IK2802

HIGH-POWER LED DRIVER

FEATURES

- 2 constant-current output channels
- Constant output current invariant to load voltage change
- Maximum output constant current per channel: 360 mA
- Thermal protection and flag
- Output current adjusted through an external resistor
- Schmitt trigger input
- 5V supply voltage
- Package type: Pb-free package with thermal pad

Small Outline Package

ORDERING INFORMATION

Device	Operating Tempera- ture Range	Package	Shipping	
IK2802DT	T _A = - 40 + 85 °C	SOP-8	Tape& Reel	

Current	Conditions	
Between Channels	Between ICs	
<±3%	<±6%	I _{OUT} = 40mA ~ 360 mA @ V _{DS} = 0.6V

PRODUCT DESCRIPTION

IK2802 is an instant On/Off LED driver for high power LED applications and exploits to enhance its output characteristics.

IK2802 provides users with 2-channel constant current ports. Users may adjust the output current up to 360 mA through an external resistor, Rext, which gives users flexibility in controlling the light intensity of LEDs. Also, users can precisely adjust LED brightness from 0% to 100% via output control with Pulse Width Modulation. Alternatively, IK2802 provides one-step current adjustment to make 25% of the output current via enabling the quarter pin (QT) as "Low".

Additionally, to ensure the system reliability, IK2802 is built with Thermal Protection (TP) function and thermal pad. The TP function protects IC from over temperature (165°C). Also, the thermal pad enhances the power dissipation. As a result, a large amount of current can be sunk safely in one package.

APPLICATIONS

- High-flux LED lighting
- Automotive interior lighting

Figure 1

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Pin Name	Function	
1	GND	Ground terminal for control logic and current sink	
2	R-EXT	Terminal used to connect an external resistor (R_{ext}) for setting up output current for all output channels	
3	QT	Set all the output current to 25% of the pre-set current when \overline{QT} is low. Default value is high.	
4,5	OUT0~OUT1	Constant current output terminals	
6	ERR	<u>Open</u> drain thermal error flag, when junction temperature is over 165 °C, ERR is going to low.	
7	OE	Output <u>ena</u> ble terminal when OE is active (low), the output pins are enabled; when OE is inactive (high), all output pins are turned OFF (blanked).	
8	VDD	5V supply voltage terminal	
-	Thermal Pad	Power dissipation terminals connected to GND*	

*To eliminate the noise influence, the thermal pad is suggested to be connected to GND on PCB. In addition, desired thermal conductivity will be improved, if a heat-conducting copper foil on PCB is soldered with thermal pad.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit		
Supply Voltage		V _{DD}	0~7.0	V	
Input Voltage		V _{IN}	-0.4~V _{DD} + 0.4	V	
Output Current		lout	360*	mA	
Sustaining Voltage		V _{DS}	-0.5~+27	V	
GND Terminal Current	I _{GND}	720	mA		
Power Dissipation* (On PCB, Ta=25 °C)		PD	0.8	W	
Thermal Resistance** SOP8		R _{th(j-a)}	33.39	°C/W	
Empirical Thermal Resistance* (On PCB, Ta=25 °C)			125		
Operating Junction Temperature		T _{j,max}	125	°C	
Operating Temperature		T _{opr}	-40~+85	°C	
Storage Temperature		T _{stg}	-55~+150	°C	

*Users must notice that the power dissipation (almost equaling to IouT x VDs) should be within the Safe Operation Area shown in Figure 7.

** Provided by factory.

*** Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Electrical Characteristics

Characte	eristics	Symbol	Condition		Min.	Тур.	Max.	Unit
Supply \	/oltage	V _{DD}	-		4.5	5.0	5.5	V
Sustaining Voltage at OUT pin		V _{DS}	OUT	0~OUT1	-	-	27.0	V
Output C	Current	IOUT	DC Te	est Circuit	40	-	360.0	mA
Input Voltage	"H" level	VIH	Ta=-4	40~85 ⁰C	1.6	-	V _{DD}	V
for OE, QT	"L" level	VIL	Ta=-4	40~85 ⁰C	GND	-	0.6	V
Output Leaka	age Current	ЮН	V _{OH} =27V		-	-	0.5	uA
ERR Outpu	it Voltage	V _{OL}	I _{OL} =	:+1.0mA	-	-	0.5	V
ERR Turn On	Impedance	R _{DS} ,(ON),ERR	Refer to the Electrical C	"Test Circuit for Characteristics"	300	600	800	Ohm
Output C	urrent 1	IOUT1	V _{DS} =0.8V	R _{ext} =1.8kOhm	-	340	-	mA
Current Skew 1		dlout/iout	I _{OL} =340mA V _{DS} =0.8V	R _{ext} =1.8kOhm	-	±1	±3	%
Output Current 2		IOUT2	V _{DS} =0.6V	R _{ext} =2.4kOhm	-	240	-	mA
Current Skew 2		dlout/iout	I _{OL} =240mA V _{DS} =0.6V	R _{ext} =2.4kOhm	-	±1	±3	%
Regulation of Output Current vs. Sustaining Voltage		%/dV _{DS}	V _{DS} within	1.0V and 3.0V	-	±0.1	-	%/V
Regulation of Output Current vs. Supply Voltage		%/dV _{DD}	$V_{\mbox{\scriptsize DD}}$ within 4.5V and 5.5V		-	±1	-	%/V
Pull-up Resistor		R _{N(up)}	OE, QT		300	600	800	kOhm
		T _{XI}	Shutdown	Temp.increasing	-	165	-	°C
I nermai Shutdov	vn temperature	T _{XD}	Reset	Temp.decreasing	-	155	-	°C
		I _{DD} (off) 1	R _{ext} =Open,C	OUT0~OUT1=Off	-	4	9	
	"OFF"	I _{DD} (off) 2	R _{ext} = OUT0~	2.4kOhm, ⁄OUT1=Off	-	6	10	
Supply Current		I _{DD} (off) 3	R _{ext} = OUT0~	1.8kOhm, ⁄OUT1=Off	-	7	12	mA
	"ON"	I _{DD} (on) 1	R _{ext} = OUT0~	2.4kOhm, ·OUT1=On	-	5	10	
		I _{DD} (on) 2	R _{ext} = OUT0~	1.8kOhm, ·OUT1=On	-	6	10	

TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS

Figure 2

SWITCHING CHARACTERISTICS

Characteristics		Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time("L" to "H")	OE-OUTn	t _{pLH}	V _{DD} =5.0V V _{DS} =1.0V	0.3	0.5	1	us
Propagation Delay Time("L" to "H")	OE-OUTn	t _{pHL}	V _{IH} =V _{DD} V _{IL} =GND	0.3	0.5	1	us
Pulse width	OE	t _{w(OE)}	R _{ext} =1630Ohm	1	-	-	us
Output Rise Time of OUT (turn off)		t _{or}	$V_L=4.0V$ $R_L=8.5Ohm$ $C_L=10pF$	0.3	0.5	1	us
Output Rise Time of OUT (turn on)		t _{of}		0.3	0.5	1	us

TEST CIRCUIT FOR SWITCHING CHARACTERISTICS

Figure 3

APPLICATION CIRCUITS

- VLED^{*} R3*** C2 100uF R2*** LED21 LED11 R1 Y C1 0.1uF D1 U1 5.1V GND VDD 2 7 R-EXT ŌĒ LED2n LED1n 3 6 QT ERR Rext 5 4 OUTO OUT1 V_{DS} Vps
- (a) IK2802 application circuit, where V_{LED} and V_{DD} share a single voltage source.

* V_{LED} > V_{DS} + V_{F,LED} x n; V_{F,LED}: Forward voltage of LED; n: LED count ** R1 = (V_{LED} - 5.1V) / I_{DD}; refer to Electrical Characteristics for I_{DD} *** R2 = R3 = [V_{LED} - V_{DS} - (V_{F,LED} x n)] / I_{LED}

(b) IK2802 Application Circuit with dimming control by PWM signal, where V_{LED} and V_{DD} use voltage sources separately.

* VLED = VDS + VFLED x n; VFLED: Forward voltage of LED; n: LED count

Figure 4

Constant Current

In LED lighting applications, IK2802 provides nearly no variation in current from channel to channel and from IC to IC. This can be achieved by:

1) The maximum current variation between channels is less than $\pm 3\%$, and that between ICs is less than $\pm 6\%$.

2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (VF). This guarantee s LED to be performed on the same brightness as user's specification.

Figure 5

Setting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following Figure 6 and Table1.

Figure 6

lout(mA)	Rext(kohm)
360	1.60
280	2.07
200	2.89
120	4.88
40	16.14

Table1

Package Power Dissipation (PD)

The maximum power dissipation, $P_D(max) = (T_{j,max} - T_a) / R_{th(j-a)}$, decreases as the ambient temperature increases.

Figure 7

The maximum allowable package power dissipation is determined as $P_D(max) = (T_{j,max} - T_a) / R_{th(j-a)}$. When 2 output channels are turned on simultaneously, the actual package power dissipation is $P_D(act) = (I_{DD} \times V_{DD}) + (I_{OUT} \times D_{UT} \times V_{DS} \times 2)$. Therefore, to keep $P_D(act) \le P_D(max)$, the allowable maximum output current as a function of duty cycle is:

$$\begin{split} & \text{IOUT} = \left\{ \left[\left(Tj - Ta \right) / R_{\text{th}(j \cdot a)} \right] - \left(\text{IDD} \ x \ \text{VDD} \right) \right\} / \ \text{VDS} / \ \text{Duty} / \ 2, \\ & \text{where} \ Tj = 125^{\circ}\text{C}; \\ & \text{Duty} = t_{\text{ON}} / \ T; \end{split}$$

ton: the time of LEDs turning on; T: OE signal period

*Note: The empirical thermal resistor $R_{th(j-a)} = 125 \text{ °C/W}$ is based on the following structure.

The PCB area L2xW2 is 4 times of the IC's area L1xW1. The thickness of the PCB is 1.6mm, copper foil 1 Oz. The thermal pad on the IC's bottom has to be mounted on the copper foil

TP Function (Thermal Protection)

Thermal protection turns off the output current when the junction temperature rises to approximately 165°C, al-

lowing the device to cool and the thermal error flag, ERR, goes low simultaneously. When the junction temperature cools to approximately 155°C, the output current is turned on again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This limits the dissipation of the driver, protecting it from damage due to overheating.

Load Supply Voltage (VLED)

IK2802 is designed to operate with adequate V_{DS} to achieve constant current. V_{DS} together with I_{OUT} should not exceed the package power dissipation limit, P_{D(max)}.

As in Figure 8, $V_{DS} = V_{LED} - V_F$, and V_{LED} is the load supply voltage. $P_{D(act)}$ will be greater than $P_{D(max)}$, if V_{DS} drops too much voltage on the driver. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP} .

A voltage reducer lets $V_{DS} = (V_{LED} - V_F) - V_{DROP}$.

Resistors can be used in the applications as shown in Figure 8.

Figure 8

PACKAGE DIMENSIONS

SOP 8

Note: The unit for the outline drawing is mm.

