![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
TS482 100mW STEREO HEADPHONE AMPLIFIER s Operating from Vcc=2V to 5.5V s 100mW into 16 at 5V s 38mW into 16 at 3.3V s 11.5mW into 16 at 2V s Switch ON/OFF click reduction circuitry s High Power Supply Rejection Ratio: 85dB at 5V PIN CONNECTIONS (top view) TS482ID, TS482IDT - SO8 OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2) s High Signal-to-Noise ratio: 110dB(A) at 5V s High Crosstalk immunity: 100dB (F=1kHz) s Rail to Rail input and output s Unity-Gain Stable s Available in SO8, MiniSO8 & DFN8 DESCRIPTION The TS482 is a dual audio power amplifier able to drive a 16 or 32 stereo headset down to low voltages. It's delivering up to 100mW per channel (into 16 loads) of continuous average power with 0.1% THD+N from a 5V power supply. TS482IST - MiniSO8 OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2) TS482IQT - DFN8 OUT (1) 1 2 3 4 8 7 6 5 Vcc OUT (2) VIN - (2) VIN + (2) The unity gain stable TS482 can be configured by external gain-setting resistors. VIN - (1) VIN + (1) GND APPLICATIONS s Stereo Headphone Amplifier s Optical Storage s Computer Motherboard s PDA, organizers & Notebook computers s High end TV, Set Top Box, DVD Players s Sound Cards ORDER CODE Part Number TS482ID/DT TS482IST TS482IQT Temperature Range Package Marking D * -40, +85C * * 482I S Q TYPICAL APPLICATION SCHEMATIC Rfeed1 1F Right In Cin1 + 2.2F 2.2F + Left In Cin2 Rfeed2 MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT)) June 2003 + + 3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1F 6 3.9k 4 100k Rpol 3.9k + Vcc 2 20F + RL=32Ohms Cout1 Cout2 + RL=32Ohms 220F 1/24 TS482 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Toper Tstg Tj Rthja Supply voltage Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 1) Parameter Value 6 -0.3 to VCC +0.3 -40 to + 85 -65 to +150 150 175 215 70 0.71 0.58 1.79 2 200 200 250 see note 3) Unit V V C C C C/W Power Dissipation 2) SO8 Pd MiniSO8 DFN8 ESD Human Body Model (pin to pin) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) Output Short-Circuit Duration W kV V mA C 1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25C, Tjunction = 150C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device. OPERATING CONDITIONS Symbol VCC RL CL VICM RTHJA Supply Voltage Load Resistor Load Capacitor RL = 16 to 100 RL > 100 Common Mode Input Voltage Range Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN81) Parameter Value 2 to 5.5 >= 16 400 100 GND to VCC 150 190 41 Unit V pF V C/W 1. When mounted on a 4-layer PCB. Components Rin Cin Rfeed Cs Cb Cout Rpol Av 2/24 Functional Description Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass capacitor which provides half supply filtering Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Closed loop gain = -Rfeed / Rin TS482 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25C (unless otherwise specified) Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5.5 1 200 Max. 7.2 5 500 Unit mA mV nA PO 60 95 65 67.5 100 107 mW THD + N Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 60mW, 20Hz F 20kHz RL = 16, Pout = 90mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.35 0.45 106 0.03 0.03 85 120 % PSRR IO dB mA VO 4.45 4.2 95 0.4 4.6 0.55 4.4 110 0.48 V 0.65 SNR dB Crosstalk 100 80 100 80 1 2.2 0.7 dB CI GBP SR pF MHz V/s 1. Fig. 68 to 79 show dispersion of these parameters. 3/24 TS482 ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25C (unless otherwise specified) 2) Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5.3 1 200 Max. 7.2 5 500 Unit mA mV nA PO 23 36 27 28 38 42 mW THD + N Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 16mW, 20Hz F 20kHz RL = 16, Pout = 35mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwith Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.45 64 0.03 0.03 80 75 % PSRR IO dB mA VO 2.85 2.68 92 0.3 3 0.45 2.85 107 0.38 V 0.52 SNR dB Crosstalk 100 80 100 80 1 2 0.7 dB CI GBP SR pF MHz V/s 1. Fig. 68 to 79 show dispersion of these parameters. 2. All electrical values are guaranted with correlation measurements at 2V and 5V 4/24 TS482 ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25C (unless otherwise specified) 2) Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5.1 1 200 Max. 7.2 5 500 Unit mA mV nA PO 12.5 17.5 13.5 14.5 20.5 22 mW THD + N Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 10mW, 20Hz F 20kHz RL = 16, Pout = 16mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.45 45 0.03 0.03 75 56 % PSRR IO dB mA VO 2.14 1.97 89 0.25 2.25 0.35 2.15 102 0.325 V 0.45 SNR dB Crosstalk 100 80 100 80 1 2 0.7 dB CI GBP SR pF MHz V/s 1. Fig. 68 to 79 show dispersion of these parameters. 2. All electrical values are guaranted with correlation measurements at 2V and 5V 5/24 TS482 ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25C (unless otherwise specified) Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5 1 200 Max. 7.2 5 500 Unit mA mV nA PO 7 9.5 8 9 11.5 13 mW THD + N Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 6.5mW, 20Hz F 20kHz RL = 16, Pout = 8mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwith Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.42 33 0.02 0.025 75 41.5 % PSRR IO dB mA VO 1.67 1.53 88 0.24 1.73 0.33 1.63 101 0.295 V 0.41 SNR dB Crosstalk 100 80 100 80 1 2 0.65 dB CI GBP SR pF MHz V/s 1. Fig. 68 to 79 show dispersion of these parameters. 6/24 TS482 Index of Graphs Description Open Loop Gain Phase and Gain Margin vs Power Supply Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistance Power Dissipation vs Output Power Power Derating Curves Current Consumption vs Power Supply Voltage PSRR vs Frequency THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Equivalent Input Noise voltage vs Frequency Output Voltage Swing vs Supply Voltage Crosstalk vs Frequency Lower Cut Off Frequency Curves Statistical Results on THD+N Figure 1 to 10 11 to 20 21 to 23 23 to 27 28 to 31 32 33 34 35 to 49 50 to 54 55 to 58 59 60 61 to 65 66, 67 68 to 79 Page 8, 9 9 to 11 11 11, 12 12, 13 13 13 13 13 to 16 16 17 17 17 18 18, 19 19 to 21 7/24 TS482 Fig. 1 : Open Loop Gain and Phase vs Frequency Fig. 2 : Open Loop Gain and Phase vs Frequency 80 Gain 60 40 Gain (dB) 180 Vcc = 5V RL = 8 Tamb = 25C 160 140 120 Phase (Deg) 80 Gain 60 40 Gain (dB) 180 Vcc = 2V RL = 8 Tamb = 25C 160 140 120 100 Phase (Deg) Phase (Deg) Phase (Deg) 100 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 3 : Open Loop Gain and Phase vs Frequency Fig. 4 : Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 16 Tamb = 25C 160 140 120 Gain Vcc = 2V RL = 16 Tamb = 25C 160 140 120 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 5 : Open Loop Gain and Phase vs Frequency Fig. 6 : Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 32 Tamb = 25C 160 140 120 Gain Vcc = 2V RL = 32 Tamb = 25C 160 140 120 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 8/24 TS482 Fig. 7 : Open Loop Gain and Phase vs Frequency Fig. 8 : Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 600 Tamb = 25C 160 140 120 Gain Vcc = 2V RL = 600 Tamb = 25C 160 140 120 100 Phase (Deg) Phase (Deg) 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20 40 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 9 : Open Loop Gain and Phase vs Frequency Fig. 10 : Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) 180 80 60 Gain Vcc = 2V RL = 5k Tamb = 25C 160 140 120 Gain Vcc = 5V RL = 5k Tamb = 25C 160 140 120 Phase (Deg) 100 Phase 80 60 Gain (dB) 40 20 0 -20 -40 0.1 40 20 0 -20 Phase 100 80 60 40 20 0 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20 -40 0.1 1 10 100 Frequency (kHz) 1000 10000 -20 Fig. 11 : Phase Margin vs Power Supply Voltage Fig. 12 : Gain Margin vs Power Supply Voltage 50 RL=8 Tamb=25C 40 Phase Margin (Deg) 50 RL=8 Tamb=25C 40 30 Gain Margin (dB) 30 20 CL= 0 to 500pF 20 CL=0 to 500pF 10 10 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 9/24 TS482 Fig. 13 : Phase Margin vs Power Supply Voltage Fig. 14 : Gain Margin vs Power Supply Voltage 50 50 RL=16 Tamb=25C 40 Phase Margin (Deg) 40 30 Gain Margin (dB) CL= 0 to 500pF 30 20 20 CL=0 to 500pF 10 RL=16 Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 10 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Fig. 15 : Phase Margin vs Power Supply Voltage Fig. 16 : Gain Margin vs Power Supply Voltage 50 50 RL=32 Tamb=25C 40 Phase Margin (Deg) 40 CL= 0 to 500pF Gain Margin (dB) 30 30 20 20 CL=0 to 500pF 10 10 RL=32 Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Fig. 17 : Phase Margin vs Power Supply Voltage Fig. 18 : Gain Margin vs Power Supply Voltage 70 60 Phase Margin (Deg) 20 CL=0pF CL=100pF CL=200pF CL=0pF 40 30 20 10 RL=600 Tamb=25C 2.5 CL=500pF Gain Margin (dB) 50 10 CL=500pF RL=600 Tamb=25C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 10/24 TS482 Fig. 19 : Phase Margin vs Power Supply Voltage Fig. 20 : Gain Margin vs Power Supply Voltage 70 60 Phase Margin (Deg) 20 CL=0pF Gain Margin (dB) 50 40 30 20 10 0 2.0 RL=5k Tamb=25C 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 CL=0pF CL=300pF CL=500pF CL=100pF 10 CL=200pF CL=500pF RL=5k Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 Fig. 21 : Output Power vs Power Supply Voltage Fig. 22 : Output Power vs Power Supply Voltage 250 225 200 Output power (mW) 175 150 125 100 75 50 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 THD+N=0.1% Av = -1 RL = 8 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% 200 175 THD+N=1% 150 Output power (mW) 125 100 75 50 Av = -1 RL = 16 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% THD+N=1% THD+N=0.1% 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Fig. 23 :Output Power vs Power Supply Voltage Fig. 24 : Output Power vs Load Resistance 200 100 Av = -1 RL = 32 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% 180 THD+N=1% 160 Output power (mW) THD+N=1% Output power (mW) 140 120 100 80 60 40 20 THD+N=0.1% 75 Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% 50 25 THD+N=0.1% 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 11/24 TS482 Fig. 25 : Output Power vs Load Resistance Fig. 26 : Output Power vs Load Resistance 50 70 60 Output power (mW) THD+N=1% Output power (mW) 50 40 Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25C 45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (ohm) THD+N=1% Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% 30 20 10 0 THD+N=0.1% THD+N=10% 8 16 24 32 40 48 Load Resistance (ohm) 56 64 0 56 64 Fig. 27 : Output Power vs Load Resistance Fig. 28 : Power Dissipation vs Output Power 25 Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25C 20 Output power (mW) Power Dissipation (mW) 160 Vcc=5V F=1kHz 140 THD+N<1% RL=8 120 100 80 60 RL=16 40 20 0 0 20 40 60 RL=32 80 100 120 140 THD+N=1% 15 THD+N=10% 10 5 THD+N=0.1% 0 8 16 24 32 40 48 Load Resistance (ohm) 56 64 Output Power (mW) Fig. 29 : Power Dissipation vs Output Power Fig. 30 : Power Dissipation vs Output Power 70 Vcc=3.3V 60 F=1kHz THD+N<1% 50 40 30 RL=16 20 10 0 RL=32 40 Power Dissipation (mW) RL=8 Vcc=2.6V F=1kHz THD+N<1% RL=8 Power Dissipation (mW) 30 20 RL=16 10 RL=32 0 0 10 20 30 40 50 60 0 5 10 15 20 25 30 Output Power (mW) Output Power (mW) 12/24 TS482 Fig. 31 : Power Dissipation vs Output Power Fig. 32 : Power Derating vs Ambiant Temperature 25 Power Dissipation (mW) Vcc=2V F=1kHz 20 THD+N<1% RL=8 15 10 RL=16 5 RL=32 0 0 2 4 6 8 10 12 14 Output Power (mW) Fig. 33 : Current Consumption vs Power Supply Voltage Fig. 34 : Power Supply Rejection Ration vs Frequency 6 No load Current Consumption (mA) 5 80 Ta=85C Ta=-40C PSRR (dB) 100 Vcc=5V 4 3 60 40 20 0 20 Vcc=3.3V Vcc=2.6V & 2V Ta=25C 2 1 0 Vripple=100mVpp Vpin3,5=Vcc/2 (forced bias) RL >= 8 0db=70mVrms Tamb=25C 100 1000 10000 Frequency (Hz) 100000 0 1 2 3 Power Supply Voltage (V) 4 5 Fig. 35 : THD + N vs Output Power Fig. 36 : THD + N vs Output Power 10 RL = 8 F = 20Hz Av = -1 BW < 125kHz 1 Tamb = 25C Vcc=2V Vcc=2.6V 10 RL = 16 F = 20Hz Av = -1 BW < 125kHz Tamb = 25C Vcc=2V Vcc=2.6V 1 THD + N (%) Vcc=5V THD + N (%) 0.1 0.1 0.01 Vcc=3.3V Vcc=3.3V Vcc=5V 0.01 1 10 Output Power (mW) 100 1E-3 1 10 Output Power (mW) 100 13/24 TS482 Fig. 37 : THD + N vs Output Power Fig. 38 : THD + N vs Output Power 10 RL = 32 F = 20Hz Av = -1 1 BW < 125kHz Tamb = 25C 0.1 Vcc=2V Vcc=2.6V 10 RL = 600 F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25C 0.1 Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V THD + N (%) THD + N (%) Vcc=3.3V Vcc=5V 0.01 0.01 1E-3 100 0.01 0.1 Output Voltage (Vrms) 1 1E-3 1 10 Output Power (mW) Fig. 39 : THD + N vs Output Power Fig. 40 : THD + N vs Output Power 10 RL = 5k F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25C 0.1 Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V 10 RL = 8 F = 1kHz Av = -1 BW < 125kHz 1 Tamb = 25C Vcc=2V Vcc=2.6V THD + N (%) THD + N (%) 0.01 0.1 Vcc=3.3V 1E-3 0.01 0.01 0.1 Output Voltage (Vrms) 1 1 10 Output Power (mW) Vcc=5V 100 Fig. 41 : THD + N vs Output Power Fig. 42 : THD + N vs Output Power 10 RL = 16 F = 1kHz Av = -1 BW < 125kHz Tamb = 25C Vcc=2V Vcc=2.6V 10 RL = 32 F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1 Vcc=2V Vcc=2.6V 1 THD + N (%) 0.1 0.01 THD + N (%) Vcc=3.3V Vcc=5V 0.01 Vcc=3.3V Vcc=5V 1E-3 1 10 Output Power (mW) 100 1E-3 1 10 Output Power (mW) 100 14/24 TS482 Fig. 43 : THD + N vs Output Power Fig. 44 : THD + N vs Output Power 10 RL = 600 F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1 Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V 10 RL = 5k F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1 Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V THD + N (%) 0.01 THD + N (%) 0.01 1E-3 0.01 0.1 Output Voltage (Vrms) 1 1E-3 0.01 0.1 Output Voltage (Vrms) 1 Fig. 45 : THD + N vs Output Power Fig. 46 : THD + N vs