Keysight Technologies Infiniium 9000 Series Oscilloscopes

Engineered for broadest measurement capability

Table of Contents

If You Haven't Purchased a Keysight Scope Lately, Why Should You Consider One Now?)3
What Makes The Infiniium 9000 Series The Go-To Scope For A Whole Range of Test And Debug Challenges?)4
It's Three Instruments in One)5
\Widest Range of Debug and Compliance Software Applications: Serial Protocol-Level)9
Widest Range of Debug and Compliance Software Applications: Serial Protocol and FPGA	10
Widest Range of Debug and Compliance Software Applications: Serial Physical-Layer	11
Widest Range of Debug and Compliance Software Applications: InfiniiScan and Jitter Analysis	12
Widest Range of Debug and Compliance Software Applications: Viewing and Analysis	13
Infiniium 9000 Series Applications and Upgrades	14
Keysight Portfolio Compare	15
Keysight Infiniium 9000 Series Oscilloscopes	16
Infiniium 9000 Series Performance Characteristics	19
Infiniium 9000 Series Ordering Information	27
Upgrades	29
Keysight Oscilloscopes	30

If You Haven't Purchased a Keysight Scope Lately, Why Should You Consider One Now?

If you're like most engineers, you never know what your next project will demand from you. You need an oscilloscope that can adapt to a wide variety of debug and test challenges.

That's why we designed our new Infiniium 9000 Series oscilloscope to meet a full range of needs.

First we built in the powerful features you'd expect in any Infiniium scope. Then we engineered the scope for the broadest measurement capability, so it would be the most indispensable tool in your arsenal. There is no better way to experience the superiority of the Infiniium 9000 Series scopes than to see it. Contact Keysight Technologies, Inc. today to request an evaluation.

There is no better way to experience the superiority of the Infiniium 9000 Series scopes than to see it. Contact Keysight today to request an evaluation. Or visit: www.keysight.com/find/9000

The Infiniium 9000 Series offers bandwidths up to 4 GHz. Each model, equipped with a large 15" XGA LCD display, comes in a whisper-quiet package that is just 9" (23 cm) deep and weighs only 26 pounds (11.8 kg).

Model	Analog bandwidth	Analog sample rate 4-channel/2-channel	Standard memory 4-channel/2-channel	Scope channels	Logic channels
DS09064A	600 MHz	5 GSa/s/10 GSa/s	20 Mpts/40 Mpts	4	-
MS09064A	600 MHz	5 GSa/s/10 GSa/s	20 Mpts/40 Mpts	4	16
DS09104A	1 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	-
MS09104A	1 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	16
DS09254A	2.5 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	-
MS09254A	2.5 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	16
DS09404A	4 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	-
MS09404A	4 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	16

What Makes The Infiniium 9000 Series The Go-To Scope For A Whole Range of Test And Debug Challenges?

It's three instruments in one

- 1. Scope: The powerful features of our Infiniium Series oscilloscopes coupled with superior specifications give you precise signal representation.
- 2. Logic analyzer: Fast deep-memory digital channels let you see critical data values and timing relationships.
- 3. Protocol analyzer: The world's first scope-based protocol viewer with multi-tab viewing. Quickly drill and move between protocol and physical layers.

It offers the widest range of debug and compliance application software

Need accurate answers to your measurement questions? The Infiniium 9000 Series offers the largest range of applicationspecific software for debug, analysis and compliance testing. Which application is right for you? Take a look at the possibilities on pages 7 to 12.

It's sized to fit your environment

Limited bench space? It has a small footprint and thin profile Height: 12.9" (33 cm); width: 16.8" (43 cm); depth: just 9" (23 cm)

Need to share the scope? It's light weight: 26 lbs. (11.8 kg)

Need to see lots of signals? It has the biggest screen: 15" (23 cm) XGA

It's Three Instruments in One

1. Oscilloscope

High-performance scope channels ensure superior viewing of signals under test. All models incorporate a powerful, feature-packed Infiniium oscilloscope with responsive deep memory.

Up to 4 GHz bandwidth and 20 GSa/s high sample rates guarantee you'll see a precise representation of the analog characteristics of signals you're testing.

Mask tests, histograms and a wide variety of functions such as the gated FFTs in the above image provide deep signal analysis.

Responsive deep memory

With standard 20 Mpts/ch, and up to 1 Gpts/ch of memory, you can capture long time periods while retaining fast sample rates. Fast update rates mean your scope stays responsive with deep memory on, ensuring precise representation of analog signals.

Advanced triggering

Advanced triggers are essential when you are investigating suspected problems. Infiniium offers a full range of advanced triggers to help you isolate and capture the condition you need to characterize. The 9000 Series simplifies trigger setups by using intuitive dialog boxes with descriptive graphics.

It's Three Instruments in One (Continued)

1. Oscilloscope (Continued)

Drag and drop measurements

It's simple: drag an icon from the measurement bar and drop it on the cycle you want to measure. You can make up to ten measurements on your waveforms. All of the measurements appear at the bottom of the display with statistics and are color-coded to the channel you are measuring.

2. Logic analyzer

MSO models add 16 high-speed timing channels with standard 128 Mpts digital memory, allowing you to retain fast 2 GSa/s sample rates over long periods of time.

Use the timing channels to evaluate control signal relationships and data buses up to 16 bits wide. Use symbols to more quickly interpret waveforms.

Designing with Xilinx FPGAs? Use the FPGA dynamic probe for rapid internal FPGA measurements. Using I²C, SPI, RS-232, or low- or full-speed USB? Use the digital channels to acquire and decode these buses, preserving analog channels for other time-correlated measurements.

It's Three Instruments in One (Continued)

2. Logic analyzer (Continued)

Digital and mixed-signal trigger

Trigger on and display individual signals or buses. With precise time-correlation between analog and digital signals, confidently trigger across any combination of analog and digital signals simultaneously.

Industry's only segmented memory for both analog and digital channels

Capture short bursts without consuming memory during periods when the trigger condition is not met. Keysight is the only vendor that supports segmented memory capture on both analog and digital channels.

Waveform and listing windows

View buses as waveforms or easily follow events in the listing window expandable to the entire display. A blue tracking marker provides time-correlation between waveform and listing displays.

