![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
RFT1P06E Data Sheet August 1999 File Number 4495.1 1.4A, 60V, 0.285 Ohm, ESD Rated, P-Channel Power MOSFET These products are P-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49044. Features * 1.4A, 60V * rDS(ON) = 0.285 * 2kV ESD Protected * Temperature Compensating PSPICE(R) Model * SPICE Thermal Model * Peak Current vs Pulse Width Curve * UIS Rating Curve * 150oC Operating Temperature * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards" Ordering Information PART NUMBER RFT1P06E PACKAGE SOT-223 BRAND R1P06E Symbol D NOTE: RFT1P06E is available only in tape and reel. G S Packaging SOT-223 DRAIN (FLANGE) SOURCE DRAIN GATE 4-171 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE(R) is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999. RFT1P06E Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified RFT1P06E -60 -60 20V 1.4 Figure 5 Figures 6, 14, 15 1.1 9.09 -55 to 150 300 260 UNITS V V V A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg W mW/oC oC oC oC CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. Electrical Specifications PARAMETER TA = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS IGSS rDS(ON) tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(-10) Qg(TH) CISS COSS CRSS RJA Pad Area = 0.122in2 (Note 2) Pad Area = 0.071in2 (Note 2) Pad Area = 0.026in2 (Note 2) VGS = 0V to -20V VGS = 0V to -10V VGS = 0V to -2V VDD = -30V, ID 1.4A, RL = 21.4 IG(REF) = 1.0mA (Figure 13) TEST CONDITIONS ID = 250A, VGS = 0V (Figure 11) VGS = VDS, ID = 250A (Figure 10) VDS = -60V, VGS = 0V VDS = -60V, VGS = 0V, TA = 150oC VGS = 10V ID = 1.4A, VGS = -10V (Figure 9) VDD = -30V, ID 1.4A, RL = 21.4, VGS = -10V, RGS = 18 MIN -60 -2 TYP 0.215 9 25 35 28 31 17 1.1 600 175 40 MAX -4 -1 -50 100 0.285 51 95 37 20 1.3 110 119 137 UNITS V V A A nA W ns ns ns ns ns ns nC nC nC pF pF pF oC/W oC/W oC/W Drain to Source Breakdown Voltage Gate to Source Threshold Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 10V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction to Ambient VDS =-25V, VGS = 0V, f = 1MHz (Figure 12) NOTE: 2. 110oC/W measured using FR-4 board with 0.122in2 footprint at 1000 seconds (See Technical Brief 337). Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD trr QRR TEST CONDITIONS ISD = -1.4A ISD = -1.4A, dISD/dt = -100A/s ISD = -1.4A, dISD/dt = -100A/s MIN TYP MAX -1.25 71 192 UNITS V ns nC 4-172 RFT1P06E Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) -0 25 -1.5 RJA = 110 oC/W ID, DRAIN CURRENT (A) -1.125 -0.75 -0.375 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 RJA = 110 oC/W THERMAL IMPEDANCE ZJA, NORMALIZED 0.1 0.01 0.01 PDM t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJA x RJA + TA 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) 0.001 SINGLE PULSE 0.0001 10-5 10-4 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE -100 TJ = MAX RATED TA = 25oC ID, DRAIN CURRENT (A) -30 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 150 - TA 125 -10 100s 1ms -1 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -1 -0.1 VDSS(MAX) = -60V -10 -100 -1 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) 102 103 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA IDM, PEAK CURRENT (A) -10 FIGURE 5. PEAK CURRENT CAPABILITY 4-173 RFT1P06E Typical Performance Curves -10 IAS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC (Continued) -20 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TA = 25oC -15 VGS = -10V VGS = -7V -10 VGS = -6V -5 VGS = -5V 0 0 -1.5 -3.0 -4.5 -6 -7.5 STARTING TJ = 150oC -1 0.01 10 0.1 1 tAV, TIME IN AVALANCHE (ms) 100 ID, DRAIN CURRENT (A) VGS = -20V VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 7. SATURATION CHARACTERISTICS -20 25oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = -15V ID, DRAIN CURRENT (A) -15 -55oC 2.5 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = -10V, ID = -1.4A 2.0 -10 150oC 1.5 -5 1.0 0 0 -2 -4 -6 -8 -10 VGS, GATE TO SOURCE VOLTAGE (V) 0.5 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 VGS = VDS, ID = -250A NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE -40 0 40 80 120 160 1.2 ID = -250A 1.1 NORMALIZED GATE THRESHOLD VOLTAGE 1.0 0.8 1.0 0.6 0.9 0.4 -80 0.8 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) TJ , JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 4-174 RFT1P06E Typical Performance Curves 800 VGS , GATE TO SOURCE VOLTAGE (V) (Continued) -10 WAVEFORMS IN DESCENDING ORDER: ID = -1.4A ID = -1.0A ID = -0.5A VDD = -30V CISS C, CAPACITANCE (pF) 600 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD COSS -8 -6 