Output Power 10 RL = 8 F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25C Vcc=2V Vcc=2.6V 10 RL = 16 F = 20kHz Av = -1 BW < 125kHz Tamb = 25C Vcc=2V Vcc=2.6V THD + N (%) 0.1 THD + N (%) Vcc=3.3V Vcc=5V 1 0.1 Vcc=3.3V Vcc=5V 0.01 1 10 Output Power (mW) 100 0.01 1 10 Output Power (mW) 100 Fig. 47 : THD + N vs Output Power Fig. 48 : THD + N vs Output Power 10 RL = 32 F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25C Vcc=2V 10 RL = 600 F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25C Vcc=2V Vcc=2.6V Vcc=3.3V THD + N (%) THD + N (%) 0.1 Vcc=2.6V 0.1 Vcc=5V 0.01 1 Vcc=3.3V Vcc=5V 0.01 10 Output Power (mW) 100 0.01 0.1 Output Voltage (Vrms) 1 15/24 TS482 Fig. 49 : THD + N vs Output Power Fig. 50 : THD + N vs Frequency 10 RL = 5k F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25C Vcc=2V Vcc=2.6V Vcc=3.3V Vcc=5V 0.1 RL=8 Av=-1 Bw < 125kHz Tamb=25C THD + N (%) 0.1 0.01 0.01 0.01 0.1 Output Voltage (Vrms) 1 20 100 1000 Frequency (Hz) 10000 20k Fig. 51 : THD + N vs Frequency Fig. 52 : THD + N vs Frequency THD + N (%) Vcc=2V, Po=10mW Vcc=2.6V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW 0.1 RL=16 Av=-1 Bw < 125kHz Tamb=25C THD + N (%) THD + N (%) Vcc=2V, Po=8mW Vcc=2.6V, Po=18mW Vcc=3.3V, Po=35mW Vcc=5V, Po=90mW 0.1 RL=32 Av=-1 Bw < 125kHz Tamb=25C Vcc=2V, Po=6.5mW Vcc=2.6V, Po=12mW Vcc=3.3V, Po=16mW Vcc=5V, Po=60mW 0.01 0.01 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k Fig. 53 : THD + N vs Frequency Fig. 54 : THD + N vs Frequency 0.1 RL=600 Av=-1 Bw < 125kHz Tamb=25C THD + N (%) Vcc=3.3V, Vo=1Vrms 0.1 RL=5k Av=-1 Bw < 125kHz Tamb=25C THD + N (%) Vcc=5V, Vo=1.4Vrms Vcc=5V, Vo=1.4Vrms Vcc=3.3V, Vo=1Vrms 0.01 Vcc=2.6V, Vo=0.75Vrms Vcc=2V, Vo=0.55Vrms 0.01 Vcc=2.6V, Vo=0.75Vrms Vcc=2V, Vo=0.55Vrms 1E-3 20 100 1000 Frequency (Hz) 10000 20k 1E-3 20 100 1000 Frequency (Hz) 10000 20k 16/24 TS482 Fig. 55 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 110 Av = -1 108 THD+N < 0.2% 106 Tamb = 25C 104 102 100 98 96 94 92 90 2.0 2.5 RL=16 3.0 3.5 4.0 4.5 5.0 RL=8 RL=32 Fig. 56 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 110 108 Signal to Noise Ratio (dB) 106 104 102 100 98 96 94 92 90 2.0 2.5 3.0 3.5 4.0 4.5 5.0 RL=5k RL=600 Av = -1 THD+N < 0.2% Tamb = 25C Signal to Noise Ratio (dB) Power Supply (V) Power Supply (V) Fig. 57 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A Fig. 58 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 120 115 110 RL=32 105 100 95 90 2.0 RL=16 Av = -1 THD+N < 0.2% Tamb = 25C 120 115 110 105 RL=5k 100 95 90 2.0 Av = -1 THD+N < 0.2% Tamb = 25C Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) RL=600 RL=8 2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply (V) Power Supply (V) Fig. 59 : Equivalent Input Noise Voltage vs Frequency Fig. 60 : Output Voltage Swing vs Power Supply Voltage Equivalent Input Noise Voltage (nv/ Hz) 25 Vcc=5V Rs=100 Tamb=25C 20 VOH & VOL (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 RL=8 RL=16 RL=32 Tamb=25C 15 10 5 0.02 0.1 1 Frequency (kHz) 10 0.0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 17/24 TS482 Fig. 61 : Crosstalk vs Frequency Fig. 62 : Crosstalk vs Frequency 100 100 80 ChB to ChA ChA to ChB 80 ChB to ChA ChA to ChB Crosstalk (dB) 60 RL=8 Vcc=5V Pout=100mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k Crosstalk (dB) 60 RL=16 Vcc=5V Pout=90mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k 40 40 20 20 Fig. 63 : Crosstalk vs