NOTION W	Indow 1		2110010					6
-	1.00 V/ 1.12 V	1.00 V/ 2.28	V 🕘 meretaren		⊕ ¤			
nev								5.12 V
fea								3.12 V
-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_			2.12 V
len				and the second		and the second second		1.12 V
1 (T)							The second	120 mV
								-880 mV
								-1.88 V
								-2.88 V
-500	με -400 με -300	με -200 με	100 µs 0.0 s	100 µs	200 µs	300 µs	400 µs	500 µs 1
01								
02		The Party of the P		Contractor in Contra				
		VAVEYAVEYAVEYAVEY		A	VEV A	VEVAN	VEV C	VEVE
-500 µs	-400 µs -300 µs	-200 µs -10	0.0 s	100 µs	200 µs	300 µs	400 µs	500 ps b1
	0 us/ 0.0 s							
Dipital Listing	0 0							
Digital Listin Index	9 Start Time	Delta Time	Bus 1		_	_	_	C
Diokal Listin Index 15	9 Start Time -170.3 us	Delta Time 20.2 µs	Bus 1 0x4			_	_	
Digital Listing Index 96 97	0 Start Time -170.3 µs -150.1 µt	Delta Time 20.2 µs 20.3 µs	Bus 1 0x4 0x5				-	-
Dipital Listing Index 96 97 98	5 Start Time -170.3 us -150.1 us -129.8 µs	Delta Time 20.2 µs 20.3 µs 21.2 µs	Bus 1 0x4 0x6 0x4				_	- C
Digital Listing Index 96 97 98 99		Dolta Time 20.2 µs 20.3 µs 21.2 µs 11.2 µs	Bus 1 0x4 0x6 0x4 0x5					Î
Digital Listing Index 96 97 98 99 99 100	9 Start Time -170.3 us -150.1 us -129.8 us -108.6 us -97.4 us	Dolta Time 20.2 µs 20.3 µs 21.2 µs 11.2 µs 21.3 µs	805 1 0x4 0x6 0x4 0x5 0x4					
Digital Listing Index 96 97 98 99 100 101	9 Start Time -170.3 US -150.1 US -108.6 US -108.6 US -97.4 US -76.1 US	Dolta Time 20.2 µs 20.3 µs 21.2 µs 21.3 µs 21.3 µs 19.9 µs	Bus 1 0x4 0x6 0x4 0x5 0x4 0x5					
Dipital Listin Index 96 97 98 99 100 101 102	0 Start Time -170.3 us -150.1 us -129.8 us -108.6 us -97.4 us -76.1 us -56.2 us	Osita Time 20.2 µs 20.3 µs 21.2 µs 21.3 µs 21.3 µs 19.9 µs 40.7 µs	805 1 0x4 0x6 0x5 0x4 0x5 0x4 0x6 0x6 0x4					
Origital Listing Index 95 97 98 99 100 101 102 103	2 Start Time -170.3 µs -150.1 µs -129.8 µs -108.6 µs -97.4 µs -76.1 µs -56.2 µs -35.5 µs	Dolta Time 20.2 µs 20.3 µs 21.2 µs 21.2 µs 21.3 µs 21.3 µs 19.9 µs 40.7 µs 220.0 µs	8051 0x4 0x5 0x4 0x5 0x5 0x4 0x6 0x6 0x6					-
Cipital Listing Index 96 97 98 99 99 100 100 100 100 101 102 103 104	2 Start Time -170.3 us -150.1 us -129.8 us -108.6 us -97.4 us -76.1 us -56.2 us -155.5 us 13.5 us -13.5 us	Delta Time 20.2 µs 20.3 µd 21.2 µd 11.2 µd 19.9 µd 40.7 µd (29.0 µs 67.9 µd 67.9 µd	8us 1 0x4 0x5 0x5 0x4 0x5 0x4 0x6 0x6 0x4 0x6 0x6 0x6 0x6 0x6 0x6 0x6 0x6 0x6 0x6					

It's Three Instruments in One (Continued)

3. Protocol analyzer

Does your design include a serial bus that is a key point for testing or debugging? Add protocol analysis capability to your scope for:

- CAN
- PCle
- digRF
- FlexRay
- SATA

 $- |^{2}C$

- LIN - USB
- JTAG
- SPI
- MIPI D-PHY
- 8B/10B

- RS-232/UART

Quickly move between physical and protocol layer information using the time-correlated tracking marker. Display protocol content using waveform symbols and the industry's first multi-tab protocol viewer. The packets tab shows a high level view of the packet over time.

Use any combination of analog or digital channels for serial protocol decode, with up to four buses decoded simultaneously.

Header tab shows packets in a databook format. Hovering on any tab reveals additional detail.

Widest Range of Debug and Compliance Software Applications: Serial Protocol-Level

I²C/SPI serial trigger and decode (N5391B or Option 007 on newscope purchases)

This application displays real-time time-aligned decode of I²C and SPI serial buses. Hardware-based triggering means triggering reliably, even on the most infrequent events.

This application works on all models and can use any combination of scope or logic acquisition channels. For more information: www.keysight.com/ind/9000_I²C-SPI

RS-232/UART serial decode and trigger (N5462B or Option 001 onnew scope purchases)

This application eliminates the need to manually decode bus trafic. Using data captured on the scope or logic channels, the application lets you easily view the information sent over an RS-232 RS-422, RS-485 or other UART serial buses.

Display real-time time-aligned decode of transmit and receive lines. Hardware-based triggering means triggering reliably, even on the most infrequent events.

This application works on all models and can use any combination of the scope or logic acquisition channels. For more information: www.keysight.com/find/9000_RS-232

CAN, LIN and FlexRay triggering and decode (N8803B or Option 008 on new scope purchases)

Trigger on and view both protocol layer information and physical layer signal characteristics for CAN, LIN and FlexRay buses. Numerical decode values are automatically displayed and synchronized below the captured signal or seen in protocol viewer.

Hardware-based triggering for CAN and LIN means triggering reliably, even on the most infrequent events. FlexRay uses software-based protocol triggering.

This application works on all models and can use any combination of scope or logic acquisition channels. For more information: www.keysight.com/find/9000_CAN

JTAG (IEEE 1149.1) triggering and decode (N8817B or Option 042 on new scope purchases)

This application displays real-time time-aligned decode of JTAG (IEEE 1149.1) TDI and TDO signals. The application eliminate the dificult task of manually determining JTAG TAP controller states, instruction and data register decode, and lags error conditions. The application includes scan chain description features including the ability to import .bsdl iles for each device and displays device names and opcodes in the protocol listing.

This application works on all models and can use any combination of scope or logic acquisition channels. For more information: www.keysight.com/find/9000_JTAG

Trigger and view on-screen serial decode of ${\rm I}^2 C$ packets.

Trigger on and decode RS-232/UART transmission.

Trigger on and decode CAN, LIN and FlexRay serial packets.

Import BSDL files and decode JTAG scan chain activity.

Widest Range of Debug and Compliance Software Applications: Serial Protocol and FPGA

USB serial trigger and protocol viewer (N5464B or Option 005 on new scope purchases)

Trigger on and quickly view USB packets, payload, header and detail information. Powerful time-correlated views of waveform and symbol, to the bit level, make it easy to isolate communication faults to logic or analog sources.

USB hardware-based triggering means triggering reliably, even on the most infrequent events.

Low and full-speed USB protocol is supported on digital and scope channels of all models.

High-speed USB protocol is supported on scope channels of 1 GHz, 2.5 GHz and 4 GHz models. For more information: www.keysight.com/find/9000_USB

MIPI[®] D-PHYSM serial decode and trigger (N8802B or Option 019 on new scope purchases)

This application eliminates the need to manually decode bus traffic. Using data captured on the scope, the application lets you easily view the information sent over MIPI serial buses.

The application also enables software-based protocol triggering.

This application works on all 4 GHz models and can use any combination of the scope channels. For more information: www.keysight.com/find/N8802B

PCI Express[®] serial trigger and protocol viewer (N5463B or Option 006 on new scope purchases)

This application provides protocol-level triggering and viewing of a PCIe[®] lane. Quickly view packets, payload, header, and detail information. Powerful time-correlated views of waveform, symbol, character, link and transaction layer packet data down to the bit level make it easy to isolate communication faults to logic or analog sources.

Trigger on and view CRC, 8B/10B and disparity errors. Hardware-based triggering for PCIe means triggering reliably, even on the most infrequent events.

