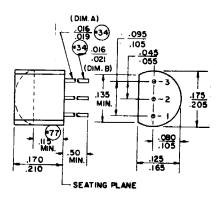
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

BF506


SILICON PLANAR PNP

VHF OSCILLATOR MIXER

The BF 506 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package. It is intended for use as mixer and oscillator in the VHF range. However, it may also be used as not controlled preamplifier at low noise.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_{\rm F} = 0$)	-40	v
VCEO	Collector-emitter voltage $(I_{\rm B} = 0)$	-35	v
VEBO	Emitter-base voltage $(I_{C} = 0)$	-4	v
I _C	Collector current	-30	mA
18	Base current	-5	mΑ
P _{tot}	Total power dissipation at $T_{amp} \leq 45^{\circ}C$	250	mW
T _{stg}	Storage temperature	-55 to 150	°C
T _j	Junction temperature	150	°C

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Download from alldatasheet.com

BF506

THERMAL DATA

R _{th jamb}	Thermal resistance junction-ambient	max	420 °C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise specified)

Parameter		Test conditions		Min.	Typ.	Max.	Unit
I _{CBO}	Collector cutoff current $(I_E = 0)$	V _{св} = -20V				-200	nA
V _(BR) ceo	Collector-emitter breakdown voltage (I _B = 0)	l _c = -5 mA		-35		-	v
V _{(BR)EBO}	Emitter-base breakdown voltage $(I_C \neq 0)$	Ι _Ε = -10 μΑ		-4			v
h _{FE}	DC current gain	I _c = ~3 mA	V _{CE} = -10V		40		-
f _T	Transition frequency	$I_{C} = -1 \text{ mA}$ f = 100 MHz	V _{CE} = -10V		400		MHz
С _{сво}	Collector-base capacitance	I _E = 0 f = 1 MHz	V _{CB} = -10V		0.8		pF
C _{rb}	Reverse capacitance	$I_{C} = 0$ f = 1 MHz	V _{CB} = -10V		0.13		pF
NF*/**	Noise figure	$I_{C} = -1 \text{ mA}$ $R_{g} = 50 \Omega$ f = 200 MHz	V _{cc} = -6V		2.5	4	dB
G _{pb} *	Power gain	$I_{c} = -3 \text{ mA}$ $R_{\perp} = 1k \Omega$ f = 200 MHz	V _{cc} = -10.8V	14	17		dB

**

See TEST CIRCUIT Input adapting for optimum source admittance