400 -4 200 -2 CRSS 0 0 -10 -20 -30 -40 -50 VDS , DRAIN TO SOURCE VOLTAGE (V) -60 0 0 5 10 Qg, GATE CHARGE (nC) 15 20 FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS tAV L 0 VARY tP TO OBTAIN REQUIRED PEAK IAS RG VDD + 0V tP -VGS DUT VDD IAS tP VDS BVDSS IAS 0.01 FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS RL 0 VGS = -2V -VGS Qg(TH) VDS VGS = -10V Qg(-10) VGS = -20V VGS VDD + VDD Qg(TOT) 0 IG(REF) DUT IG(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM 4-175 RFT1P06E Test Circuits and Waveforms (Continued) tON td(ON) tr RL VDS VGS + tOFF td(OFF) tf 10% 10% 0 VDS 0 90% 90% 0V RGS -VGS DUT 10% 50% VGS PULSE WIDTH 90% 50% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS Thermal Resistance vs Mounting Pad Area The maximum rated junction temperature, TJ(MAX) , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PD(MAX) , in an application. Therefore the application's ambient temperature, TA (oC), and thermal impedance RJA (oC/W) must be reviewed to ensure that TJ(MAX) (oC) is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JMAX - T A ) P DMAX = --------------------------------------R JA state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 200 RJA = 73.0 - 17.4 * ln(AREA) (EQ. 1) RJA (oC/W) 150 137oC/W - 0.026in2 In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of the PD(MAX) is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer's preliminary application evaluation. Figure 20 defines the RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady 119oC/W - 0.071in2 100 110oC/W - 0.122in2 50 0.01 0.1 AREA, TOP COPPER AREA (in2) 1.0 FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA Displayed on the curve are the three RJA values listed in the Electrical Specifications table. The three points where chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PD(MAX) . Thermal resistances corresponding to other component side copper areas can be obtained from Figure 20 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R JA = 73.0 - 17.4 x ln ( Area ) (EQ. 2) 4-176 RFT1P06E PSPICE Electrical Model SUBCKT RFT1P06E 2 1 3; CA 12 8 7.42e-10 CB 15 14 8.04e-10 CIN 6 8 5.5e-10 DBODY 5 7DBODYMOD DBREAK 7 11 DBREAKMOD DPLCAP 10 6DPLCAPMOD DESD1 91 9 DESD1MOD DESD2 91 7DESD2MOD DPLCAP rev 10/16/97 ESG 10 8 6 + 5 RLDRAIN RSLC2 RSLC1 51 + 5 ESLC 51 50 RDRAIN 16 EVTHRES + 19 8 6 MSTRO CIN 8 21 MMED MWEAK DBODY 11 + 17 18 LDRAIN DRAIN 2 EBREAK EBREAK 5 11 17 18 -69.1 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 1.73e-9 LSOURCE 3 7 3.9e-10 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD GATE 1 LGATE RGATE 9 RLGATE EVTEMP 18 + 22 20 DESD1 91 DESD2 DBREAK LSOURCE RSOURCE 7 SOURCE 3 RLSOURCE S1A 12 13 8 S1B 13 CA EGS S2A 15 14 13 S2B CB + 6 8 EDS 5 8 8 14 RBREAK 17 18 RVTEMP IT 19 VBAT + 22 RVTHRES RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.52e-2 RGATE 9 20 3.95 RLDRAIN 2 5 10 RLGATE 1 9 17.3 RLSOURCE 3 7 39 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD .144 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD + VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*22),9))} .MODEL DBODYMOD D (IS = 4.15e-15 RS = 5.54e-2 TRS1 = -1.32e-3 TRS2 = -2.48e-6 CJO = 6.06e-10 TT = 7.54e-8) .MODEL DBREAKMOD D (RS = 4.66e-1 TRS1 = 1.48e-3 TRS2 = -7.49e-6) .MODEL DPLCAPMOD D (CJO = 2.49e-10 IS = 1e-30 N = 10) .MODEL DESD1MOD D (BV=20.2 TBV1=-1.25e-3 TBV2=5.79e-7 RS=36 NBV=1 IBV=7e6) .MODEL DESD2MOD D (BV=25.4 TBV1=-8.3e-4 TBV2=8.9e-7 NBV=1 IBV=7e6) .MODEL MMEDMOD NMOS (VTO = -3.32 KP =.258 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MSTROMOD NMOS (VTO = -3.824 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = -3.0 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBREAKMOD RES (TC1 = 9.48e-4 TC2 = -1.42e-7) .MODEL RDRAINMOD RES (TC1 = 5.4e-3 TC2 = 1.25e-5) .MODEL RSLCMOD RES (TC1 = 1.75e-3 TC2 = 3.9e-6) .MODEL RSOURCEMOD RES (TC1 = 5.4e-3 TC2 = 1.25e-5) .MODEL RVTHRESMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTEMPMOD RES (TC1 = -3.55e-3 TC2 = -3.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON =5.1 VOFF= 3.1) VON =3.1 VOFF= 5.1) VON = 2.10 VOFF= -2.9) VON = -2.9 VOFF= 2.10) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 4-177 RFT1P06E SPICE Thermal Model rev 10/16/97 7 JUNCTION RFT1P06E RTHERM1 CTHERM1 CTHERM1 7 6 1.3e-4 CTHERM2 6 5 5.0e-4 CTHERM3 5 4 2.0e-3 CTHERM4 4 3 5.0e-3 CTHERM5 3 2 4.75e-2 CTHERM6 2 1 3.8e-1 RTHERM1 7 6 4.0e-2 RTHERM2 6 5 9.0e-2 RTHERM3 5 4 5.0e-1 RTHERM4 4 3 3.5 RTHERM5 3 2 20 RTHERM6 2 1 75 6 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 4-178 |
Price & Availability of RFT1P06E
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |