![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
(R) VND920 DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY TYPE VND920 RDS(on) 16m IOUT 35 A (*) VCC 36 V (*) Per channel with all the output pins connected to the PCB. CMOS COMPATIBLE INPUT PROPORTIONAL LOAD CURRENT SENSE s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s OVERVOLTAGE CLAMP s THERMAL SHUTDOWN s CURRENT LIMITATION s PROTECTION AGAINST LOSS OF GROUND AND LOSS OF VCC s s s s SO-28 (DOUBLE ISLAND) ORDER CODES PACKAGE SO-28 TUBE VND920 T&R VND92013TR VERY LOW STAND-BY POWER DISSIPATION REVERSE BATTERY PROTECTION (*) DESCRIPTION The VND920 is a double chip device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin CONNECTION DIAGRAM (TOP VIEW) voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Builtin analog current sense output delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection. VCC 1 GND 1 INPUT 1 CURRENT SENSE 1 NC NC VCC 1 VCC 2 GND 2 INPUT 2 CURRENT SENSE 2 NC NC VCC 2 1 28 VCC1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 2 VCC 2 14 15 (*) See application schematic at page 10 October 2002 1/18 1 VND920 BLOCK DIAGRAM VCC 1 VCC CLAMP OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION GND 1 Power CLAMP DRIVER INPUT 1 LOGIC CURRENT LIMITER VDS LIMITER IOUT K OVERTEMPERATURE DETECTION CURRENT SENSE 1 OUTPUT 1 VCC 2 VCC CLAMP OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION GND 2 Power CLAMP DRIVER INPUT 2 LOGIC CURRENT LIMITER VDS LIMITER IOUT OVERTEMPERATURE DETECTION K CURRENT SENSE 2 OUTPUT 2 2/18 VND920 ABSOLUTE MAXIMUM RATING (Per each channel) Symbol VCC - VCC - IGND IOUT - IOUT IIN VCSENSE Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Current Sense Maximum Voltage Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy (L=0.25mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=45A) Power Dissipation Tl25C Junction Operating Temperature Case Operating Temperature Storage Temperature 4000 2000 5000 5000 355 6.25 (**) Internally limited - 40 to 150 - 55 to 150 V V V V mJ W C C C Value 41 - 0.3 - 200 Internally Limited - 21 +/- 10 -3 +15 Unit V V mA A A mA V V EMAX Ptot Tj Tc TSTG (**) Per island CURRENT AND VOLTAGE CONVENTIONS IS1 VCC1 IIN1 INPUT1 VIN1 IIN2 VIN2 INPUT2 VCC1 VCC2 IOUT1 OUTPUT1 ISENSE1 IOUT2 OUTPUT2 VSENSE1 VOUT1 IS2 VCC2 CURRENT SENSE 1 VOUT2 ISENSE2 VSENSE2 GROUND1 CURRENT SENSE 2 GROUND2 IGND1 IGND2 3/18 VND920 THERMAL DATA (Per island) Symbol Rthj-lead Rthj-amb Rthj-amb Parameter Thermal Resistance Junction-lead Thermal Resistance Junction-ambient (one chip ON) Thermal Resistance Junction-ambient (two chips ON) Value 20 55 (*) 42 (*) Unit C/W C/W C/W (*) When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V IOUT=10A; Tj =25C Clamp Voltage SWITCHING (VCC=13V) Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=1.3 (see figure 2) RL=1.3 (see figure 2) RL=1.3 (see figure 2) Min Typ 50 50 See relative diagram See relative diagram Max Unit s s V/s dVOUT/dt(on) Turn-on Voltage Slope dVOUT/dt(off) Turn-off Voltage Slope RL=1.3 (see figure 2) V/s LOGIC INPUT Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V VIN=3.25V IIN=1mA IIN=-1mA 0.5 6 6.8 -0.7 Min 1 3.25 10 8 Typ Max 1.25 Unit V A V A V V V Note 1: Vclamp and V OV are correlated. Typical difference is 5V. 4/18 1 VND920 ELECTRICAL CHARACTERISTICS (continued) CURRENT SENSE (9V VCC 16V) (See Fig.1) Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Analog Sense Leakage Current Test Conditions IOUT=1A; VSENSE=0.5V; Tj= -40C...150C IOUT=1A; VSENSE=0.5V; Tj= -40C...+150C IOUT=10A; VSENSE=4V; Tj=-40C Tj=25C...150C IOUT=10A; VSENSE=4V; Tj=-40C...+150C IOUT=30A; VSENSE=4V; Tj=-40C Tj=25C...150C IOUT=30A; VSENSE=4V; Tj=-40C...+150C VCC=6...16V; IOUT=0A;VSENSE=0V; Tj=-40C...+150C Min 3300 -10 4200 4400 -8 4200 4400 -6 4900 4900 4900 4900 Typ 4400 Max 6000 +10 6000 5750 +8 5500 5250 +6 % A V V 5.5 V % % Unit ISENSEO 0 2 4 10 VSENSE VSENSEH RVSENSEH tDSENSE Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10K Voltage VCC>8V; IOUT=10A; RSENSE=10K Sense Voltage in Overtemperature VCC=13V; RSENSE=3.9K conditions Analog Sense Output Impedance in VCC=13V; Tj>TTSD; All channels open Overtemperature Condition Current sense delay to 90% I SENSE (see note 2) response 400 500 s PROTECTIONS Symbol TTSD TR Thyst Ilim Vdemag VON Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis DC Short Circuit Current Turn-off Output Clamp Voltage Output Voltage Drop Limitation VCC=13V 5V VCC-41 VCC-48 VCC-55 50 Note 2: current sense signal delay after positive input slope Note: Sense pin doesn't have to be left floating. 5/18 2 VND920 Figure 1: IOUT/ISENSE versus IOUT 6500 IOUT/ISENSE 6000 max.Tj=-40C 5500 max.Tj=25...150C 5000 min.Tj=25...150C 4500 typical value 4000 min.Tj=-40C 3500 3000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 IOUT (A) Figure 2: Switching Characteristics (Resistive load RL=1.3) VOUT 80% dV OUT /dt(on) tr ISENSE 90% 10% 90% dV OUT /dt(off) tf t INPUT tDSENSE t td(off) td(on) t 6/18 VND920 Switching time Waveforms VOUT 90% 80% dVOUT/dt(on) tr tf dVOUT/dt(off) 10% t VIN td(on) td(off) t TRUTH TABLE (Per each channel) CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage INPUT L H L H L H L H L H H L H L OUTPUT L H L L L L L L L L L H H L CURRENT SENSE 0 Nominal 0 VSENSEH 0 0 0 0 0 (Tj Short circuit to GND Short circuit to VCC Negative output voltage clamp 7/18 VND920 ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2 I C C C C C C IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 8/18 VND920 Figure 3: Waveforms NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCCn INPUTn LOAD CURRENTn SENSEn VUSD VUSDhyst OVERVOLTAGE VOV VCCn INPUTn LOAD CURRENTn SENSEn VCC > VUSD VOVhyst SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn ISENSE= VSENSEH RSENSE TTSD TR 9/18 VND920 APPLICATION SCHEMATIC +5V Rprot INPUT1 VCC1 VCC2 Dld Rprot Rprot C. SENSE 1 INPUT2 OUTPUT1 C Rprot C. SENSE 2 OUTPUT2 GND1 GND2 RSENSE1,2 VGND RGND DGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. C I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot ) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k. 10/18 1 VND920 Off State Output Current IL(off1) (uA) 9 8 7 6 5 2.5 4 2 3 2 1 0 -50 -25 0 25 50 75 100 125 150 175 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175 High Level Input Current Iih (uA) 5 4.5 Vin=3.25V 4 3.5 3 Tc (C) Tc (C) Input Clamp Voltage Vicl (V) 8 7.8 Input High Level Vih (V) 3.6 3.4 3.2 Iin=1mA 7.6 7.4 7.2 7 6.8 6.6 3 2.8 2.6 2.4 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175 2.2 2 