- Ultra Low On-Resistance - P-Channel MOSFET - Surface Mount - Available in Tape & Reel - Low Gate Charge - Lead-Free - Halogen-Free ## **Description** These P-channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications. A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3TM, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available. | V _{DSS} | $R_{DS(on)} \max (m\Omega)$ | I _D | | |------------------|-----------------------------|----------------|--| | -30V | 98@V _{GS} = -10V | -3.0A | | | | $165@V_{GS} = -4.5V$ | -2.6A | | #### **Absolute Maximum Ratings** | 3 | | | |--|--|--| | Parameter | Max. | Units | | Drain- Source Voltage | -30 | V | | Continuous Drain Current, V _{GS} @ -10V | -3.0 | | | Continuous Drain Current, V _{GS} @ -10V | -2.4 | A | | Pulsed Drain Current ① | -24 | | | Power Dissipation | 1.25 | w | | Power Dissipation | 0.80 | VV | | Linear Derating Factor | 10 | mW/°C | | Gate-to-Source Voltage | ± 20 | V | | Junction and Storage Temperature Range | -55 to + 150 | °C | | | Drain- Source Voltage Continuous Drain Current, V _{GS} @ -10V Continuous Drain Current, V _{GS} @ -10V Pulsed Drain Current ① Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage | Drain- Source Voltage -30 Continuous Drain Current, V _{GS} @ -10V -3.0 Continuous Drain Current, V _{GS} @ -10V -2.4 Pulsed Drain Current ① -24 Power Dissipation 1.25 Power Dissipation 0.80 Linear Derating Factor 10 Gate-to-Source Voltage ± 20 | ### **Thermal Resistance** | | Parameter | Max. | Units | |-----------------|------------------------------|------|-------| | $R_{\theta JA}$ | Maximum Junction-to-Ambient® | 100 | °C/W | # Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |---------------------------------|--------------------------------------|------|-------|------|-------|---| | V _{(BR)DSS} | Drain-to-Source Breakdown Voltage | -30 | | | V | $V_{GS} = 0V, I_D = -250\mu A$ | | $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient | | 0.019 | | V/°C | Reference to 25°C, I _D = -1mA | | B | Static Drain-to-Source On-Resistance | | | 98 | mΩ | V _{GS} = -10V, I _D = -3.0A ② | | R _{DS(on)} | | | | 165 | | V _{GS} = -4.5V, I _D = -2.6A ② | | V _{GS(th)} | Gate Threshold Voltage | -1.0 | | -2.5 | V | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ | | 9fs | Forward Transconductance | 3.1 | | | S | V _{DS} = -10V, I _D = -3.0A | | 1 | Drain-to-Source Leakage Current | | | -1.0 | | V _{DS} = -24V, V _{GS} = 0V | | I _{DSS} | | | | -5.0 | μA | $V_{DS} = -24V, V_{GS} = 0V, T_{J} = 70^{\circ}C$ | | I _{GSS} | Gate-to-Source Forward Leakage | | | -100 | nA | V _{GS} = -20V | | IGSS | Gate-to-Source Reverse Leakage | | | 100 | | V _{GS} = 20V | | Qg | Total Gate Charge | | 9.5 | 14 | | $I_D = -3.0A$ | | Q _{gs} | Gate-to-Source Charge | | 2.3 | 3.5 | nC | V _{DS} = -24V | | Q_{gd} | Gate-to-Drain ("Miller") Charge | | 1.6 | 2.4 | | V _{GS} = -10V ② | | t _{d(on)} | Turn-On Delay Time | | 12 | | | V _{DD} = -15V ② | | t _r | Rise Time | | 18 | | no | $I_{D} = -1.0A$ | | t _{d(off)} | Turn-Off Delay Time | | 88 | | ns | $R_G = 6.0\Omega$ | | t _f | Fall Time | | 52 | | | V _{GS} = -10V | | C _{iss} | Input Capacitance | | 510 | | | $V_{GS} = 0V$ | | Coss | Output Capacitance | | 71 | | pF | V _{DS} = -25V | | C _{rss} | Reverse Transfer Capacitance | | 43 | | | f = 1.0 MHz | # **Source-Drain Ratings and Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------|---------------------------|--------------|------|------|-------------|---| | Is | Continuous Source Current | | | 4.0 | | MOSFET symbol | | | (Body Diode) | (Body Diode) | -1.3 | A | showing the | | | I _{SM} | Pulsed Source Current | | 04 | -24 | 1 ^ | integral reverse | | | (Body Diode) ① | | | | * | p-n junction diode. | | V _{SD} | Diode Forward Voltage | | | -1.2 | V | $T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ② | | t _{rr} | Reverse Recovery Time | | 17 | 26 | ns | $T_J = 25^{\circ}C$, $I_F = -1.3A$ | | Q _{rr} | Reverse Recovery Charge | | 12 | 18 | nC | di/dt = -100A/µs ② | ### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. - ② Pulse width \leq 400 μ s; duty cycle \leq 2%.