

MAS6241

Piezo Driver with 3x Charge Pump

- Self-Drive Method
- Differential Output
- Up to 18Vpp Output from 3V Supply
- High Efficiency
- Solution without Inductors
- Low External Part Count

DESCRIPTION

MAS6241 is a piezo driver device suitable for driving self-drive type piezoelectric sounder or diaphragm. It can drive outputs up to 18Vpp from 3V supply. An internal 3x charge pump generates boosted supply voltage for piezo driver.

The charge pump and piezo driver are controlled on and off using enable (EN) input pin.

MAS6241 is an easy and low-cost solution for piezo driver, since only 4 small value capacitors are needed in addition to sound element - the use of inductors can be avoided. The inductorless design also causes significantly less disturbance to the surrounding circuits making it an ideal choice for sensitive designs. Its charge pump switches at 1MHz, allowing to using as small as 100nF external flying and output capacitors.

The piezo driver has two outputs (VOB, VOS) and one feedback input (FEED) to drive 3-terminal self-drive type piezo in bridge tied load (BTL) configuration.

MAS6241 is available in 3x3x0.75 mm size QFN-12 package.

FEATURESAPPLICATIONS• Self-Drive Method• Piezoelectric Buzzer• Differential Output• Smoke Alarm

- Alarm Clock
 - White Goods
 - Portable Device with Sound Feature

1MHz Switching Frequency
Low External Part Count

Inductorless Low EMI Solution

Thin 3x3x0.75 mm QFN-12 Package

Up to 18Vpp Output from 3V Supply

BLOCK & APPLICATION DIAGRAM

Figure 1. Enable pin controlled differential piezo driver - max 18Vpp signal for piezo from 3V supply voltage

Figure 2. Supply voltage controlled differential piezo driver - max 18Vpp signal for piezo from 3V supply voltage

Figure 3. Enable pin controlled single-ended piezo driver - max 9Vpp signal for piezo from 3V supply voltage

Charge pump flying capacitor configurations

The 3x charge pump is configured either to 3x or 2x charge pump operation depending on the flying capacitor configuration. The 2x operation requires only one flying capacitor (CF) between pins CP2 and CN1. The 3x operation requires two flying capacitors (CF1, CF2) between CP1 and CN1 and CP2 and CN2 pins respectively. See figure 4.

Figure 4. 2x and 3x charge pump operation configurations

Piezo drive voltage depends on supply voltage (VIN) and charge pump and piezo load configurations (table 1).

	2x CHARGE P	UMP CONFIG.	3x CHARGE PUMP CONFIG.		
VIN	SINGLE-ENDED	DIFFERENTIAL	SINGLE-ENDED	DIFFERENTIAL	
2.2	4.4	8.8	6.6	13.2	
3	6	12	9	18	
3.6	7.2	14.4	10.8	21.6	

Table 1. Maximum piezo drive voltage [Vpp] at different VIN and charge pump and output load configurations

Capacitor and resistor values

Capacitors must be ceramic type with low ESR and meeting sufficient minimum voltage ratings. The CIN input, CF1 and CF2 flying capacitors see one VIN voltage and they have minimum 6.3V voltage rating. The COUT capacitor sees 2 x VIN voltage in 2x configuration and 3 x VIN voltage in 3x configuration. Then the COUT capacitor should have minimum 9V voltage rating in the 2x configuration and minimum 16V rating in the 3x configuration. See table 2 for recommended capacitor and resistor values.

Capacitor	Nominal value	Voltage rating
CIN	10μF (min 1μF)	min 6.3V
CF1, CF2	100nF	min 6.3V
COUT	100nF	min 9V in 2x configuration min 16V in 3x configuration
C1	470p	min 9V in 2x configuration min 16V in 3x configuration
R1	1.5M	
R2	200k	

Table 2. Recommended capacitor and resistor values

Note: Some capacitor dielectric materials such as Y5V have strong voltage dependence. The actual capacitance value may drop remarkably when operating near rated voltage. In such case the nominal capacitor value should be chosen larger to compensate the voltage dependence.

The input (CIN), flying (CF1, CF2) and output (COUT) capacitor value selections have influence on output (VOUT) ripple and disturbances at supply voltage input (VIN). Table 3 shows alternative capacitor value selections in different applications. In battery operated applications it is recommended to use CIN=10 μ F which keeps the start-up inrush current low.

CIN	CF1-2	COUT	Application
1µF	100nF	100nF	Minimum size layout
10µF	100nF	100nF	Low input disturbances
10µF	100nF	1µF	Low input disturbances and low output ripple

Table 3. Capacitor value selections in different applications

Note: the voltage ripple at VOUT output is approximately proportional to ratio of piezo load capacitance (C_{PIEZO}) and charge pump output capacitor (COUT). Then the output ripple can be reduced by choosing output capacitor value which is much larger relative to piezo capacitance value. However, note that large output capacitor also lengthens output voltage rise time and increases inrush current during start-up.

...

205

A 11 . - 11 - ----

ABSOLUTE MAXIMUM RATINGS

			All Volta	ages with respec	t to ground
Parameter	Symbol	Conditions	Min	Мах	Unit
Supply Voltage	VIN	Charge pump OFF Charge pump ON		5.5 4.5	V
Output and Flying Capacitor Pin	VOUT, CP1, CP2, VOS, VOB		-0.3	15	V
Voltages	CN2		-0.3	13	V
	CN1		-0.3	VIN + 0.3	V
Input Pins Voltages	EN		-0.3	VIN + 0.3	V
	FEED		-20	30	V
Storage Temperature			-55	+150	°C
Operating Junction Temperature	ΤJ		-40	+125	°C
ESD Rating	V _{HBM}	Human Body Model (HBM) ⁽¹⁾		±2000	V
-	V _{CDM}	Charged Device Model (CDM) ⁽²⁾		±500	V

Note: Stresses beyond the values listed may cause a permanent damage to the device. The device may not operate under these conditions, but it will not be destroyed.

Note 1: JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. **Note 2:** JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

RECOMMENDED OPERATING CONDITIONS

			AI	i voitages with	respect to	grouna.
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Ambient Temperature	TA		-40	+27	+125	°C
Operating Supply Voltage	V _{IN}		2.2	3.0	3.6	V
Piezo Resonance Frequency	Fpiezo		2	3.4	5	kHz

ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to $+125^{\circ}C$, typical values at $T_A = +27^{\circ}C$, $V_{IN} = 3.0$ V, $C_{IN} = 10$ μ F, $C_{F1} = C_{F2} = C_{OUT} = 100$ nF, $C_{LOAD} = 15$ nF, $f_{FEED} = 3.4$ kHz; unless otherwise specified

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	VOUT	VIN = 3.0 V, T _A =+27°C	7.2		9	V
Shutdown Current	Isd	EN=low		0.1	1	μA
Current Consumption	IDD	EN=high, VIN=3.0V		2.4	5	mA
		Charge Pump (no loading)				
		EN=high, VIN=3.0V		5.4	10	mA
		$C_{LOAD} = 15 \text{ nF}, f_{FEED} = 3.4 \text{kHz}$				
		EN=high, VIN=3.0V		14.2		mA
		PKM24SPH3805 piezo, f _{PIEZO} = 3.4kHz				
Internal Switching	Fosc		0.6	1.15	1.8	MHz
Frequency (Charge						
Pump)						
VOUT Start-Up Time	t _{ON}	No piezo loading				μs
		Power-up when EN=VDD		530	1000	
		Start-up from EN pin control		470	1000	
EN Input Threshold	VIH (1)		0.9			V
	VIL				0.4	V
EN Input Current	IIH ⁽²⁾	EN = 3V, VIN = 3V		0.01	1	μA
		EN = 0.4V		1	2	
	IIL	EN = 0V, VIN = 3V		0.01	1	μA

Note 1: EN input can be driven even from low supply voltage controller due to low 0.9V VIH min threshold.

Note 2: EN input has active pull-down by 400kΩ which is disabled to save current when inputs are pulled high.

DEVICE OUTLINE CONFIGURATION

Top Marking Information: 6241 = Product Number VVV = Version YWW = Year Week

QFN-12 3x3x0.75 PIN DESCRIPTION

Pin Name	Pin	Туре	Function	Note
EN	1	DI	Enable input for on/off control	
			OFF: EN=low	
			ON: EN=high	
	2	NC		1
FEED	3	AI	Input for Piezo Sounder Feedback Terminal	
VOB	4	DO	Output for Piezo Sounder Brass (Ground) Terminal	
VOS	5	DO	Output for Piezo Sounder Silver Terminal	
VOUT	6	AO	Charge pump output	
CP2	7	AI/O	Flying capacitor 2 positive terminal	
CN2	8	AI/O	Flying capacitor 2 negative terminal	
CP1	9	AI/O	Flying capacitor 1 positive terminal	
CN1	10	AI/O	Flying capacitor 1 negative terminal	
VIN	11	Р	Power supply	
GND	12	G	Supply ground	
EXP_PAD	-	G	Exposed pad connected to GND	1

G = Ground, P = Power, D = Digital, A = Analog, I = Input, O = Output, NC = Not Connected Note 1: On PCB the NC pin and the exposed pad are recommended to be connected to GND

PACKAGE (QFN-12 3X3x0.75) OUTLINE

Symbol	Min	Nom	Max	Unit				
PACKAGE DIMENSIONS								
A	0.70	0.75	0.80	mm				
A1		0.02	0.05	mm				
b	0.20	0.25	0.30	mm				
b2	0.15	0.20	0.25	mm				
С	0.18	0.20	0.25	mm				
D	2.90	3.00	3.10	mm				
D2 (Exposed.pad)	1.55	1.65	1.75	mm				
е		0.50 BSC						
Ne		1.00 BSC						
Nd		1.00 BSC						
E	2.90	3.00	3.10	mm				
E2 (Exposed.pad)	1.55	1.65	1.75	mm				
L	0.35	0.40	0.45	mm				
h	0.20	0.25	0.30	mm				

Dimensions do not include mold or interlead flash, protrusions or gate burrs.

QFN-12 3X3x0.75 PCB LAND PATTERN

Notes

- I/O lands should be 0.2mm longer than QFN pads and extend the same 0.2mm outside package outline
- exposed pad land size should be the same as QFN exposed pad size
- solder resist opening should be 120μm...150μm larger than the land size resulting in 60μm...75μm clearance between copper land and solder resist

ORDERING INFORMATION

Product Code	Product	Package	Comments
MAS6241CA1Q1306	Piezo Driver	QFN-12 3x3x0.75, Pb free, RoHS compliant	Tape and Reel 3000 pcs / r
MAS6241CA1WAD00	Piezo Driver	Tested inked 8" wafer, thickness 370 µm	
MAS6241CA1WAD05	Piezo Driver	Bare die in tray, thickness 370 µm	

Contact Micro Analog Systems Oy for other wafer thickness options.

LOCAL DISTRIBUTOR

MICRO ANALOG SYSTEMS OY CONTACTS

Micro Analog Systems OyTel. +358 10 835 1100Kutomotie 16http://www.mas-oy.comFI-00380 Helsinki, FINLANDhttp://www.mas-oy.com

NOTICE

Micro Analog Systems Oy (MAS) reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. MAS assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and MAS makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

MAS products are not authorized for use in safety-critical applications (such as life support) where a failure of the MAS product would reasonably be expected to cause severe personal injury or death. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of MAS products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by MAS. Further, Buyers must fully indemnify MAS and its representatives against any damages arising out of the use of MAS products in such safety-critical applications.

MAS products are neither designed nor intended for use in military/aerospace applications or environments. Buyers acknowledge and agree that any such use of MAS products which MAS has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

MAS products are neither designed nor intended for use in automotive applications or environments. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, MAS will not be responsible for any failure to meet such requirements.