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Input Low Level Vil (V) 2.6 2.4 2.2 Input Hysteresis Voltage Vhyst (V) 1.5 1.4 1.3 1.2 2 1.8 1.6 1.4 1.1 1 0.9 0.8 0.7 1.2 1 -50 -25 0 25 50 75 100 125 150 175 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) 11/18 VND920 Overvoltage Shutdown Vov (V) 50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175 ILIM Vs Tcase Ilim (A) 100 90 Vcc=13V 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Turn-on Voltage Slope dVout/dt(on) (V/ms) 700 650 600 550 500 450 400 350 Turn-off Voltage Slope dVout/dt(off) (V/ms) 550 500 Vcc=13V Rl=1.3Ohm 450 400 350 300 250 200 150 100 Vcc=13V Rl=1.3Ohm 300 250 -50 -25 0 25 50 75 100 125 150 175 50 0 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) On State Resistance Vs Tcase Ron (mOhm) 50 45 40 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 150 175 On State Resistance Vs VCC Ron (mOhm) 50 45 Iout=10A Vcc=8V; 36V 40 35 Tc= 150C 30 25 20 Tc= 25C 15 10 Tc= - 40C 5 0 5 10 15 20 25 30 35 40 Tc (C) Vcc (V) 12/18 VND920 Maximum turn off current versus load inductance ILMAX (A) 100 A B 10 C 1 0.01 0.1 1 L(mH) 10 100 A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 13/18 VND920 SO-28 DOUBLE ISLAND THERMAL DATA SO-28 Double island PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.5cm2, 3cm2, 6cm2). Thermal calculation according to the PCB heatsink area Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1Pdchip2 RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance Rthj-amb Vs PCB copper area in open box free air condition RTHj_am b (C/W) 70 60 50 40 RthB RthA 30 20 10 0 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7 RthC 14/18 VND920 SO-28 Thermal Impedance Junction Ambient Single Pulse Zth(C/W) 100 0,5 cm ^2/is land 3 cm ^2/is land 6 cm ^2/is land 10 One channel ON 1 Two channels ON One channel ON on same chip Tw o channels ON 0.1 0.01 0.0001 0.001 0.01 0.1 1 time(s) 10 100 1000 Thermal fitting model of a two channels HSD in SO-28 Pulse calculation formula Z TH = R TH + Z THtp ( 1 - ) where = tp T 0.5 0.02 0.1 2.2 11 15 30 0.0015 7.00E-03 1.50E-02 0.2 1.5 5 6 Thermal Parameter Tj_1 Pd1 C1 C2 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Tj_2 R1 Pd2 R2 T_amb Area/island (cm2) R1= (C/W) R2= (C/W) R3= (C/W) R4= (C/W) R5= (C/W) R6= (C/W) C1= (W.s/C) C2= (W.s/C) C3= (W.s/C) C4= (W.s/C) C5= (W.s/C) C6= (W.s/C) 13 8 15/18 VND920 SO-28 MECHANICAL DATA DIM. A a1 b b1 C c1 D E e e3 F L S 7.40 0.40 17.7 10.00 1.27 16.51 7.60 1.27 8 (max.) 0.291 0.016 18.1 10.65 0.10 0.35 0.23 0.50 45 (typ.) 0.697 0.393 0.050 0.650 0.299 0.050 0.713 0.419 mm. MIN. TYP MAX. 2.65 0.30 0.49 0.32 0.004 0.013 0.009 0.020 MIN. inch TYP. MAX. 0.104 0.012 0.019 0.012 16/18 VND920 SO-28 TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1) All dimensions are in mm. A C B 28 700 532 3.5 13.8 0.6 TAPE AND REEL SHIPMENT (suffix "13TR") REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 16 4 12 1.5 1.5 7.5 6.5 2 End All dimensions are in mm. Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components 17/18 VND920 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics (c) 2002 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 18/18 |
Price & Availability of VND920
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |