

18V Low Current Consumption 350mA CMOS Voltage Regulator

Description

The ACE5019A series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The ACE5019A series can deliver 300mA output current and allow an input voltage as high as 18V. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

Features

Low Quiescent Current: 2μA

Operating Voltage Range: 2.5V∼18V

Output Current: 350mA

Low Dropout Voltage: 160mV@100mA(V_{OLT}=3.3V)

Output Voltage: 1.2~5.0V

High Accuracy: ±2%/±1% (Typ.)

High Power Supply Rejection Ratio: 65dB@1kHz

Low Output Noise:

27xV_{OUT} μV_{RMS} (10Hz~100kHz)

Excellent Line and Load Transient Response

• Built-in Current Limiter, Short-Circuit Protection

Application

- Cordless Phones
- Radio control systems
- Laptop, Palmtops and PDAs
- Single-lens reflex DSC
- PC peripherals with memory
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems
- LAN Cards
- Ultra Low Power Microcontroller

18V Low Current Consumption 350mA CMOS Voltage Regulator

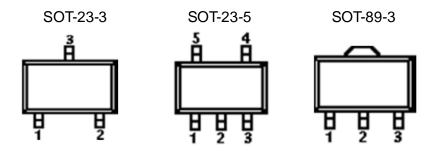
Absolute Maximum Ratings ⁽¹⁾ Unless otherwise specified, T_A=25°C

Parameter		Symbol	Max	Unit
Input Voltage ⁽²⁾	Input Voltage ⁽²⁾		-0.3~24	V
Output Voltage ⁽²⁾		V _{out}	-0.3~10	V
CE PIN Voltage		V_CE	-0.3~24	V
Output Current		l _{ουτ}	600	mA
	SOT-23-3		0.4	
Power Dissipation	SOT-23-5	Pd	0.4	W
	SOT-89-3		0.6	
Operating Junction Temperatu	ıre Range	T_{opr}	- 40~125	°C
Storage Temperature		T_{stg}	- 40~125	°С
Lead Temperature(Soldering	g, 10 sec)	T_{solder}	260	°C
(4)		Human Body Model -(HBM)	8	kV
ESD rating "		Machine Model- (MM)	400	V

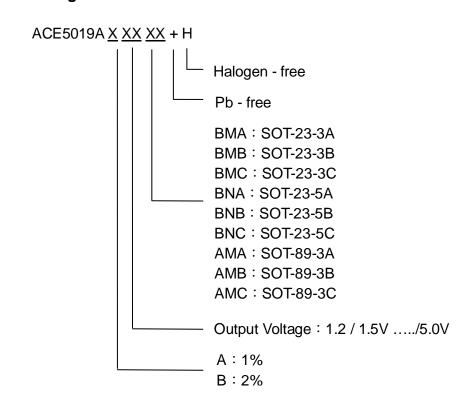
Note:

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3) The ACE5019A includes over temperature protection that is intended to protect the device during momentary overload. Junction temperature will exceed 125°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.
- (4) ESD testing is performed according to the respective JESD22 JEDEC standard.

 The human body model is a 100 pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

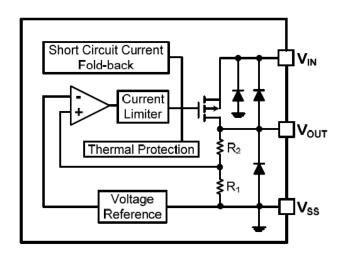

Recommended Operating Conditions

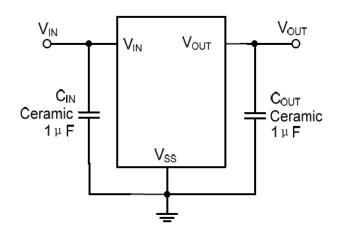
Parameter	MIN.	MAX.	Units
Supply voltage at V _{IN}	2.5	18	V
Operating junction temperature range, Tj	-40	125	°C
Operating free air temperature range, TA	-40	85	°C

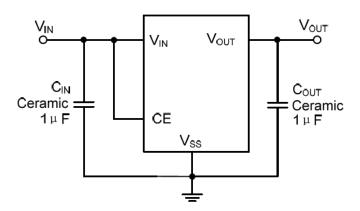

18V Low Current Consumption 350mA CMOS Voltage Regulator

Packaging Type

S	SOT-23-3		S	OT-23-	·5	SOT-89-3		-3	Pin Name	Function	
Α	В	С	Α	В	С	Α	В	С	Pin Name	runction	
1	3	3	2	1	2	1	2	2	V _{SS}	Ground	
2	2	1	5	3	5	3	1	3	V _{out}	Output	
3	1	2	1	2	1	2	3	1	V _{IN}	Power input	
					3				CE	Chip Enable Pin	
			3/4	4/5	4				NC	No Connection	


Ordering information





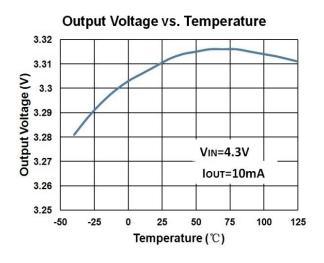
Block Diagram

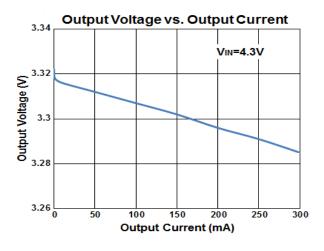
Typical Application Circuit

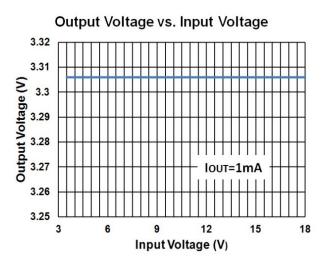
Electrical Characteristics

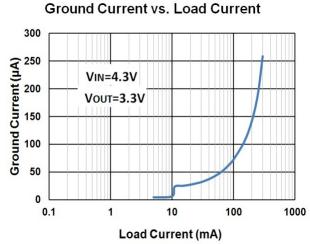
 $(V_{IN}=V_{OUT}+1V, C_{IN}=C_{OUT}=1\mu F, T_A=25$ °C, unless otherwise specified)

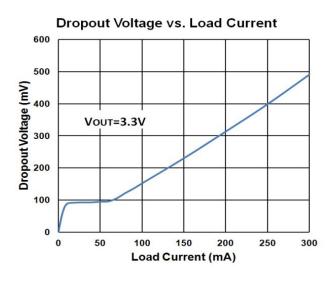
Parameter	Symbol	Conditions		Min	Typ ⁽¹⁾	Max	Units
Input Voltage	V _{IN}			2.5		18	V
Output Voltage Range	V _{out}			1.2		5	V
DC Output Acquire ov		I _{OUT} =1mA		-2		2	%
DC Output Accuracy				-1		1	%
Dropout Voltage	V _{dif} (2)	I _{ООТ} =100 V _{ООТ} =3			160		mV
Supply Current	I _{ss}	I _{OUT} =	0A		2	5	μΑ
Line Regulation	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$	I _{OUT} =10 V _{OUT} +1V≤			0.01	0.3	%/V
Load Regulation	Δ V $_{OUT}$		$V_{IN} = V_{OUT} + 1V,$ $1 \text{mA} \le I_{OUT} \le 100 \text{mA}$		10		mV
Temperature Coefficient	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta T_{A}}$	I _{OUT} =10mA, -40°C <t<sub>A<125°C</t<sub>			50		ppm
Output Current Limit	I _{LIM}	V_{OUT} =0.5x $V_{OUT(Normal)}$, V_{IN} = 5 V		350	500		mA
Short Current	I _{SHORT}	V _{out} =	:V _{ss}		25		mA
			100Hz		80		
Power Supply Rejection		I _{out} =50mA	1kHz		65		dB
Ratio	PSRR		10kHz		50		
			100kHz		45		
Output Noise Voltage	V_{ON}	BW=10Hz to	o 100kHz		27 x V _{OUT}		μV_{RMS}
Thermal Shutdown Temperature	T _{SD}				150		°C
Thermal Shutdown Hysteresis	ΔTS_{D}				20		°C
Standby Current	I _{STBY}	CE = V _{SS}				0.2	μA
CE "High" Voltage	V _{CE} "H"			1.5		V _{IN}	V
CE "Low" Voltage	V _{CE} "L"					0.3	V
C _{OUT} Auto-Discharge Resistance	R _{DISCHRG}	V_{IN} =5V, V_{OUT} =3.0V, V_{CE} = V_{SS}			150		Ω

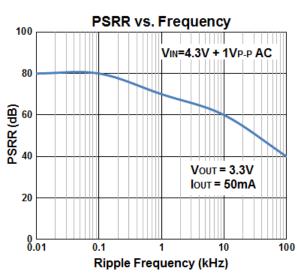

Note:

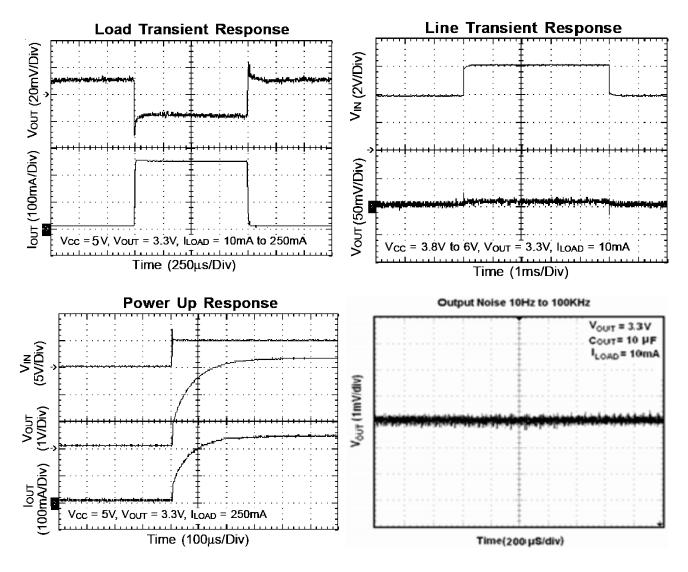

- (1) Typical numbers are at 25°C and represent the most likely norm.
- (2) V_{dif} : The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).






Typical Performance Characteristics





18V Low Current Consumption 350mA CMOS Voltage Regulator

7

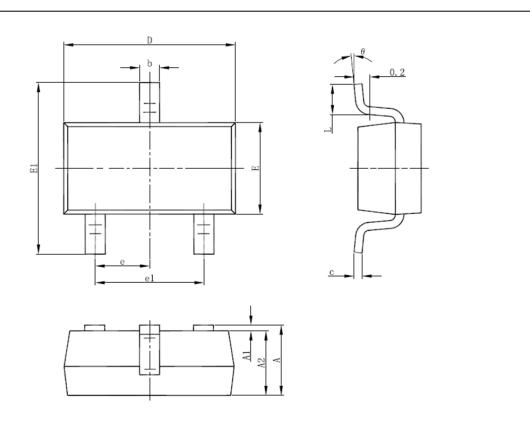
Application Information Selection of Input/ Output Capacitors

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the guiescent current.

A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

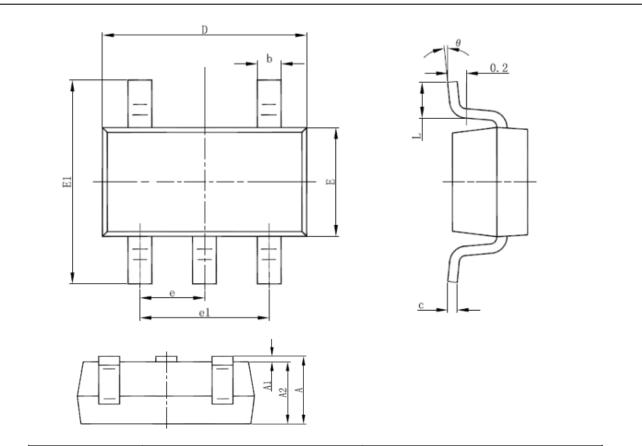
Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step. (See "Ceramic Input Capacitors Can Cause Overvoltage Transients"——Linear Technology application note 88, March 2001)

Many types of capacitors can be used for input bypassing; however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a 3Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.


The LDO also requires an output capacitor for loop stability. Connect a 1µF tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

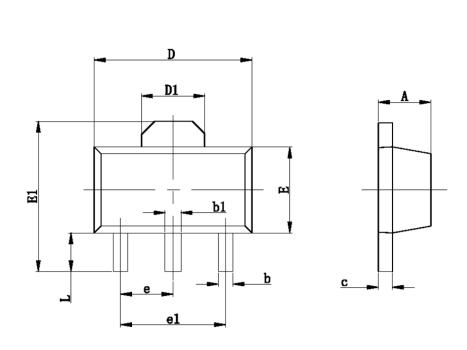
Packing Information

SOT-23-3


Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Packing Information

SOT-23-5


Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E 1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Packing Information

SOT-89-3

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.55	0 REF	0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.50	0 TYP	0.060 TYP		
e1	3.000 TYP		0.11	8 TYP	
L	0.900	1.200	0.035	0.047	

18V Low Current Consumption 350mA CMOS Voltage Regulator

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/