

3 Phase bridge Trench + Field Stop IGBT3 Power Module

It is recommended to connect a decoupling capacitor between pins 31 & 2 to reduce switching overvoltages, if DC Power is connected between pins 15, 16 & 12. Pins 15 & 16 must be shorted together.

$$V_{CES} = 600V$$

 $I_{C} = 75A*$ @ $Tc = 80°C$

Application

Motor control

Features

- Trench + Field Stop IGBT3 Technology
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- Very low stray inductance
- High level of integration
- Internal thermistor for temperature monitoring

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals both for power and signal for easy PCB mounting
- Low profile
- RoHS compliant

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		600	V
Ţ	Continuous Collector Current	$T_C = 25^{\circ}C$	100*	
I_{C}	Continuous Conector Current	$T_C = 80^{\circ}C$	75*	Α
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	150	
V_{GE}	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25^{\circ}C$	250	W
RBSOA	Reverse Bias Safe Operating Area	$T_{\rm J} = 150^{\circ}{\rm C}$	150A @ 550V	

^{*} Specification of IGBT device but output current must be limited to 40A at $Tc=80^{\circ}C$ and 65A at $Tc=25^{\circ}C$ not to exceed a connectors temperature greater than $120^{\circ}C$.

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

APTGT75X60T3G-Rev 1 October, 2012

All ratings @ $T_j = 25$ °C unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V, V_{CE} = 600V$				250	μΑ
V	Collector Emitter Saturation Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		1.5	1.9	V
$V_{CE(sat)}$	Confector Emitter Saturation Voltage	$I_{\rm C} = 75 {\rm A}$ $T_{\rm j} = 150 {\rm ^{\circ}C}$		1.7		·	
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_C = 600 \mu A$		5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE}$	= 0V			600	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
Cies	Input Capacitance	$\begin{array}{c} \color{red} \color{red} \color{blue} \color$			4620		
Coes	Output Capacitance				300		pF
C _{res}	Reverse Transfer Capacitance				140		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switchin	g (25°C)		110		ns
T_{r}	Rise Time	$V_{GE} = \pm 15V$	-		45		
$T_{d(off)}$	Turn-off Delay Time	$V_{Bus} = 300V$ $I_C = 75A$			200		
$T_{\rm f}$	Fall Time	$R_G = 4.7\Omega$			40		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switchin $V_{GE} = \pm 15V$	g (150°C)		120		
T_{r}	Rise Time	$V_{\text{Bus}} = 300V$	-		50		ns
$T_{d(off)}$	Turn-off Delay Time	$I_C = 75A$	-		250		
T_{f}	Fall Time	$R_G = 4.7\Omega$			60		
Eon	$V_{GE} = \pm 1$		$\Gamma_{\rm j} = 25^{\circ}{\rm C}$		0.35		mJ
Lon	Turn-on Switching Energy		$\Gamma_{\rm j} = 150^{\circ}{\rm C}$		0.6		1113
E_{off}	Turn-off Switching Energy	$I_C = 75A$	$\Gamma_{\rm j} = 25^{\circ}{\rm C}$		2.2		mJ
$\mathbf{L}_{ ext{off}}$	Turn-on Switching Energy	$R_G = 4.7\Omega$	$\Gamma_{\rm j} = 150^{\circ}{\rm C}$		2.6		1113

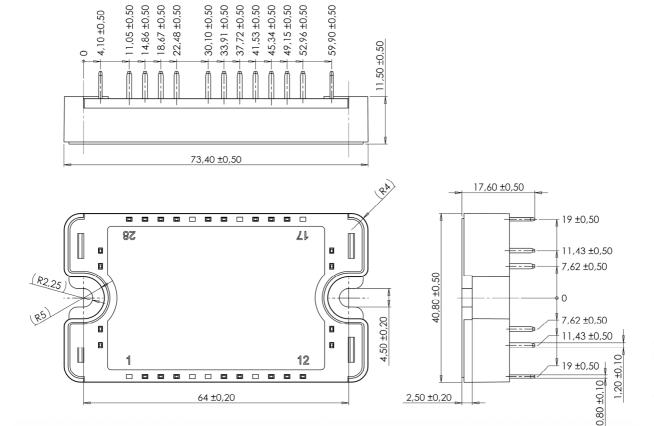
Reverse diode ratings and characteristics

Symbol	Characteristic	Test Conditions	Test Conditions		Typ	Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			600			V
I_{RM}	Maximum Reverse Leakage Current	V _R =600V	$T_j = 25^{\circ}C$			250	μА
1 _{RM}		V R-000 V	$T_{j} = 150^{\circ}C$			500	μΛ
I_F	DC Forward Current		Tc = 80°C		50		A
$V_{\scriptscriptstyle F}$	V _F Diode Forward Voltage	$I_F = 50A$ $V_{GE} = 0V$	$T_i = 25^{\circ}C$		1.6	2	V
V F	Blode I of ward Voltage		$T_i = 150^{\circ}C$		1.5		,
t_{rr}	Reverse Recovery Time		$T_j = 25^{\circ}C$		100		ns
чт	Reverse Recovery Time		$T_{j} = 150^{\circ}C$		150		113
0	Reverse Recovery Charge	$I_F = 50A$ $V_R = 300V$ $di/dt = 1800A/\mu s$	$T_j = 25^{\circ}C$		2.6		μС
Q_{rr}	Reverse Recovery Charge		$T_{\rm j} = 150^{\circ}{\rm C}$		5.4		μС
E_{r}	Payarga Pagayary Enargy	·	$T_j = 25$ °C		0.6		mJ
ı	Reverse Recovery Energy		$T_{j} = 150^{\circ}C$		1.2		1113

APTGT75X60T3G - Rev 1 October, 2012

2 - 6

Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).


Symbol	Characteristic	Min	Тур	Max	Unit
R ₂₅	Resistance @ 25°C		50		kΩ
B 25/85	$T_{25} = 298.15 \text{ K}$		3952		K

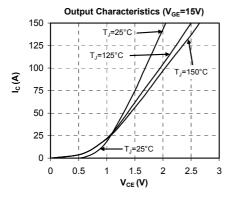
$$R_T = \frac{R_{25}}{\exp \left[B_{25/85} \left(\frac{1}{T_{25}} - \frac{1}{T} \right) \right]}$$
 T: Thermistor temperature R_T: Thermistor value at T

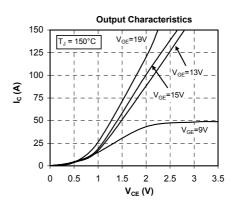
Thermal and package characteristics

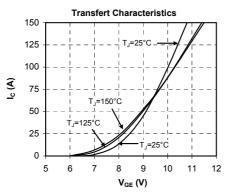
Symbol	Characteristic			Min	Тур	Max	Unit
R_{thJC}	Junction to Case Thermal Resistance		IGBT			0.6	°C/W
			Diode	Diode		1.42	C/ VV
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, 50/60Hz		4000			V	
T_{J}	Operating junction temperature range		-40 175				
T_{STG}	Storage Temperature Range		-40		125	°C	
$T_{\rm C}$	Operating Case Temperature			-40		100	
Torque	Mounting torque	To heatsink	M4	2		3	N.m
Wt	Package Weight					110	g

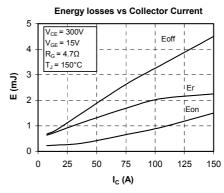
SP3 Package outline (dimensions in mm)

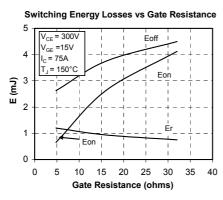
See application note 1901 - Mounting Instructions for SP3 Power Modules on www.microsemi.com

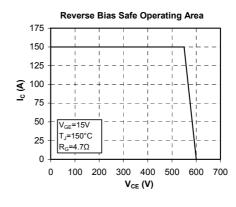

APTGT75X60T3G-Rev 1 October, 2012

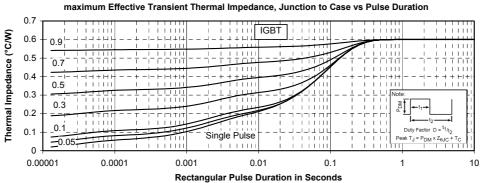

3 - 6

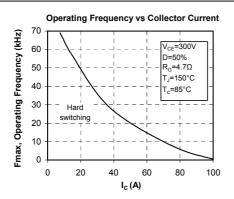

www.microsemi.com

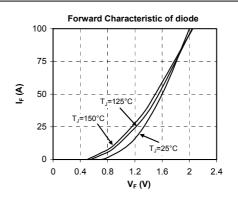


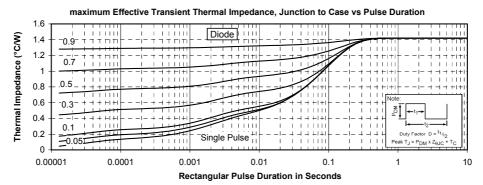

Typical Performance Curve











APTGT75X60T3G-Rev 1 October, 2012

5 - 6

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").

Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.

APTGT75X60T3G-Rev 1 October, 2012