35 2.75 - 0.15 0 to 10 DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SOLDER PLATING 42/COPPER ALLOY 1.6g LEAD TREATMENT LEAD MATERIAL PACKAGE MASS SONY CODE EIAJ CODE JEDEC CODE QFP-80P-L01 QFP080-P-1420 --37-- 0.8 0.2 1 24 16.3 |
Price & Availability of CXD2303AQ
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |