

TECHNICAL DATA
DATA SHEET 145, REV. –
Formerly part number SHD52630

POSITIVE 15 VOLT VERY LOW DROPOUT VOLTAGE REGULATOR

FEATURES:

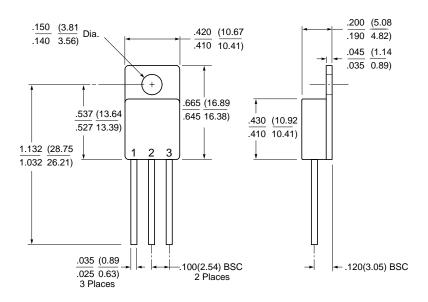
- LOW DROPOUT VOLTAGE
- ISOLATED HERMETIC PACKAGE
- SIMILAR to INDUSTRY TYPE LM2940 15

ELECTRICAL CHARACTERISTICS

All ratings are at $T_A = 25$ °C unless otherwise specified.

LLLO INIOAL GIIANAC	T LINIO I IOO	All fattings are at TA = 25 C unless otherwise specified		
Parameter	Conditions	Typical	Limit	Units
Output Voltage	$5 \text{ mA} \leq I_{O} \leq 1A$,	15.00	14.25	V_{MIN}
	16.75V ≤ V _{IN} ≤ 26V		15.75	V_{MAX}
Line Regulation	$V_{O} + 2V \le V_{IN} \le 26V$,	20	150	mV _{max}
	I _O = 5 mA			
Load Regulation	50 mA ≤ IO ≤ 1A	70	240	mV _{MAX}
Output Impedance	100 mADC and 20 mA _{rms} , f _O =	100	1000	mΩ
	120 Hz			
Quiescent Current	$V_{O} + 2V \le V_{IN} \le 26V$,	10	20	^{mA}MAX
	$I_O = 5 \text{ mA}$			
	$V_{IN} = V_O + 5V, I_O = 1A$	30	60	mA _{MAX}
Output Noise Voltage	10 Hz - 100kHz,	450	1000	$\mu V_{\sf rms}$
	$I_O = 5 \text{ mA}$			11110
Ripple Rejection	f _O = 1 kHz, 1 V _{rms} ,	-	42	dB _{MIN}
	I _O = 5 mA			
Long Term Stability	-	60	-	mV/1000 Hr
Dropout Voltage	I _O = 1A	0.5	1.0	V_{MAX}
	I _O = 100 mA	110	200	m∨ _{MAX}
Short Circuit Current	See Note 1	1.9	1.3	A _{MIN}
Maximum Line Transient	$R_{\Omega} = 100\Omega$	55	40	V _{MIN}
	t ≤ 20 ms			
Reverse Polarity DC Input Voltage	R _O = 100Ω	-30	-15	V _{MIN}
Reverse Polarity Transient	$R_O = 100\Omega$	-55	-45	V _{MIN}
Input Voltage	t ≤ 20 ms			
Maximum Junction Temperature	-	-	150	°C
Storage Temperature Range		-	-65°C ≤ T _J ≤ +150°C	°C
Input Voltage	-	-	26	V
Operating Temperature Range		-	-55°C ≤ T _A ≤ +125°C	°C
Maximum Thermal Resistance Junction to Case	-	-	3	°C/W

⁻ $V_{IN} = V_{O} + 5V$, $I_{O} = 1A$, $C_{O} = 22\mu$ F, unless otherwise specified.


^{1.} Output current will decrease with increasing temperature but will not drop below 1A at the maximum specified temperature.

SENSITRON SHD526193

TECHNICAL DATA
DATASHEET 145, REVISION -

MECHANICAL DIMENSIONS

TO-257

PINOUT TABLE

TYPE	PIN 1	PIN 2	PIN 3
TO - 257, 15V Regulator	V _{IN}	GROUND	Vout

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.