


#### **Typical Applications**

The HMC311LP3(E) is ideal for:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV & Cable Modem
- Microwave Radio

#### **Functional Diagram**



# HMC311LP3 / 311LP3E

## InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz

#### Features

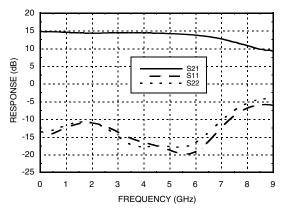
P1dB Output Power: +15.5 dBm Output IP3: +32 dBm Gain: 14.5 dB 50 Ohm I/O's 16 Lead 3x3mm SMT Package: 9mm<sup>2</sup>

#### **General Description**

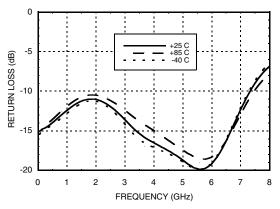
The HMC311LP3(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT DC to 6 GHz amplifiers. This 3x3mm QFN packaged amplifier can be used as either a cascadable 50 Ohm gain stage or to drive the LO of HMC mixers with up to +17 dBm output power. The HMC311LP3(E) offers 14.5 dB of gain and an output IP3 of +32 dBm while requiring only 56 mA from a +5V supply. The Darlington feedback pair used results in reduced sensitivity to normal process variations and yields excellent gain stability over temperature while requiring a minimal number of external bias components.

## Electrical Specifications, Vs= 5V, Rbias= 22 Ohm, $T_{A}$ = +25° C

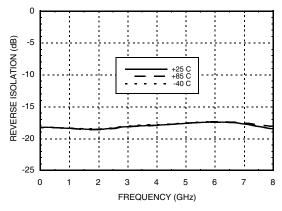
| Parameter                                |                                                                 | Min.                 | Тур.                    | Max.                    | Units                      |
|------------------------------------------|-----------------------------------------------------------------|----------------------|-------------------------|-------------------------|----------------------------|
| Gain                                     | DC - 1.0 GHz<br>1.0 - 4.0 GHz<br>4.0 - 6.0 GHz                  | 13.0<br>12.5<br>12.0 | 14.5<br>14.3<br>14.0    |                         | dB<br>dB<br>dB             |
| Gain Variation Over Temperature          | DC - 2.0 GHz<br>2.0 - 4.0 GHz<br>4.0 - 6.0 GHz                  |                      | 0.005<br>0.008<br>0.012 | 0.008<br>0.012<br>0.016 | dB/ °C<br>dB/ °C<br>dB/ °C |
| Return Loss Input / Output               | DC - 1.0 GHz<br>1.0 - 3.0 GHz<br>3.0 - 6.0 GHz                  |                      | 13<br>11<br>15          |                         | dB<br>dB<br>dB             |
| Reverse Isolation                        | DC - 6 GHz                                                      |                      | 18                      |                         | dB                         |
| Output Power for 1 dB Compression (P1dB) | DC - 2.0 GHz<br>2.0 - 4.0 GHz<br>4.0 - 6.0 GHz                  | 13.5<br>12.0<br>10.0 | 15.5<br>15.0<br>13.0    |                         | dBm<br>dBm<br>dBm          |
| Output Third Order Intercept (IP3)       | DC - 1.0 GHz<br>1.0 - 2.0 GHz<br>2.0 - 4.0 GHz<br>4.0 - 6.0 GHz |                      | 32<br>30<br>28<br>24    |                         | dBm<br>dBm<br>dBm<br>dBm   |
| Noise Figure                             | DC - 6 GHz                                                      |                      | 4.5                     |                         | dB                         |
| Supply Current (Icq)                     |                                                                 |                      | 55                      | 74                      | mA                         |


Note: Data taken with broadband bias tee on device output.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

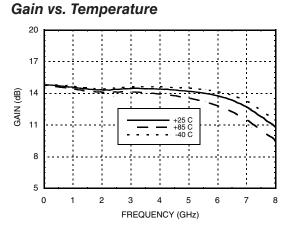




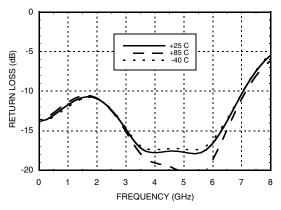


#### Gain & Return Loss



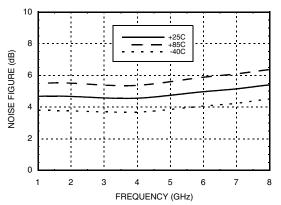
Input Return Loss vs. Temperature




**Reverse Isolation vs. Temperature** 




## HMC311LP3 / 311LP3E

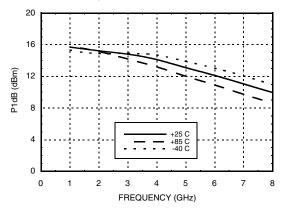

## InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz



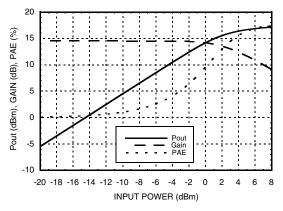
#### Output Return Loss vs. Temperature



#### Noise Figure vs. Temperature




Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.





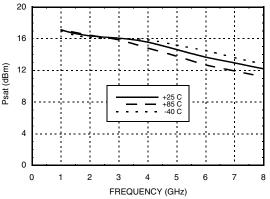


#### P1dB vs. Temperature

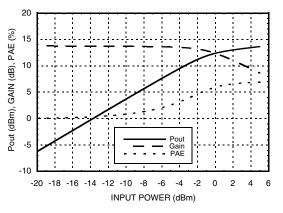


Power Compression @ 1 GHz

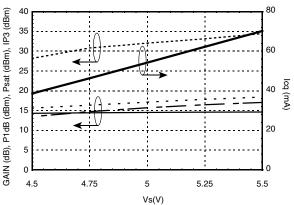



Output IP3 vs. Temperature




## HMC311LP3 / 311LP3E

## InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz






#### Power Compression @ 6 GHz



Gain, Power, Output IP3 & Supply Current vs. Supply Voltage @ 1 GHz



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

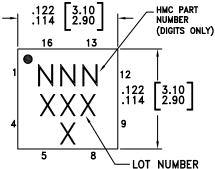


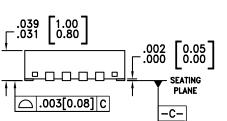


#### Absolute Maximum Ratings

| Collector Bias Voltage (Vcc)                                    | +7V            |
|-----------------------------------------------------------------|----------------|
| RF Input Power (RFIN)(Vs = +5V)                                 | +10 dBm        |
| Junction Temperature                                            | 150 °C         |
| Continuous Pdiss (T = 85 °C)<br>(derate 5.21 mW/°C above 85 °C) | 0.339 W        |
| Thermal Resistance<br>(junction to ground paddle)               | 192 °C/W       |
| Storage Temperature                                             | -65 to +150 °C |
| Operating Temperature                                           | -40 to +85 °C  |
| ESD Sensitivity (HBM)                                           | Class 1A       |
|                                                                 |                |




ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


HMC311LP3 / 311LP3E

MMIC AMPLIFIER, DC - 6 GHz

InGaP HBT GAIN BLOCK

#### **Outline Drawing**





#### BOTTOM VIEW -.016 [0.40] REF PIN 16 0.30 .012 .007 .008 [0.20] MIN $\cup \cup \cup$ PIN 1 0.56 .022 1.56 1.44 .061 1 П П EXPOSED GROUND PADDLE [1.95 [1.50 .077 .059 MUST BE CONNECTED TO RF/DC GROUND SQUARE

#### NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

#### Package Information

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating          | Package Marking <sup>[3]</sup> |
|-------------|----------------------------------------------------|---------------|---------------------|--------------------------------|
| HMC311LP3   | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 [1]            | 311<br>XXXX                    |
| HMC311LP3E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 <sup>[2]</sup> | <u>311</u><br>XXXX             |

[1] Max peak reflow temperature of 235  $^\circ\text{C}$ 

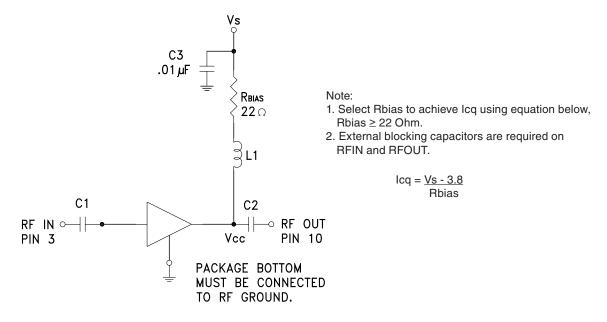
[2] Max peak reflow temperature of 260  $^\circ\text{C}$ 

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



# HMC311LP3 / 311LP3E


## InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz



#### **Pin Descriptions**

| Pin Number              | Function | Description                                                               | Interface Schematic |
|-------------------------|----------|---------------------------------------------------------------------------|---------------------|
| 1, 2, 4 - 9,<br>11 - 16 | N/C      | This pin may be connected to RF ground.                                   |                     |
| 3                       | RFIN     | This pin is DC coupled.<br>An off chip DC blocking capacitor is required. | RFOUT               |
| 10                      | RFOUT    | RF output and DC Bias for the output stage.                               |                     |
|                         | GND      | Package bottom must be connected to RF/DC ground.                         |                     |

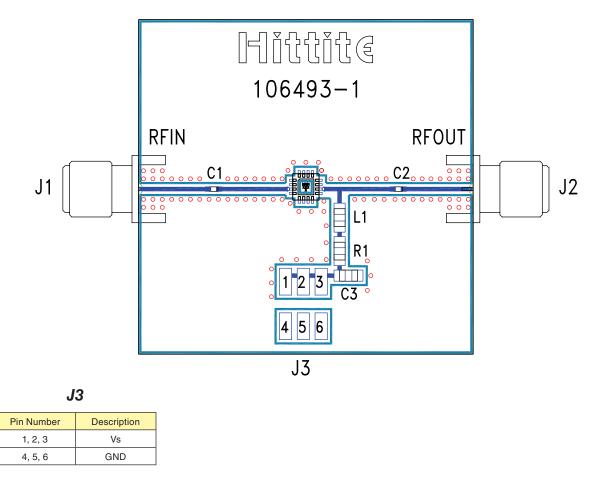
### **Application Circuit**



### **Recommended Component Values**

| Component | Frequency (MHz) |         |        |        |        |        |        |        |        |
|-----------|-----------------|---------|--------|--------|--------|--------|--------|--------|--------|
|           | 50              | 900     | 1900   | 2200   | 2400   | 3500   | 5200   | 5800   |        |
|           | L1              | 270 nH  | 56 nH  | 18 nH  | 18 nH  | 15 nH  | 8.2 nH | 3.3 nH | 3.3 nH |
| С         | C1, C2          | 0.01 µF | 100 pF |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




## HMC311LP3 / 311LP3E

### InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 6 GHz



#### **Evaluation PCB**



v05.1213

#### List of Materials for Evaluation PCB 106789<sup>[1]</sup>

| Item    | Description                    |
|---------|--------------------------------|
| J1 - J2 | PC Mount SMA Connector         |
| J3      | 2 mm DC Header                 |
| C1, C2  | Capacitor, 0402 Pkg.           |
| C3      | 10,000 pF Capacitor, 0805 Pkg. |
| R1      | 22 Ohm Resistor, 0805 Pkg.     |
| L1      | Inductor, 0805 Pkg.            |
| U1      | HMC311LP3 / HMC311LP3E         |
| PCB [2] | 106493 Evaluation PCB          |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.