This application is supported on scope channels of 4 GHz models. For more information: www.keysight.com/find/9000_PCI

SATA triggering and decode (N8801A or Option 038 on new scope purchases)

Trigger on and view both protocol layer information and physical layer signal characteristics for SATA 1 (1.5 GB/s). Numerical decode values are automatically displayed and synchronized below the capture signal or seen in protocol viewer.

This application enables software-based protocol triggering. This application works on 4 GHz and can use any combination of scope channels. For more information: www.keysight.com/find/N8801A

Trigger on and decode USB packets

Trigger on and decode MIPI packets.

Trigger on and decode PCIe serial packets.

Trigger on and decode SATA serial packets.

Widest Range of Debug and Compliance Software Applications: Serial Physical-Layer

USB 2.0 compliance testing (N5416A or Option 029 on new scope purchases)

Quickly determine USB compliance with this USB-IF recognized solution. A setup wizard guides you through test selection and coniguration.

This application is USB-IF approved and supported on all 2.5 GHz and 4 GHz models. For more information: www.keysight.com/find/9000_USB-compliance

DDR1 and LPDDR/DDR2 and LPDDR2/DDR3 compliance testing (U7233A/N5413B/U7231B or Options 031/032/033 on new scopepurchases) or N5459A Opt 001 for all memory applications

Quickly and easily evaluate and characterize your memory designs. Automated testing based on JEDEC speciications saves time. The application also includes additional debug and compliance capabilities.

This application is supported on all models. However, the DDR technology you are using may dictate the minimal bandwidth required for your scope. For more information: www.keysight.com/find/9000_DDR

Ethernet compliance testing (N5392B or Option 021 on new scope purchases)

Perform a wide range of electrical tests for 10-, 100-, and 1000-Base-T systems. An N5395C test ixture and N5396A jitter test cable speed compliance testing.

This application is supported on all 600 MHz and higher bandwidth models. For more information: www.keysight.com/find/9000_ethernet

MIPI compliance testing (U7238B or Option 035 on new scope purchased)

Quickly validate your embedded D-PHY data link for CSI and DSI architectures. This software performs a wide range of tests required for meeting MIPI D-PHY physical layer requirements.

This application is supported on analog channels of all 4 GHz models. For more information: www.keysight.com/find/U7238B

Check for USB compliance.

Test DDR memory.

Validate Ethernet compliance.

Check for MIPI compliance.

Widest Range of Debug and Compliance Software Applications: InfiniiScan and Jitter Analysis

InfiniiScan event identiication (N5415B or Option 009 on new scope purchases)

Rapidly trigger on complex events and identify signal integrity issues. This innovative software quickly scans through thousands of acquired waveform cycles and isolates anomalous signal behavior. Up to eight zones across channels are available.

This application is supported on all models. For more information: www.keysight.com/find/infiniiScan

EZJIT analysis software (E2681A or Option 002 on new scope purchases)

Quickly characterize and evaluate most commonly needed jitter measurements, including cycle-cycle, N-cycle, period, time-interval, error, setup and hold time, histograms, measurement trending and jitter spectrum.

This application is supported on all models. For more information: www.keysight.com/find/EZJIT

EZJIT Plus analysis software (N5400A or Option 004 on new scopepurchases. To upgrade from EZJIT to EZJIT Plus, order N5401A.)

EZJIT Plus adds additional compliance views and an expanded measurement setup wizard to simplify and automate RJ/DJ separation for testing against industry standards.

This application is supported on all models. For more information: www.keysight.com/find/EZJITPlus

EZJIT Complete analysis software (N8823B or Option 070 on newscope purchases. To upgrade from EZJIT Plus to EZJIT Complete, order N8813A.)

EZJIT Complete includes all of the advanced jitter analysis capabilities of EZJIT and EZJIT Plus, and adds advanced analysis of the vertical noise affecting the ones and zeros of your real-time eye. Decomposition of vertical noise provides key insight into degradation of your eye height. In providing advanced decomposition of both horizontal jitter and vertical noise components of your signals, EZJIT Complete represents the most comprehensive analysis software available.

This application is supported on all models and is standard on DSA models. For more information: www.keysight.com/ind/EZJITComplete

Identify signal integrity issues with InfiniiScan Zone – Qualify triggering.

Conduct jitter analysis.

Analyze jitter plus RJ/DJ separation.

EZJIT Complete.

Widest Range of Debug and Compliance Software Applications: Viewing and Analysis

High-speed serial data analysis software (N5384A or Option 003 on new scope purchases)

Quickly validate signal integrity for high-speed serial interfaces with embedded clocks. Recover embedded clocks synchronized with the analog waveform view. Build and validate eye diagrams.

The SDA package also includes software-based bit-level triggering and decode for 8B/10B.

This application is supported on all models. For more information: www.keysight.com/find/9000_SDA

Vector signal analysis software (89601B)

Expand the measurement capability of your scope with the 89601B vector signal analysis software. This advanced DSP-based software takes the digitized signal data from the scope. Then it provides FFT-based spectrum analysis and wide-bandwidth digital modulation analysis for wireless communication signals such as WCDMA and cdma2000 and wireless networking signals such as 802.11 WiFi and 802.16 WiMax.

Take advantage of the super-wide bandwidth of your scope to capture and evaluate radar signals. For more information: **www.keysight.com/find/VSA**

User-defined function (N5430A or Option 010 on new scope purchases)

Install MATLAB® on your scope and add your favorite MATLAB .m scripts as function operators and use them as standard waveform functions.

This application is supported on all models and requires MATLAB software (not included with UDF. For more information: www.keysight.com/find/UDF

Recover embedded clocks with serial data analysis (SDA).

Use vector signal analysis software to see FFT-based spectrum analysis.

Signal equalization using user-defined function.

Infiniium 9000 Series Applications and Upgrades

User-definable application (5467A or Option 040 on new scope purchases)

Rapidly develop your own automated measurements and tests. This application provides the framework you need to quickly program and automate any single or set of measurements the oscilloscope can make.

The application also provides full control of other Keysight instruments and HTML reporting capabilities. For more information: **www.keysight.com/find/9000_UDA**

Power application (U1882B or Option 015 on new scope purchases)

Keysight's power application provides a full suite of power measurements. Make more accurate power-supply efficiency measurements by using an U1880A de-skew fixture to de-skew your voltage and current probes. This application is supported on all models. For more information: www.keysight.com/find/9000_power-app

PrecisionProbe software (N2808A)

Make more accurate measurements independent of what probes or cables used. Keysight's N2808B PrecisionProbe software characterizes and corrects for the loss in your specific cable or probe. PrecisionProbe removes the uncertainty about the input connected to your oscilloscope by allowing you to see its characteristics in less than five minute. PrecisionProbe gives you design and debug confidence by allowing you to quickly de-embed probe and cable loss to make more accurate measurements.

For more information: www.keysight.com/find/PrecisionProbe

Infiniium Offline Analysis Software (N8900A)

Wish you could do additional signal viewing, analysis and documentation tasks away from your scope and target system? With Keysight's InfiniiView oscilloscope analysis software you can. Capture waveforms on your scope, save to a file, and open the data record into Keysight's InfiniiView application. View, analyze, share, and document scope measurements anywhere your PC goes.

File	Edit	Tools	Help					
et Up	Testa	Corrige C	ornectons Event	te Debug Run	Macelaneous			
	000000000000000000000000000000000000000	1 Peak to pea 1 Overshoot o 1 Overshoot o 1 Rise Time (1 1 Fail time (17 1 Diff (17-17) 1 Jitter 1 DC offset (C	ek amplitude (Nop) If Reing Edge (Dve If Faling Edge (Dve To) Waet)	ert3 erf3				and the second se
M	•	ER.	Copy	Delete) [Move U	Move Down	Move To	

Quickly automate oscilloscope measurements.

Rapid FPGA debug.

Use your scope to quickly make and analyze power measurements.

Quickly characterize and correct for any input to your oscilloscope.

Keysight Portfolio Compare

	InfiniiVision	Infiniium		
Family	6000 X-Series	9000 Series	S-Series	90000A Series
Optimized for	Fastest update rate and	Measurements up to	Superior signal integrity	Superior signal integrity
	lowest price up to 6 GHz	4 GHz	up to 8 GHz	up to 13 GHz
Available bandwidths	500 MHz to 6 GHz	600 MHz to 4 GHz	500 MHz to 8 GHz	2.5 GHz to 13 GHz
Standard memory depth/ch (2-ch)	4 Mpts	40 Mpts	100 Mpts	40 Mpts
ADC bits	8	8	10	8
Bandwidth filters	Yes	20 MHz (only on 1 M Ω	Yes. Extensive	Yes. Extensive
		input)		
Bandwidth correction filters	No	No	Yes	Yes
Probe inputs	50Ω and 1 $M\Omega$	50Ω and $1M\Omega$	50Ω and 1 $M\Omega$	50 Ω
Motherboard and OS	None. Embedded	Intel Core 2 Duo. Win7	Intel i5 Quad-Core. Win7	Intel Core 2 Duo. Win7
Standard internal drive	None	HDD	Removable SSD	HDD
BNC inputs	Traditional	Traditional	Precision BNC	Precision BNC
MSO models	Yes	Yes	Yes	No
Frame volume comparison	1/2 X	Х	Х	2X

Infiniium S-Series blends high-performance oscilloscope capability with a wide range general-purpose features.

Alla Alla

Keysight Infiniium 9000 Series Oscilloscopes

Connectivity and Probing

Connectivity

Industry compatibility

Export screen shots and waveforms in numerous industry-standard formats. In addition, the 9000 Series supports compatibility with the following:

- MATLAB Basic and Advanced (add as 061 and 062 on new scope orders)
- IVI COM driver for application development environments such as Visual Studio, Keysight VEE, NI LabView and MATLAB instrument control toolbox. www.keysight.com/find/adn
- IntuiLink tool bars and data capture. www.keysight.com/find/intuilink
- LXI Class C including built-in Web control
- NI LabView PnP and IVI drives www.keysight.com/find/ni9404

Probing

Each Infiniium 9000 Series oscilloscope ships with four N2873A 10:1 divider passive probes and probe accessory pouch.

With both 50 Ω and 1 M Ω inputs, Infiniium 9000 Series scopes support a wide range of probes, including Keysight's InfiniiMax and InfiniiMode Series probes.

Keysight offers an innovative family of probes that are engineered for signal access and measurement accuracy. Whether you're looking for simple passive probes, the high bandwidth and low loading of an active probe, or specialty probes for current or high voltage, we can meet your needs. Our innovative accessories allow reliable connection to challenging components like small pitch devices, surface mount ICs, and DDR BGA packages – even hands free!

Recommended optional active probes

DSO/MSO9404A	1132A InfiniiMax 5 GHz probe
	N2752A InfiniiMode 6 GHz probe
DSO/MSO9254A	1131A InfiniiMax 3.5 GHz probe
	N2751A InfiniiMode 3.5 GHz probe
DSO/MSO9104A	N2796A 2 GHz single-ended probe
	1130A InfiniiMax 1.5 GHz probe
	N2750A InfiniiMode 1.5 GHz probe
DSO/MSO9064A	N2795A 1 GHz single-ended probe
	N2750A InfiniiMode 1.5 GHz probe
All	N7020A 2 GHz power rail probe with
	offset up to 24 V
	N7040A AC current probe 23 MHz, 3 kA
	N7041A AC current probe 30 MHz,
	600 A
	N7042A AC current probe 30 MHz,
	300 A
	N7026A AC/DC high sensitivity
	clamp-on current probe 150 MHz, 40
	Apk with AutoProbe

To see our entire award-winning portfolio of passive, single-ended active, differential active, and current probes for Infiniium oscilloscopes, please view the Infiniium Oscilloscope Probes and Accessories Selection Guide publication number 5968-7141EN.

Infiniium 9000 Series Performance Characteristics

Vertical: Scope channels	9064A	9104A	9254A	9404A
Analog bandwidth (–3 dB)				
50 Ω ¹	600 MHz	1.0 GHz	2.5 GHz	4 GHz
1 ΜΩ	500 MHz	500 MHz	500 MHz	500 MHz
Typical rise time/Fall	540 ps	253 ps	142 ps	85 ps
Time 10 to 90% at 50 Ω				
Typical rise time/Fall	360 ps	174 ps	98 ps	59 ps
Time 20 to 80% at 50 Ω				
Input channels	DSO9000 – 4 analog			
	MS09000 – 4 analog +	16 digital		
Input impedance ¹	$50 \Omega \pm 2.5\%$, $1 M\Omega \pm 1\%$	6 (11pF typical)		
Input sensitivity ³	1 MΩ: 1 mV/div to 5 V/d	liv		
	50 Ω: 1 mV/div to 1 V/di	V		
Input coupling	1 MΩ: AC (3.5 Hz), DC			
	50 Ω: DC			
Bandwidth limit	20 MHz on 1 MΩ input;	500 MHz up to full sco	pe bandwidth in increr	ments of 500 MHz
Vertical resolution ^{2, 3}	8 bits, ≥ 12 bits with av	eraging		
Channel-to-channel isolation	DC to 50 MHz: 50 dB			
	> 50 MHz to 2.5 GHz: 4	0 dB		
	> 2.5 GHz to 4 GHz: 25	dB		
DC gain accuracy ^{1, 2, 3}	± 2% of full scale at full	resolution on channel	scale ± 5 °C from cal t	emp
Maximum input voltage ¹	1 Mv: 150 V RMS or DC	, CAT I		
	± 250 V (DC + AC	c) in AC coupling		
	50 Ω: 5 Vrms			
Offset range	Vertical sensitivity			Available offset
– 1 ΜΩ	1 mV to < 10 mV/div			±2V
	10 mV to < 20 mV/div			±5V
	20 mV to < 100 mV/div			± 10 V
	100 mV to < 1 V/div			± 20 V
	1 V to 5 V/div			± 100 V
– 50 Ω				± 12 div or ± 4 V, whichever is smallest

1. Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ± 5 °C from firmware calibration temperature.

2. Input impedance is valid when V/div scaling is adjusted to show all waveform vertical values within scope display.

3. Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale.50 Ω input: Full scale is defined as 8 vertical divisions. Magnification is used below 10 mV/div, full-scale is defined as 80 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V.

1 M Ω input: Full scale is defined as 8 vertical divisions. Magnification is used below 5 mV/div, full-scale is defined as 40 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V.

...

Infiniium 9000 Series Performance Characteristics (Continued)

Vertical: Scope channels (Co	ontinued)						
Offset accuracy ^{1, 3}		± (1.25% of channel offset +1% of full scale + 1 mV)					
Dynamic range		1 MQ: \pm 8 div from center screen	50Ω : ± 8 div from center screer	1			
DC voltage measurement accuracy ²		Dual cursor ± [(DC gain accuracy)+(resolution)]					
		Single cursor ± [(DC gain accurac	cy)+(offset accuracy)+(resolutior	n/2)] V increments)			
			RMS noise floor (V _{RMS AC})				
	9064A	9104A	9254A	9404A			
Volts/div							
10 mV	213 uV	240 uV	273 uV	402 uV			
20 mV	470 uV	481 uV	445 uV	627 uV			
50 mV	1.15 mV	1.24 mV	1.22 mV	1.67 mV			
100 mV	2.37 mV	2.43 mV	2.54 mV	3.17 mV			
200 mV	4.65 mV	4,85 mV	5.06 mV	6.18 mV			
500 mV	11.8 mV	12.3 mV	12.2 mV	15.8 mV			
1 V	23.9 mV	24.3 mV	25.2 mV	31.5 mV			
Vertical: Digital channels	On all MSO	models					
Input channels	16 digital c	hannels					
Threshold groupings	16 digital c	hannels pod 2: D15 to D8					
Threshold selections	TTL (1.4V),	CMOS, (5.0 V, 3.3 V, 2.5 V), ECL (-	–1.3 V), PECL (3.7 V), user define	ed (± 8.00 V in 100 mV increments)			
Maximum input voltage	± 40 V peal	K CAT I					
Threshold accuracy	±(100 mV +	- 3% of threshold setting)					
Input dynamic range	± 10 V abou	ut threshold					
Minimum input voltage swing	500 mV pe	ak-to-peak					
Input impedance (flying leads	s) 100 kΩ ± 2	% (~ 8 pF) at probe tip					
Resolution	1 bit						
Analog bandwidth	400 MHz						

Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ± 5 °C from firmware calibration 1. temperature. 2.

Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale. 50 Ω input: Full scale is defined as 8 vertical divisions. Magnification is used below 10 mV/div, full-scale is defined as 80 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V. 3.

1 MΩ input: Full scale is defined as 8 vertical divisions. Magnification is used below 5 mV/div, full-scale is defined as 40 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V.

Horizontal	
Channel-to-channel skew (digital)	2 ns typical
Main time base range	≥ 2.0 ns
Horizontal position range	5 ps/div to 20 s/div
Delayed sweep range	1 ps/div to current main time base setting
Resolution	1 ps
Modes	Main, delayed, roll (200 ms to 20 sec)
Reference positions	Left, center, right
Channel deskew	–1 ms to +1 ms range
Time scale accuracy (internal reference)	Horizontal time base setting \pm (Horizontal time base setting) * (0.4 + 0.5* years since calibration) ppm
(External reference clock = off)	
Delta-time measurement accuracy ^{2, 3, 4, 5}	
Absolute averaging disabled	$\sqrt{\left(\frac{x * Noise}{SlewRate}\right)^2 + y * 10^{-24} + \frac{TimeScaleAccy \cdot Reading}{2}}{2} \sec pk \qquad $
Absolute > 256 averages	$\sqrt{\left(\frac{x * Noise}{SlewRate}\right)^2 + y * 10^{-24} + \frac{TimeScaleAccy \cdot Reading}{2} \sec pk \qquad \begin{array}{c} 9064 & .33 & .1 \\ 9104 & .33 & .05 \\ 9254 & .33 & .10 \\ 9404 & .35 & .15 \end{array}}$
Standard deviation averaging disabled	$\sqrt{\left(\frac{1.4 * Noise}{SlewRate}\right)^2 + y * 10^{-24} \sec_{rms}} = \frac{\frac{y=}{906475}}{\frac{910465}{925475}}$
Standard deviation > 256 averages	$\sqrt{\left(\frac{0.1 \times Noise}{SlewRate}\right)^2 + 0.01 \times 10^{-24}} \sec_{\rm rms}$
Jitter measurements floor ^{2, 3}	
Time interval error ⁴	$\sqrt{\left(\frac{x * Noise}{SlewRate}\right)^2 + y * 10^{-24} + } \sec_{rms} \frac{x = y = 9064 + 1.0 + 1.0}{9104 + 1.0 + 0.5}$
Period jitter	$\sqrt{\left(\frac{1.4*Noise}{SlewRate}\right)^2 + y*10^{-24} \text{ sec}_{rms}} $ $\frac{9064}{9064} \frac{.75}{.75}$ $\frac{9104}{.65}$ 925475 940480
N-cycle, cycle-cycle jitter	$\sqrt{\left(\frac{2.4*Noise}{SlewRate}\right)^2 + \vee *10^{-24}} \sec_{\rm rms} \frac{9064}{9104} \frac{1.8}{1.9}$

^{1.} Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ± 5 °C from firmware calibration temperature.

^{2.} Noise is the displayed noise floor. SlewRate is the displayed slew rate of the signal at the threshold crossings. Sample rate = max, sin(x)/x interpolation enabled.

^{3.} Measurement threshold = fixed voltage at 50% level.

^{4.} Time ranges $\leq 10 \ \mu$ s.

^{5.} Values represent time error between two edges on a single channel. Standard deviation value refers to the standard deviation of 256 consecutive measurements performed using an individual instrument. Reading is the displayed DTMA measurement value.

Acquisition	9104, 9254, 94	404			ę	9064		
Maximum real-time sample rate	4 ch x 10 GS/s	or 2 ch x 20 GS/	Ś		Z	4 ch x 5 GSa	/s or 2 ch x 10) GSa/s
Memory depth per channel								
Standard	20 Mpts on 4 c	hannels, 40 Mpt	s on 2 channels	S				
Option 50M	50 Mpts on 4 c	hannels, 100 Mp	ots on 2 channe	ls				
Option 100	100 Mpts on 4	channels, 200 N	1pts on 2 chanr	nels				
Option 200	200 Mpts on 4	channels, 400 M	lpts on 2 chanr	nels				
Option 500	500 Mpts/250	Mpts on 4 chann	nels, 1 Gpts/50	0 Mpts on 2 cha	annels	(single/repe	etitive mode)	
Sampling modes								
Real-time								
Real-time with peak detect								
Real-time with high resolution (user select	able to 9-, 10-, 1	11-, or 12-bits of	resolution)					
Real-time with roll mode (200 ms to 20 se	c.)							
Equivalent-time (1.0 ps fine interpolator re	solution yields a	maximum effec	tive sample rat	e of 1,000 GSa/	′s)			
Segmented memory (1 ps time stamp resc	lution between	segments)						
Maximum time between triggers is 562,95	0 seconds (6.5 d	lays)						
Re-arm time (minimum time between trigg	er events) is 4.5	μs with analog ϕ	channels, 5.8 μ	s with digital ch	iannels	on		
Memory depth:	20 M	50 M	100 M	200 M	500	D M	1 G	2 G
Max # of segments:	4096	8192	16384	32768	655	536	131072	131072
Filters								
Acquisition: Digital channels								
Maximum real time sample rate	2 GSa/s							
Maximum memory depth per channel	128/64 Mpts w	/ith 2 GSa/s. 64/	/32 Mpts with s	ampling < 2 GS	a/s (sir	ngle/repetit	ive mode)	
Minimum width glitch detection	2 ns		·					
Trigger: Scope channels								
Trigger sources	Channel 1, cha	nnel 2, channel 3	3, channel 4, au	x, and line				
Sensitivity	1 MΩ input, ed	ge trigger			[DC to 500 M	Hz: 0.6 div	
	50 Ω				[DC to 2 GHz	, 0.5 div	
					2	2 GHz to 4 G	Hz: 1.0 div	
	Auxiliary				[DC to 700 M	Hz: 300 mVp-	-р
Trigger level range	± 4 div from ce	nter screen (50 g	Ω)					
Channel 1, 2, 3 or 4	± 8 div from ce	nter screen with	max of \pm 8 V (1	ΜΩ)				
Auxiliary	± 5 V (50 Ω up	to 500 MHz with	at least 500 m	V signal swing)				
Sweep modes	Auto, triggered	l, single						
Display jitter (displayed trigger jitter) ^{1,2}						<u>y=</u>		
	11.0 * Noise	2			9064 . 9104	50 35		
	$\sqrt{\left(\frac{1.0 \times 10036}{SlewBate}\right)}$	+ y *10 ⁻²⁴ sec _{rms}			9254 .	50		
	(chormato)				9404 .	40		
Trigger holdoff range	100 ns to 10 s	fixed and randon	n					
Trigger actions	Specify an acti	on to occur, and	the frequency	of the action, wi	hen a t	rigger cond	tion occurs	
	Actions include	e: e-mail on trigg	jer and execute	"multipurpose"	' user s	ettings		
Trigger coupling	1 MΩ: DC, AC,	(10 Hz) low frequ	uency reject (50) kHZ high pass	filter),	high freque	ncy reject (50	kHz low pass
	filter)							

1. Internal edge trigger mode. Trigger threshold = fixed voltage at 50% level. The slew rate independent value in the formula represents the traditional trigger jitter.

Display jitter example. At 100 mV/div typical noise values are 3.2 mV RMS for 9404 models, 2.5 mV RMS for 9254A models, and 2.4 mV RMS for 9104A models. For slew rate of 500 mVpp sin wave with frequency equal to max analog bandwidth of each model, typical display jitter is .95 ps RMS for 9404A models, .97 ps for 9254A models, and 1.7 ps RMS for 9104A models.

Trigger: Digital channels MSO models

Threshold range	(User defined) ± 8.0 V in 100-mV increments
Threshold accuracy	± (100 mV + 3% of threshold setting)
Measurements and math	
Waveform measurements	(Can be made on either min or zoom window with up to 10 simultaneous measurements with statistics)
 Voltage (scope channels) 	Peak-to-peak, minimum, maximum, average, RMS, amplitude, base, top, overshoot, V overshoot, preshoot, V preshoot, upper, middle, lower, crossing point voltage, pulse top, pulse base, pulse amplitude
 Time (digital channels) 	Period, frequency, positive width, negative width, duty cycle, delta time
 Time (scope channels) 	Rise time, fall time, period, frequency, positive width, negative width, duty cycle, Tmin, Tmax, Tvolt, channel-to-channel delta time, channel-to-channel phase , count pulses, burst width, burst period, burst interval, setup time, hold time
 Mixed (scope channels only) 	Area, slew rate
 Frequency domain 	FFT frequency, FFT magnitude, FFT delta frequency, FFT delta magnitude all timing measurements
Eye-diagram measurements	Eye height, eye width, eye jitter, crossing percentage, Q factor, and duty-cycle distortion
Measurement modes	Displays the mean, standard deviation, minimum, maximum range, and number of measurement values for the
 Statistics 	displayed automatic measurements
Histograms (scope channels)	Waveform or measurement (histogram on measurement requires EZJIT, EZJIT+, or EZJIT Complete option)
- Source	Vertical (for timing and jitter measurements) or horizontal (noise and amplitude change) modes, regions are defined
 Orientation 	using waveform markers
 Measurements 	Mean, standard deviation, mean ± 1, 2, and 3 sigma, median, mode, peak-to-peak, min, max, total hits, peak (area of most hits), X scale hits, and X offset hits
Waveform math	Manual markers, track waveform data, track measurements
 Number of functions 	16
 Operators 	Operators absolute value, add, AM demodulation, average, horizontal gating, Butterworth ¹ , common mode,
	differentiate, divide, FFT magnitude, FFT phase, FIR11, high pass filter, integrate, invert, LFE ¹ , low pass filter (4th-order
	Bessel Thompson filter), magnify, max, min, multiply, RT Eye ¹ , smoothing, SqrtSumOfSquare ¹ , square, square root,
	subtract, versus Chartstate (MSO models), charttiming (MSO models)
Automatic measurements	Measure menu access to all measurements, ten measurements can be displayed simultaneously
Multipurpose	Front-panel button activates up to ten pre-selected or ten user-defined automatic measurements
Drag-and-drop	Measurement toolbar with common measurement icons that can be dragged and dropped onto the measurement
	toolbar displayed waveforms
FFT	Manual markers, track waveform data, track measurements
 Frequency range 	DC to 10 GHz (at 20 GSa/s) or 5 GHz (at 10 GSa/s)
 Frequency resolution 	Resolution = sample rate/memory depth
 Window modes 	Hanning, flattop, rectangular, Blackman Harris, Force

1. Requires MATLAB software.

Trigger modes	On all MSO models
Edge (analog and digital)	Triggers on a specified slope (rising, falling or alternating between rising and falling) and voltage level on any channel.
Edge transition (analog)	Trigger on rising or falling edges that cross two voltage levels in > or < the amount of time specified. Edge transition
	setting from 250 ps.
Edge then edge (time) (analog	The trigger is qualified by an edge. After a specified time delay between 10 ns to 10 s, a rising or falling edge on any
and digital)	one selected input will generate the trigger.
Edge then edge (event) (analog	The trigger is qualified by an edge. After a specified delay between 1 to 16,000,000 rising or falling edges, another
and digital)	rising or falling edge on any one selected input will generate the trigger.
Glitch (analog and digital)	Triggers on glitches narrower than the other pulses in your waveform by specifying a width less than your narrowest
	pulse and a polarity. Glitch range settings equal pulse width settings.
Line	Triggers on the line voltage powering the oscilloscope.
Pulse width (analog and digital)	Trigger on a pulse that is wider or narrower than specified.
– 4 GHz model	Minimum detectable pulse width: 125 ps for analog channels, 1 ns for digital channels. Pulse width range settings:
	250 ps to 10 s for analog channels, 2 ns to 10 s for digital channels.
– 2.5 GHz model	Minimum detectable pulse width: 200 ps for analog channels, 1 ns for digital channels. Pulse width range settings:
	350 ps to 10 s for analog channels, 2 ns to 10 s for digital channels.
 – 1 GHz and 600 MHz model 	Minimum detectable pulse width: 500 ps for analog channels, 1 ns for digital channels. Pulse width range settings:
	700 ps to 10 s for analog channels, 2 ns to 10 s for digital channels.
Runt (analog)	Triggers on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again.
	Runt settings equal pulse width settings.
Timeout (analog and digital)	Trigger when a channel stays high, low, or unchanged for too long. Timeout settings equal pulse width settings.
Pattern/pulse range (analog and	Triggers when a specified logical combination of the channels is entered, exited, present for a specified period of time
digital)	or is within a specified time range or times out. Each channel can have a value of High (H), Low (L) or Don't care (X).
State (analog and digital)	Pattern trigger clocked by the rising, falling or alternating between rising and falling edge of one channel.
Setup/hold (analog)	Triggers on setup, hold, or setup and hold violations in your circuit. Requires a clock and data signal on any two inputs
	(except aux or line) channels as trigger sources. Setup and/or hold time must then be specified.
Window (analog)	Trigger on entering, exiting, or inside specified voltage range.
Video (analog)	NTSC, PAL-M(525/60), PAL, SECAM(625,50) EDTV(480p/60), EDTV(576/50), HDTV(720p/60), HDTV(720p/50)
	HDTV(1080i/60).
Serial (analog and digital)	Requires specified serial software option, I ² C, SPI, CAN, LIN,FlexRay, RS-232/UART, JTAG, USB, PCIe, MIPI D-PHY,
	generic 8B/10B.
Zone-qualified	Requires InfiniiScan software option. SW-based triggering across up to 8 user-drawn zones. For each zone, user
	specifies "must intersect" or "must not intersect." Zones can be drawn on multiple channels and combined using
	Boolean expressions.

Display	
Display	15 inch color XGA TFT-LCD with touch screen
Display intensity grayscale	64-level intensity-graded display
- Resolution	1024 pixels horizontally x 768 pixels vertically
– Annotation	Up to 12 labels, with up to 100 characters each, can be inserted into the waveform area
– Grids	Can display 1, 2 or 4 waveform grids
 Waveform styles 	Connected dots, dots, variable persistence, infinite persistence, color graded infinite persistence. Includes up to 64
2	levels of intensity-graded waveform
Waveform update rate (10 GS/s,	Segmented mode: Maximum up to 250,000 waveforms/sec
50 ns/div, sin(x)/x: on)	Real time mode:
	 Typical of 700 waveforms/sec with 1 kpts memory
	 Typical of 230 waveforms/sec with 100 kpts memory
	 Typical of 130 waveforms/sec with 1 Mpts memory
Computer system and peripheral	ls, I/O ports
Computer system and peripherals	
 Operating system 	Windows 7 Embedded Standard
– CPU	Intel® Core 2 Duo, M890, 3.0 GHz microprocessor
 PC system memory 	4 GB
– Drives	≥ 250-GB internal hard drive (optional removable hard drive)
– Peripherals	Optical USB mouse and compact keyboard supplied. All Infiniium models support any Windowscompatible input device
	with a PS/2 or USB interface.
File types	
– Waveforms	Compressed internal format (*.wfm), comma separated values (*.csv), .hdf5, .bin, tab separated values (*.tsv), ability to
	save .osc (composite including both setup and waveform. and Y value files (*.txt)
– Images	BMP, TIFF, GIF, PNG or JPEG
I/O ports	
– LAN	RJ-45 connector, supports 10Base-T, 100Base-T, and 1000Base-T. Enables Web-enabled remote control, e-mail on
	trigger, data/file transfers and network printing
– RS-232 (serial)	9-pin, COM1, printer and pointing device support
– PS/2	Two ports. Supports PS/2 pointing and input devices.
 USB 2.0 Hi-Speed 	Three 2.0 high-speed ports on front panel plus four ports on side panel. Allows connection of USB peripherals like
	storage devices and pointing devices while the oscilloscope is on. One device port on side for instrument control.
 Video output 	15 pin XGA on side of scope, full output of scope display or dual monitor video output, DVI
 Auxiliary output 	DC (± 2.4 V); square wave ~755 Hz with ~200 ps rise time
Time base reference output	10 MHz, Amplitude into 50 ohms: 800 mV pp to 1.26 V pp (4 dBm ± 2 dB) if derived from internal reference. Tracks
	external reference input amplitude ± 1 dB if applied and selected.
Time base reference output	Must be 10 MHz, input Z = 50 ohms. Minimum 500 mV pp (-2 dBm), maximum 2.0 V pp (+10 dBm)
LXI compliance	LXI Class C

General characteristics	
Temperature	
Operating	5 to + 40 °C
Non-operating	-40 to + 65 °C
Humidity	
Operating	Up to 95% relative humidity (non-condensing) at +40 °C
Non-operating	Up to 90% relative humidity at +65 °C
Altitude	
Operating	Up to 4,000 meters (12,000 feet)
Non-operating	Up to 15,300 meters (50,000 feet)
Vibration	
	Operating random vibration 5 to 500 Hz, 10 minutes per axis, 0.21 g(rms)
	Non-operating random vibration 5 to 500 Hz, 10 minutes per axis, 2.09 g(rms); resonant search 5 to 500 Hz
	Swept-sine, 1 octave/minute sweep rate, 0.5 g (0-peak), 5 minute resonant dwells at 4 resonances per axis
Power	
	100 to 120 V, ± 10% 50/60/400 Hz
	100 to 240 V, ± 10% 50/60 Hz
	Max power dissipated: 375 W
Typical operator noise	
	30 dB at front of instrument
Weight	
	Net: 11.8 kg (26 lbs.) Shipping: 17.8 kg (39 lbs.)
Dimensions (with feet retracted	1)
	Height: 12.9 in (33 cm); width: 16.8 in (43 cm); depth: 9 in (23 cm)
Safety	
	Meets IEC1010-1 Second Edition, certified to UL61010-1 and CAN/CSA-C22.2 No 61010-1 Second Edition (IEC61010-1:2001, MOD)

Infiniium 9000 Series Ordering Information

How to configure an Infiniium 9000 Series

- 1. Choose needed bandwidth
- 2. Choose MSO or DSO
- 3. Choose desired software applications
- 4. Choose memory depth upgrade
- 5. Choose any additional probes and accessories

Accessories included:

All models ship standard with: Four N2873A 500 MHz passive probes, probe accessory pouch (mounts on rear of instrument), Keysight I/O libraries suite 15.0, localized power cord, front panel cover, keyboard, mouse, and stylus. User guide and programmer's guide ship on oscilloscope hard drive. Service guide available on Keysight.com. MSO models additionally ship with channel flying lead set logic probe, MSO cable and calibration fixture.

Model	Analog bandwidth	Analog sample rate ¹ (4 ch/2 ch)	Standard memory ¹ (4 ch/2 ch)	Scope channels	Logic channels
DS09064A	600 MHz	5 GSa/s/10 GSa/s	20 Mpts/40 Mpts	4	-
MS09064A	600 MHz	5 GSa/s/10 GSa/s	20 Mpts/40 Mpts	4	16
DS09104A	1 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	-
MS09104A	1 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	16
DS09254A	2.5 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	-
MS09254A	2.5 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	16
DSO9404A	4 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	-
MS09404A	4 GHz	10 GSa/s/20 GSa/s	20 Mpts/40 Mpts	4	16

1. In 2-channel mode, maximum sample rate and memory depth double.

Additional options and accessories	
Option A6J	ANSI Z540 compliant calibration
N2902B or Option 1CM (8U)	9000 Series oscilloscope
	rackmount kit
Option 801	Removable solid state drive
N2746A (requires Option 801)	Additional solid state drive
	Windows 7 embedded standard
Gemstar 5000 custom-molded	Available from
case	www.gemstarmfg.com
N4865A	GPIB to LAN adapter

Memory options

Memory per scope channel (4-channel/2-channel mode)	Factory-installed option for new scope purchases
20 Mpts/40 Mpts	Standard
50 Mpts/100 Mpts	DS0/MS09000A-50M
100 Mpts/200 Mpts	DS0/MS09000A-100
200 Mpts/400 Mpts	DS0/MS09000A-200
500 Mpts/1 Gpts	DS0/MS09000A-500

Quickly remove your solid state drive for additional security with Option 801.

Mount your 9000 Series scope in an 8U high, 19" (487 mm) wide rack with option ICM.

Infiniium 9000 Series Ordering Information (Continued)

SW applications	Factory-installed option	User-installed stand-	User-installed floating
DC 222/UADT triggering and decode	for new scope purchases	alone product number	license (N5435A option)
RS-232/UART triggering and decode	001	N5462B	031
EZJII JITTER ANALYSIS SOTTWARE	002	E2081A	002
High-speed SDA and clock recovery	003	N5384A	003
EZJII plus jitter analysis software	004	N5400A	001
USB triggering and decode	005	N5464B	034
PCI Express 1.1 triggering and decode	005	N5463B	032
12C/SPI triggering and decode		N5391B	006
I'S protocol triggering and decode	N88TIA-IFP	N88TIA-IFP	105
CAN, LIN, CAN-FD, and FlexRay triggering and decode	800	N8803C	103
InfiniScan	009	N5415B	004
User-defined function	010	N5430A	005
InfiniSim signal equalization	012	N5461A	025
InfiniSim basic signal de-embedding	013	N5465A 001	026
InfiniSim advanced signal de-embedding	014	N5465A 002	027
Power measurement application software	015	U1882B	
RS-232, SPI and I ² C triggering and decode bundle	018	N8800B	
MIPI D-PHY triggering and decode	019	N8802B	036
SPMI protocol trigger and decode software	N8845A-1FP	N8845A	114
Ethernet compliance	021	N5392B	008
USB2.0 compliance	029	N5416A	017
DDR1 and LPDDR compliance	031	U7233A	021
DDR2 and LPDDR2 compliance	032	N5413B	016
DDR3 compliance	033	U7231B	020
MIPI D-PHY compliance	035	U7238B	022
SATA1 (1.5 GB/s triggering and decode)	038	N8801A	035
User definable application	040	N5467B	
JTAG (IEEE 1149.1) triggering and decode	042	N8817B	038
USB HSIC compliance test	043	U7248B	042
DigRF protocol decode	045	N8807B	047
SVID protocol triggering and decode	046	N8812B	054
Communication mask test kit		E2625A	
MATLAB basic	061		
MATLAB advanced	062		
HDMI 1.4 (up to 740 Mbp/s)		N5399D	
10GBase-T ethernet compliance		U7236B	
Precision probe		N2808A	044
eMMC compliance	064	N6465B	061
BroadR-reach compliance	065	N6467B	062
EZJIT complete jitter analysis software	070	N8823B	067
MOST compliance	073	N6466B	068
MIPI RFFE protocol	075	N8824B	
Energy efficient ethernet		N5392B	
MG Base-T		U7236B	

Upgrades

DSO to MSO upgrades N2901E

Upgrade your existing DSO to an MSO model in 5 minutes. The upgrade kit turns on all MSO capability and includes an MSO cable, 16-channel lead set with grabbers, an MSO-enabled sticker, and a digital-analog deskew fixture.

N2901E upgrade includes:

- Qty(1) E5383A flying lead probe (listed as 01650-61609 probe tip)
- Qty(1) 54904-61622 MSO ribbon cable (connects E5383A to scope)
- Qty(1) 5090-4833 grabber kit assembly (pack of 20 IC clips)
- Qty(1) 5959-9334 probe ground 2" (pack of 5)
- Qty(1) MSO enabled sticker for the back of the scope

Used for calibration of MSO channels

- Qty(1) 1250-3817 BNC-probe-tip adapter
- Qty(1) 1250-0080 BNC(f-f) barrel

Additional acquisition memory (N2900A or options 50, 100, 200, and 500 on new scope purchase)

Increase memory depth to capture longer time periods and maintain faster speeds. Memory depth doubles in 2-channel mode.

Post-sales upgrades

$DSO \rightarrow MSO$ upgrades			
N2901E DSO to MSO upgrade for 9000 and S-Series			
Oscilloscopes	bandwidth upgrades (done at servic	e centers ¹)	
N2905A	Upgrade to 2.5 GHz bandwidth	 Option 006, 600 MHz to 2.5 GHz Option 010, 1 GHz to 2.5 GHz 	
N2904A	Upgrade to 4.0 GHz bandwidth	 Option 006, 600 MHz to 4 GHz Option 010, 1 GHz to 4 GHz Option 025, 2.5 GHz to 4 GHz 	
Memory depth upgrades			
N2900A	Depth doubles in 2 channel mode	 Option 050: Upgrade from 20 Mpts/ch to 50 Mpts/ch Option 100: Upgrade from 50 Mpts/ch to 100 Mpts/ch Option 200: Upgrade from 100 Mpts/ch to 200 Mpts/ch Option 500: Upgrade from 200 Mpts/ch to 500 Mpts/ch 	
Operating syst	em upgrades		
N2753A	Windows 7 embedded standard for Infiniium 9000 scope with Windows XP and SN>MY50410100 (customer installable)		
N2754A	Window 7 embedded standard and M890 motherboard for Infiniium 9000 scopes with Windows XP and SN <my50410100 (return="" -="" additional.="" are="" but="" calibration="" center="" charges="" is="" labor="" optional.)<="" recommended="" required="" service="" td="" to=""></my50410100>		

1. Service Center labor and calibration charges are included - no extra charges.

Keysight Oscilloscopes

Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. The business that became Keysight was a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. The business that became Keysight was a founding member of the LXI consortium.

PX:

AXIA

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Download your next insight

Keysight software is downloadable expertise. From first simulation through first customer shipment, we deliver the tools your team needs to accelerate from data to information to actionable insight.

- Electronic design automation (EDA) software
- Application software
- Programming environments
- Productivity software

Learn more at www.keysight.com/find/software

Start with a 30-day free trial. www.keysight.com/find/free_trials

Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight

myKeysight www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration

Register your products to get up-to-date product information and find warranty information.

KEYSIGHT SERVICES Accelerate Technology Adoption Lower costs.

Keysight Services

www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings-onestop calibration, repair, asset management, technology refresh, consulting, training and more-helps you improve product quality and lower costs.

Keysight Assurance Plans www.keysight.com/find/AssurancePlans

Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

PCI-SIG®, PCIe® and the PCI Express® are US registered trademarks and/or service marks of PCI-SIG.

MIPI® service marks and logo marks are owned by MIPI Alliance, Inc. and any use of such marks by Keysight Technologies is under license. Other service marks and trade names are those of their respective owners.

www.keysight.com/find/9000

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

United States (8	
Asia PacificAustralia1China8Hong Kong8India1Japan0Korea0Malaysia1Singapore1Taiwan0Other AP Countries(6)	800 629 485 00 810 0189 00 938 693 800 11 2626 120 (421) 345 180 769 0800 800 888 848 800 375 8100 1800 047 866 65) 6375 8100

Europe & Middle East

Europe & Miluule East	
Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)

United Kingdom

For other unlisted countries: www.keysight.com/find/contactus (BP-9-7-17)

0800 0260637

www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice. © Keysight Technologies, 2013 - 2017 Published in USA, November 7, 2017 5990-3746EN www.keysight.com

