

PNP Silicon Low-Power Transistor Qualified per MIL-PRF-19500/485

DESCRIPTION

This family of 2N5415UA and 2N5416UA epitaxial planar transistors are military qualified up to a JANS level for high-reliability applications. The UA package is hermetically sealed and provides a low profile for minimizing board height. These devices are also available in the long-leaded TO-5, short-leaded TO-39 and low profile U4 packaging.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5415 through 2N5416 series
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/485. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant

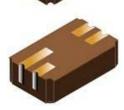
APPLICATIONS / BENEFITS

- General purpose transistors for low power applications requiring high frequency switching.
- Low package profile
- Military and other high-reliability applications

MAXIMUM RATINGS @ $T_A = +25 \text{ °C}$ unless otherwise noted

Parameters / Test Conditions	Symbol	2N5415UA	2N5416UA	Unit
Collector-Emitter Voltage	V _{CEO}	200	300	V
Collector-Base Voltage	V _{CBO}	200	350	V
Emitter-Base Voltage	V_{EBO}	6.0	6.0	V
Collector Current	Ι _C	1.0	1.0	А
Operating & Storage Junction Temperature Range	T_{J},T_{stg}	-65 to	°C	
Thermal Resistance Junction-to-Ambient	R _{eja}	234		°C/W
Thermal Resistance Junction-to-Solder Pad	$R_{\Theta JSP}$	80		°C/W
Total Power Dissipation@ $T_A = +25 \ ^{\circ}C^{(1)}$ @ $T_{SP} = +25 \ ^{\circ}C^{(2)}$	Ρτ	0.	75 2	W

Notes: 1. Derate linearly 4.29 mW/°C for TA > +25°C


Derate linearly 12.5 mW/°C for T_{SP} > +25 °C

Qualified Levels:

JAN, JANTX, JANTXV

and JANS

UA Package

Also available in:

TO-5 package (long-leaded) 2N5415 - 2N5416

TO-39 (TO-205AD) package (short-leaded) 2N5415S - 2N5416S

U4 package (surface mount) 2N5415U4 – 2N5416U4

MSC – Lawrence

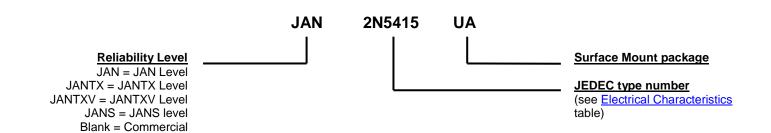
6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com


Downloaded from: http://www.datasheetcatalog.com/

MECHANICAL and PACKAGING

- CASE: Hermetically sealed ceramic package
- TERMINALS: Gold plate over nickel
- MARKING: Manufacturer's ID, date code, part number
- POLARITY: PNP (see package outline)
- TAPE & REEL option: Per EIA-481 (consult factory for quantities)
- WEIGHT: Approximately 0.12 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS						
Symbol	Definition					
C _{obo}	Common-base open-circuit output capacitance					
I _{CEO}	Collector cutoff current, base open					
I _{CEX}	Collector cutoff current, circuit between base and emitter					
I _{EBO}	Emitter cutoff current, collector open					
h _{FE}	Common-emitter static forward current transfer ratio					
V _{CEO}	Collector-emitter voltage, base open					
V _{CBO}	Collector-emitter voltage, emitter open					
V _{EBO}	Emitter-base voltage, collector open					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

OFF CHARACTERISTICS

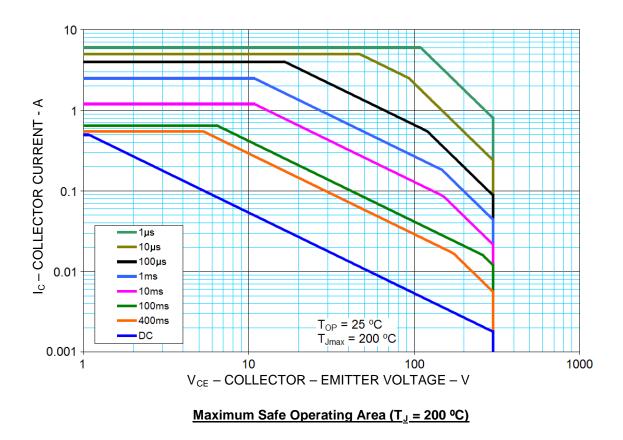
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage		N/	200		V
$I_{C} = 50 \text{ mA}, I_{B} = 5 \text{ mA},$ L = 25 mH; f = 30 – 60 Hz	2N5415UA 2N5416UA	V _{(BR)CEO}	200 300		v
Emitter-Base Cutoff Current		I _{EBO}		20	μA
$V_{EB} = 6.0 \text{ V}$		·EBO			P., 1
Collector-Emitter Cutoff Current $V_{CE} = 200 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}$ $V_{CE} = 300 \text{ V}, \text{ V}_{BE} = 1.5 \text{ V}$	2N5415UA 2N5416UA	I _{CEX}		50	μA
Collector-Emitter Cutoff Current $V_{CE} = 150 V$ $V_{CE} = 250 V$	2N5415UA 2N5416UA	I _{CEO1}		50	μA
Collector-Emitter Cutoff Current $V_{CE} = 200 V$ $V_{CE} = 300 V$	2N5415UA 2N5416UA	I _{CEO2}		1	mA
Collector-Base Cutoff Current $V_{CB} = 175 V$ $V_{CB} = 280 V$	2N5415UA 2N5416UA	I _{CBO1}		50	μA
V _{CB} = 200 V V _{CB} = 350 V	2N5415UA 2N5416UA	I _{CBO2}		500	μA
V _{CB} = 175 V, T _A = +150 °C V _{CB} = 280 V, T _A = +150 °C	2N5415UA 2N5416UA	I _{CBO3}		1	mA

