GaAs Broadband SPDT Svitch

Features

- 802.11a + b/g Dual Band Applications
- Broadband Performance: DC - 6.0 GHz
- Low Insertion Loss: $0.75 \mathrm{~dB} @ 5.8 \mathrm{GHz}$
- High Isolation: 22 dB @ 5.8 GHz
- Low Cost 3 mm 12-Lead PQFN Package
- Fast Switching Speed: $0.5 \mu \mathrm{~m}$ GaAs PHEMT

Description

M/A-COM's MASWSS0070 is a broadband GaAs PHEMT MMIC SPDT switch available in a low cost 3 mm 12-lead PQFN package. The MASWSS0070 is ideally suited for applications where very small size and low cost are required.

Typical applications are for WLAN IEEE 802.11a and $802.11 \mathrm{~b} / \mathrm{g}$ PC cards and access points. Other applications include cordless phones and base stations. Designed for high power, this SPDT switch maintains high linearity up to 6.0 GHz .

The MASWSS0070 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ${ }^{1}$

Part Number	Package
MASWSS0070	Bulk Packaging
MASWSS0070TR	7 inch, 1000 piece reel
MASWSS0070TR-3000	13 inch, 3000 piece reel
MASWSS0070SMB	Sample Test Board (Includes 5 Samples)

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description
1	V $_{\mathrm{C} 1}$	Control 1
2	RF1	RF Port
3	GND	Ground
4	GND	Ground
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	RF2	RF Port
9	VC2	GND

2. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{C}}=0 \mathrm{~V} / 3 \mathrm{~V}, 8 \mathrm{pF}$ Capacitor ${ }^{3}$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss ${ }^{4}$	$\begin{aligned} & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$	dB dB dB dB	— — —	$\begin{aligned} & 0.55 \\ & 0.55 \\ & 0.65 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 1.0 \\ & 1.1 \end{aligned}$
Isolation	$2-6 \mathrm{GHz}$	dB	22	25	-
Return Loss	DC - 6 GHz	dB	-	20	-
IIP2	Two Tone, $+5 \mathrm{dBm} /$ Tone, 5 MHz Spacing $\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0.0 \mathrm{~V} / 3 \mathrm{~V} @ 2.4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 3 \mathrm{~V} @ 5.8 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 5 \mathrm{~V} @ 2.4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 5 \mathrm{~V} @ 5.8 \mathrm{GHz} \end{aligned}$	dBm dBm dBm dBm	— — —	$\begin{aligned} & 91 \\ & 81 \\ & 99 \\ & 91 \end{aligned}$	— — —
IIP3	Two Tone, $+5 \mathrm{dBm} /$ Tone, 5 MHz Spacing $\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0.0 \mathrm{~V} / 3 \mathrm{~V} @ 2.4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 3 \mathrm{~V} @ 5.8 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 5 \mathrm{~V} @ 2.4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 5 \mathrm{~V} @ 5.8 \mathrm{GHz} \end{aligned}$	dBm dBm dBm dBm	— — —	$\begin{aligned} & 52 \\ & 50 \\ & 53 \\ & 51 \end{aligned}$	— — —
Input P-1dB	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0.0 \mathrm{~V} / 3 \mathrm{~V} @ 2.4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 3 \mathrm{~V} @ 5.8 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 5 \mathrm{~V} @ 2.4 \mathrm{GHz} \\ & \mathrm{~V}_{\mathrm{C}}=0.0 \mathrm{~V} / 5 \mathrm{~V} @ 5.8 \mathrm{GHz} \end{aligned}$	dBm dBm dBm dBm	— — —	$\begin{aligned} & 32 \\ & 29 \\ & 37 \\ & 35 \end{aligned}$	— —
2nd Harmonic	$\begin{aligned} & 2.4 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+20 \mathrm{dBm} \\ & 5.3 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+20 \mathrm{dBm} \\ & 5.8 \mathrm{GHz}, \mathrm{P}_{\text {IN }}=+20 \mathrm{dBm} \end{aligned}$	dBc dBc dBc	-	$\begin{aligned} & -88 \\ & -91 \\ & -77 \end{aligned}$	-
3rd Harmonic	$\begin{aligned} & 2.4 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=+20 \mathrm{dBm} \\ & \text { 5.3 GHz, } \mathrm{P}_{\mathrm{IN}}=+20 \mathrm{dBm} \\ & 5.8 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=+20 \mathrm{dBm} \end{aligned}$	dBc dBc dBc	—	$\begin{aligned} & -87 \\ & -81 \\ & -85 \end{aligned}$	-
T-rise, T-fall	10\% to 90% RF and 90% to 10\% RF	nS	-	13	-
Ton, Toff	50\% control to 90\% RF, 50\% control to 10\% RF	nS	-	35	-
Transients		mV	-	14	-
Control Current	$\left\|\mathrm{V}_{\mathrm{C}}\right\|=3 \mathrm{~V}$	mA	-	10	25

3. For positive voltage control, external DC blocking capacitors are required on all RF ports.
4. Insertion loss can be optimized by varying the DC blocking capacitor value.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

3 mm 12-Lead PQFN

notes: 1. Reference Jedec mo-220, var. veed-1 for adoitional dimensional
REFERENCE S2083 APPLICATION NOTE FOR PCB FOOTPRINT INFORMATION. - ALL DIVENSIONS SHOWN AS INCHES/MM.

Evaluation Board

- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Application Schematic

Absolute Maximum Ratings ${ }^{6,7}$

Parameter	Absolute Maximum
Input Power @ 3 V Control	+32 dBm
Input Power @ 5 V Control	+34 dBm
Operating Voltage	+8.5 volts
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. M/A-COM does not recommend sustained operation near these survivability limits.

Application \#1:

Optimized for 802.11a (5-6 Ghz)

Qty	Description
3	Capacitor, 3.0 pF, 0402, SMT, 5\% (C1-C3)

Application \#2:
Optimized for 802.11b/g (2.4 GHz)

Qty	Description
3	Capacitor, 8.0 pF, 0402, SMT, 5\% (C1-C3)

Truth Table ${ }^{5}$

Control V1	Control V2	RFC- RF1	RFC-RF2
1	0	On	Off
0	1	Off	On

5. $1=+2.9 \mathrm{~V}$ to $+5 \mathrm{~V}, 0=0 \mathrm{~V} \pm 0.2 \mathrm{~V}$.

Typical Performance Curves with 0/3 V Control, 8 pF Capacitors

Insertion Loss

Return Loss

Isolation

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