Frequency Fig. 64 : Crosstalk vs Frequency 120 100 100 80 ChB to ChA & ChA to Chb Crosstalk (dB) 60 RL=32 Vcc=5V Pout=60mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k Crosstalk (dB) 80 60 40 20 0 ChB to ChA & ChA to Chb 40 20 RL=600 Vcc=5V Vout=1.4Vrms Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k Fig. 65 : Crosstalk vs Frequency Fig. 66 : Lower Cut Off Frequency vs Output Capacitor 120 100 80 60 40 20 0 RL=5k Vcc=5V Vout=1.5Vrms Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k ChB to ChA & ChA to Chb 1000 -3dB Cut Off Frequency (Hz) RL=8 100 RL=16 RL=32 10 Crosstalk (dB) 1 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Output Capacitor Cout ( F) 18/24 TS482 Fig. 67 : Lower Cut Off Frequency vs Input Capacitor Fig. 68 : Typical Distribution of THD+N 1000 40 36 Rin=3.9k -3dB Cut Off Frequency (Hz) 32 Number of Units Rin=10k 100 28 24 20 16 12 8 4 Rin=22k Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C 10 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 Input Capacitor Cin ( F) THD+N (%) Fig. 69 : Best Case Distribution of THD+N Fig. 70 : Worst Case Distribution of THD+N 40 36 32 Number of Units 40 Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C 36 32 Number of Units 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 28 24 20 16 12 8 4 Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C 0.042 0.048 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) THD+N (%) Fig. 71 : Typical Distribution of THD+N Fig. 72 : Best Case Distribution of THD+N 40 36 32 Number of Units 40 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 36 32 Number of Units 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 28 24 20 16 12 8 4 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 0.042 0.048 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) THD+N (%) 19/24 TS482 Fig. 73 : Worst Case Distribution of THD+N Fig. 74 : Typical Distribution of THD+N 40 36 32 Number of Units 20 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 18 16 Number of Units 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 14 12 10 8 6 4 2 Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C 0.042 0.048 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) THD+N (%) Fig. 75 : Best Case Distribution of THD+N Fig. 76 : Worst Case Distribution of THD+N 20 18 16 Number of Units 14 12 10 8 6 4 2 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C 20 18 16 Number of Units 14 12 10 8 6 4 2 Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) THD+N (%) Fig. 77 : Typical Distribution of THD+N Fig. 78 : Best Case Distribution of THD+N 40 36 32 Number of Units 40 Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C 36 32 Number of Units 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 28 24 20 16 12 8 4 Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C 0.042 0.048 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 THD+N (%) THD+N (%) 20/24 TS482 Fig. 79 : Worst Case Distribution of THD+N 40 36 32 Number of Units 28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036 Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C 0.042 0.048 THD+N (%) 21/24 TS482 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 0016023/C 22/24 TS482 PACKAGE MECHANICAL DATA 23/24 TS482 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Ml M Si SiSd Si l d U i d Ki d U i dS 24/24 |
Price & Availability of TS482
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |