INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Jun 12 IC23 Data Handbook 1998 Feb 27

Philips Semiconductors

74ABT16501A 74ABTH16501A

FEATURES

- 18-bit bidirectional bus interface
- 3-State buffers
- Output capability: +64mA/-32mA
- TTL input and output switching levels
- 74ABTH16501A incorporates bus-hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up reset
- Power-up 3-State
- Positive edge-triggered clock inputs
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model
- Flexible operation permits 18 embedded D-type latches or flip-flops to operate in clocked, transparent, and latched modes.

DESCRIPTION

The 74ABT16501A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

This device is an 18-bit universal transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable (OEAB and OEBA), latch enable (LEAB and LEBA), and clock (CPAB and CPBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is High. When LEAB is Low, the A data is latched if CPAB is held at a High or Low logic level. If LEAB is Low, the A-bus data is stored in the latch/flip-flop on the Low-to-High transition of CPAB. When OEAB is High, the outputs are active. When OEAB is Low, the outputs are in the high-impedance state.

Data flow for B-to-A is similar to that of A-to-B but uses \overline{OEBA} , LEBA and CPBA. The output enables are complimentary (OEAB is active High, and \overline{OEBA} is active Low).

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

Two options are available, 74ABT16501A which does not have the bus-hold feature and 74ABTH16501A which incorporates the bus-hold feature.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	TYPICAL	UNIT	
t _{PLH} t _{PHL}	Propagation delay An to Bn or Bn to An	$C_L = 50 pF;$ $V_{CC} = 5V$	2.2 1.8	ns
C _{IN}	Input capacitance (Control pins)	$V_I = 0V \text{ or } V_{CC}$	3	pF
C _{I/O}	I/O pin capacitance	Outputs disabled; $V_{I/O} = 0V \text{ or } V_{CC}$	7	pF
I _{CCZ}	Quiescent cupply current	Outputs disabled; $V_{CC} = 5.5V$	500	μA
ICCL	Quiescent supply current	Outputs low; $V_{CC} = 5.5V$	9	mA

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	–40°C to +85°C	74ABT16501A DL	BT16501A DL	SOT371-1
56-Pin Plastic TSSOP Type II	–40°C to +85°C	74ABT16501A DGG	BT16501A DGG	SOT364-1
56-Pin Plastic SSOP Type III	–40°C to +85°C	74ABTH16501A DL	BH16501A DL	SOT371-1
56-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABTH16501A DGG	BH16501A DGG	SOT364-1

74ABT16501A 74ABTH16501A

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	OEAB	A-to-B Output enable input
27	OEBA	B-to-A Output enable input (active low)
2, 28	LEAB/LEBA	A-to-B/B-to-A Latch enable input
55,30	CPAB/ CPBA	A-to-B/B-to-A Clock input (active rising edge)
3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26	A0-A17	Data inputs/outputs (A side)
54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31	B0-B17	Data inputs/outputs (B side)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage

PIN CONFIGURATION

			1	
OEAB	1	•	56	GND
LEAB	2		55	СРАВ
AO	3		54	В0
GND	4		53	GND
A1	5		52	B1
A2	6		51	B2
VCC	7		50	VCC
A3	8		49	B3
A4	9		48	B4
A5	10		47	B5
GND	11		46	GND
A6	12		45	B6
A7	13		44	B7
A8	14		43	B8
A9	15		42	В9
A10	16		41	B10
A11	17		40	B11
GND	18		39	GND
A12	19		38	B12
A13	20		37	B13
A14	21		36	B14
VCC	22		35	VCC
A15	23		34	B15
A16	24		33	B16
GND	25		32	GND
A17	26		31	B17
OEBA	27		30	СРВА
LEBA	28		29	GND
			<u></u>	100128
			3/	A00128

LOGIC SYMBOL (IEEE/IEC)

74ABT16501A 74ABTH16501A

74ABT16501A 74ABTH16501A

FUNCTION TABLE

	INP	UTS		Internal	OUTPUTS	OPERATING MODE
OEAB	LEAB	CPAB	An	Registers	Bn	OFERATING MODE
L	н	Х	Х	Х	Z	Disabled
L	\downarrow	Х	h	н	Z	Disabled, Latch data
L	\downarrow	х	I	L	Z	Disableu, Latti uata
L	L	H or L	Х	NC	Z	Disabled, Hold data
L	L	\uparrow	h	н	Z	Disabled, Clock data
L	L	Ŷ	I	L	Z	
н	н	Х	Н	н	н	Transparent
н	н	Х	L	L	L	nansparent
н	\downarrow	Х	h	н	н	Latch data & display
н	\downarrow	Х	I	L	L	Later data & display
н	L	\uparrow	h	н	н	Clock data & display
н	L	\uparrow	I	L	L	Clock data & display
н	L	H or L	Х	н	н	Hold data & display
н	L	H or L	х	L	L	riolu data & display

NOTE: A-to-B data flow is shown; B-to-A flow is similar but uses OEBA, LEBA, and CPBA.

H = High voltage level

h = High voltage level one set-up time prior to the Enable or Clock transition
L = Low voltage level

I = Low voltage level one set-up time prior to the Enable or Clock transition

NC= No Change

X = Don't care

 $\begin{array}{l} \lambda = \text{bint label} \\ \text{Sigma} \\ \lambda = \text{High Impedance "off" state} \\ \lambda = \text{High-to-Low Enable or Clock transition} \\ \uparrow = \text{Low-to-High Clock transition} \end{array}$

74ABT16501A 74ABTH16501A

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	PARAMETER CONDITIONS		UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +5.5	V
		Output in Low state	128	
IOUT	DC output current	Output in High state	-64	- mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWBUL	FARAIMEIER	MIN	MAX	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Input voltage		0.8	V
I _{ОН}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
Δt/Δv	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

74ABT16501A 74ABTH16501A

DC ELECTRICAL CHARACTERISTICS

					LIMITS					
SYMBOL PARAMETER		TEST CONDITIONS		Ta	umb = +25	o°C	T _{amb} =	-40°C 85°C		
				MIN	ТҮР	MAX	MIN	МАХ		
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA			-0.8	-1.2		-1.2	V	
		$V_{CC} = 4.5V; I_{OH} = -3mA; V_{I} =$	V _{IL} or V _{IH}	2.5	2.9		2.5		V	
V _{OH}	High-level output voltage	V _{CC} = 5.0V; I _{OH} = -3mA; V _I =	V _{IL} or V _{IH}	3.0	4.0		3.0		V	
		V _{CC} = 4.5V; I _{OH} = -32mA; V _I =	= V _{IL} or V _{IH}	2.0	2.4		2.0		V	
V _{OL}	Low-level output voltage	$V_{CC} = 4.5$ V; $I_{OL} = 64$ mA; $V_{I} =$	V _{IL} or V _{IH}		0.35	0.55		0.55	V	
V _{RST}	Power-up output voltage ³	$V_{CC} = 5.5V; I_O = 1mA; V_I = GI$	ND or V _{CC}		0.13	0.55		0.55	V	
I	Input leakage current	V _{CC} = 5.5V; V _I = GND or 5.5V	Control pins		±0.01	±1.0		±1.0	μΑ	
		$V_{CC} = 4.5 V; V_{I} = 0.8 V$		35			35			
I _{HOLD}	Bus Hold current A and B ports ⁵ 74ABTH16501A	$V_{CC} = 4.5V; V_1 = 2.0V$		-75			-75		μA	
		$V_{CC} = 5.5V; V_I = 0 \text{ to } 5.5V$	$V_{CC} = 5.5V; V_1 = 0 \text{ to } 5.5V$							
I _{OFF}	Power-off leakage current	V_{CC} = 0.0V; V_O or $V_I \leq 4.5V$			±2	±100		±100	μΑ	
I _{PU/PD}	Power-up/down 3-State output current ⁴	$V_{CC} = 2.1V$; $V_O = 0.0V$ or V_{CC} $V_I = GND$ or V_{CC} ; $V_{OE} = Don't$; t care		±2	±50		±50	μA	
I _{IH} + I _{OZH}	3-State output High current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = V$	_{IL} or V _{IH}		1.0	10		10	μA	
I _{IL} + I _{OZL}	3-State output Low current	$V_{CC} = 5.5V; V_{O} = 0.0V; V_{I} = V$	_{IL} or V _{IH}		-1.0	-10		-10	μΑ	
I _{CEX}	Output High leakage current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = G$	ND or V _{CC}		2.0	50		50	μΑ	
Ι _Ο	Output current ¹	V _{CC} = 5.5V; V _O = 2.5V		-50	-80	-180	-50	-180	mA	
I _{CCH}		V_{CC} = 5.5V; Outputs High, V ₁ = V_{CC}	= GND or		0.5	2		2	mA	
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_{I} =	GND or V _{CC}		9	19		19	mA	
I _{CCZ}		V_{CC} = 5.5V; Outputs 3–State; V _I = GND or V _{CC}			0.5	2		2	mA	
ΔI_{CC}	Additional supply current per input pin ² 74ABT16501A	V_{CC} = 5.5V; one input at 3.4V, other inputs at V_{CC} or GND			5.0	50		50	μΑ	
ΔI_{CC}	Additional supply current per input pin ² 74ABTH16501A	V_{CC} = 5.5V; one input at 3.4V, other inputs at V_{CC} or GND			200	500		500	μΑ	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

2. This is the increase in supply current for each input at 3.4V.

For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
This parameter is valid for any V_{CC} between 0V and 2.1V, with a transition time of up to 10msec. From V_{CC} = 2.1V to V_{CC} = 5V ± 10% a transition time of up to 100µsec is permitted.

5. This is the bus hold overdrive current required to force the input to the opposite logic state.

74ABT16501A 74ABTH16501A

AC CHARACTERISTICS

GND = 0V, $t_R = t_F = 2.5 ns$, $C_L = 50 pF$, $R_L = 500 \Omega$

			LIMITS					
SYMBOL	PARAMETER	WAVEFORM	L L	∫ _{amb} = +25° V _{CC} = +5.0∖	C /	T _{amb} = -4 V _{CC} = +5	0 to +85ºC .0V ±0.5V	UNIT
			MIN	TYP	MAX	MIN	MAX	
f _{max}	Maximum clock frequency	1	150	225		150		MHz
t _{PLH} t _{PHL}	Propagation delay An to Bn or Bn to An	2	1.0 1.0	2.2 1.8	3.0 2.5	1.0 1.0	3.5 3.0	ns
t _{PLH} t _{PHL}	Propagation delay LEAB to Bn or LEBA to An	3	1.5 1.4	3.2 2.9	4.3 3.8	1.5 1.4	5.0 4.2	ns
t _{PLH} t _{PHL}	Propagation delay CPAB to Bn or CPBA to An	1	1.6 1.4	3.5 2.9	4.5 3.8	1.6 1.4	5.0 4.2	ns
t _{PZH} t _{PZL}	Output enable time to HIGH and LOW level	5 6	1.1 1.0	3.0 2.4	4.0 3.4	1.1 1.0	4.7 3.9	ns
t _{PHZ} t _{PLZ}	Output disable time from HIGH and LOW level	5 6	1.3 1.0	3.3 2.4	4.3 3.4	1.3 1.0	5.3 3.9	ns

AC SETUP REQUIREMENTS

GND = 0V, $t_R = t_F$ = 2.5ns, C_L = 50pF, R_L = 500 Ω

				LIN	NITS	
SYMBOL	PARAMETER	WAVEFORM		= +25°C = +5.0V	T _{amb} = -40 to +85°C V _{CC} = +5.0V ±0.5V	UNIT
			MIN	TYP	MIN	
t _s (H) t _s (L)	Setup time, HIGH or LOW An to CPAB or Bn to CPBA	4	2.0 2.0	0.5 0.5	2.0 2.0	ns
t _h (H) t _h (L)	Hold time, HIGH or LOW An to CPAB or Bn to CPBA	4	0.7 0.7	-0.5 -0.5	0.7 0.7	ns
t _s (H) t _s (L)	Setup time, HIGH or LOW An to LEAB or Bn to LEBA	4	2.0 2.0	0.5 0.4	2.0 2.0	ns
t _h (H) t _h (L)	Hold time HIGH or LOW An to LEAB or Bn to LEBA	4	0.7 0.7	-0.4 -0.5	0.7 0.7	ns
t _w	Pulse width, HIGH or LOW CPAB or CPBA	1	3	1.9	3	ns
t _w (H)	Pulse width, HIGH LEAB or LEBA	3	3	1.2	3	ns

AC WAVEFORMS

 V_{M} = 1.5V, V_{IN} = GND to 3.0V

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 2. Propagation Delay, Transparent Mode

74ABT16501A 74ABTH16501A

AC WAVEFORMS (Continued)

Waveform 3. Propagation Delay, Enable to Output, and Enable Pulse Width

Waveform 4. Data Setup and Hold Times

TEST CIRCUIT AND WAVEFORMS

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

 $\label{eq:RT} \textbf{R}_{T} = \quad \text{Termination resistance should be equal to } \textbf{Z}_{OUT} \text{ of } \\ \text{pulse generators.}$

SA00018

74ABT16501A 74ABTH16501A

74ABT16501A 74ABTH16501A

74ABT16501A 74ABTH16501A

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03494

Let's make things better.