ON CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 1 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, T_A = +150 \text{ °C}$	h _{FE}	30 15 15	120	
Collector-Emitter Saturation Voltage $I_{C} = 50 \text{ mA}, I_{B} = 5 \text{ mA}$	V _{CE(sat)}		2.0	V
Base-Emitter Voltage Non-Saturation $I_{C} = 50 \text{ mA}, V_{CE} = 10 \text{ V}$	V _{BE}		1.5	V

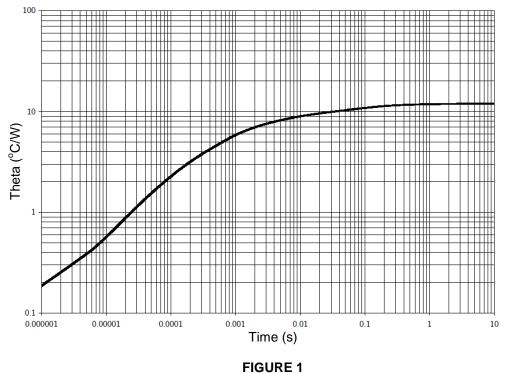
DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short- Circuit Forward Current Transfer Ratio $I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 5 \text{ MHz}$	h _{fe}	3	15	
Small-signal short Circuit Forward-Current Transfer Ratio $I_{C} = 5 \text{ mA}, V_{CE} = 10 \text{ V}, f \le 1 \text{ kHz}$	h _{fe}	25		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C _{obo}		15	pF

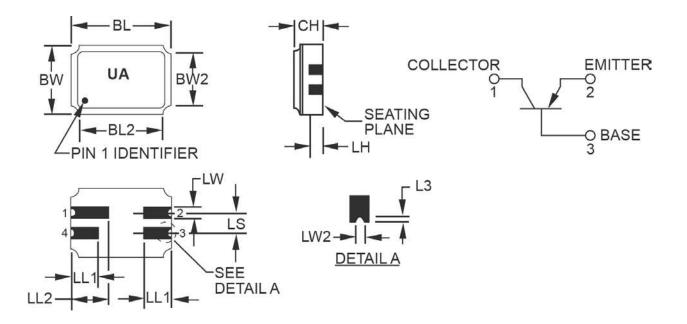

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Min.	Max.	Unit
Turn-On Time $V_{CC} = 200 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = 5 \text{ mA}$	t _{on}		1	μs
Turn-Off Time $V_{CC} = 200 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5 \text{ mA}$	t _{off}		10	μs


SAFE OPERATING AREA (See SOA graph below and <u>MIL-STD-750, method 3053</u>)

DC Tests
T_{C} = +25 °C, t_{P} = 0.4 s, 1 Cycle
Test 1
$V_{CE} = 10 \text{ V}, I_{C} = 0.3 \text{ A}$
Test 2
$V_{CE} = 100 \text{ V}, I_{C} = 30 \text{ mA}$
Test 3 (2N5415UA only)
$V_{CE} = 200 \text{ V}, I_{C} = 12 \text{ mA}$
Test 4 (2N5416UA only)
$V_{CE} = 300 \text{ V}, I_{C} = 5 \text{ mA}$


GRAPHS

<u>Thermal impedance graph ($R_{\Theta JA}$)</u>

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- 3. Dimension "CH" controls the overall package thickness. When a window lid is used, dimension "CH" must increase by a minimum of 0.010 inch (0.254 mm) and a maximum of 0.040 inch (1.020 mm).
- 4. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 5. Dimensions " LW2" minimum and "L3" minimum and the appropriate castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension " LW2" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.
- The co-planarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed 0.006 inch (0.15mm) for solder dipped leadless chip carriers.
- 7. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Dimensions								
Symbol	Inches			Millimeters			rs	Note
	Min		Max	Μ	lin	Ν	lax	
BL	0.215	0.225		5.	46 5		5.71	
BL2	-	0	.225		- 5		5.71	
BW	0.145	0	0.155		68	68 3		
BW2	-	0.155			- 3		3.93	
СН	0.061	0.075		1.	.55		.90	3
L3	0.003	0.007		0.08		C).18	5
LH	0.029	0.042		0.	.74 1		.07	
LL1	0.032	0.048		0.81 1		.22		
LL2	0.072	0	.088	1.	83 2		2.23	
LS	0.045	0	.055	1.	1.14		.39	
LW	0.022	0.028		0.56		0.71		
LW2	0.006	0.022		0.	15	C).56	5
	Pin no). 1			2		3	4
	Transist	tor Collec		ctor	Emit	ter	Base	N/C