PERICOM[®]

PI3WVR12412

HDMI 2.0, DisplayPort 1.2 Video Switch

Features

- ➔ 4-lane, 1:2 mux/demux that will support RBR, HBR1, or HBR2
- → Data rate: 3.4 Gbps to 6.0 Gbps for high data channels
- → Supports DDC with HPD channel mux/demux @ HDMI
- → Supports 720 Mbps high-speed DP AUX @ DP
- → -1.7 dB Insertion Loss for Dx channels @ 3.0 GHz
- → -3 dB Bandwidth for Dx channels: 4.8 GHz
- → Return loss for Dx channels @ 3.0 GHz: -16 dB
- → Low Crosstalk for high speed channels: -25 dB@6.0 Gbps
- → Low Off Isolation for high speed channels: -22dB@6.0 Gbps
- → Low channel-to-channel skew, 35ps max
- → Low Bit-to-Bit Skew, 5ps typ (between '+' and '-' bits)
- → V_{DD} Operating Range: 3.3V +/-10%
- → ESD Tolerance: 2kV HBM
- → Packaging (Pb-free & Green): 42 TQFN (ZHE)

Description

Pericom Semiconductor's PI3WVR12412 is a multi-standard video switch with wide voltage range capability. It supports HDMI 2.0, DisplayPort 1.2, and emerging and proprietary standard.

PI3WVR12412 can pass high-speed signals up to 1.2 V peak-topeak differential with a common-mode voltage from 0 to 3.4V for TMDS signal.

The wide voltage range allow DC-coupled multi-standard operation. Eliminating AC coupling capacitors saves board space and improves signal integrity for dense PCB design. The high speed channels can also pass 0V-3.3V CMOS signals up to 1MHz.

In addition to four high-speed lanes, PI3WVR12412 also switches the DDC and HPD signals or AUX and HPD signals using the DDC/ AUX and HPD channel mux/demux.

Application

- → Routing of HDMI 2.0 video signals with low signal attenuation between source and sink for 4K2K ultra high definition video display and broadcast video equipment.
- ➔ Routing of DisplayPort video signals with low signal attenuation between source and sink for PC and monitor.

Block Diagram

Pin Assignment (TQFN-42, ZHE)

Truth Table

	Control			Switch Function			
OE	GPU_SEL	DDC/ AUX_HPD_SEL	D0-D3	DDC/ AUX	HPD		
High	Low	Low	А	DDC A/ AUX A	HPD A		
High	Low	High	А	DDC B/ AUX B	HPD B		
High	High	Low	В	DDC A/AUX A	HPD A		
High	High	High	В	DDC B/ AUX B	HPD B		
Low	x	X	Hi-Z	Hi-Z	Hi-Z		

Pin Description

pin#	pin Name	Signal Type	Description	
1	GND	Ground	Ground	
2	GPU_SEL	Ι	switch logic control	
3	D0-	I/O	negative differential signal 0 for COM port	
4	D0+	I/O	positive differential signal 0 for COM port	
5	DDC/ AUX_HPD_SEL	Ι	Switch logic control for DDC/ AUX and HPD	
6	D1-	I/O	negative differential signal 1 for COM port	
7	D1+	I/O	positive differential signal 1 for COM port	
8	D2-	I/O	negative differential signal 2 for COM port	
9	D2+	I/O	positive differential signal 2 for COM port	
10	D3-	I/O	negative differential signal 3 for COM port	
11	D3+	I/O	positive differential signal 3 for COM port	
12	VDD	Power	3.3V +/-10% power supply	
13	SDA/ AUX-	I/O	SDA signal for DDC COM port, or negative differential signal for AUX COM port	
14	SCL/ AUX+	I/O	SCLl signal for DDC COM port, or positive differential signal for AUX COM port	
15	HPD_B	I/O	HPD for port B	
16	HPD_A	I/O	HPD for port A	
17	GND	Ground	Ground	
18	HPD	I/O	HPD for COM port	
19	SDA_B/ AUXB	I/O	SDA signal for DDC, port B, or negative differential signal for AUX COM port	
20	SCL_B/ AUX+_B	I/O	SCL signal for DDC, port B, or positive differential signal for AUX COM port	
21	VDD	Power	3.3V +/-10% power supply	
22	GND	Ground	Ground	
23	SCL_A/ AUX+_A	I/O	SCL signal for DDC, port A, or positive differential signal for AUX COM port	
24	SDA_A/ AUXA	I/O	SDA signal for DDC, port A, or negative differential signal for AUX COM port	
25	OE	I	output enable. if OE is high, IC is enabled. if OE is low, IC is power down and all I/Os are Hi-Z	
26	D3+B	I/O	positive differential signal 3 for portB	
27	D3-B	I/O	negative differential signal 3 for portB	
28	D2+B	I/O	positive differential signal 2 for portB	
29	D2-B	I/O	negative differential signal 2 for portB	
30	D1+B	I/O	positive differential signal 1 for portB	
31	D1-B	I/O	negative differential signal 1 for portB	

pin#	pin Name	Signal Type	Description
32	D0+B	I/O	positive differential signal 0 for portB
33	D0-B	I/O	negative differential signal 0 for portB
34	VDD	Power	3.3V +/-10% power supply
35	D3+A	I/O	positive differential signal 3 for port A
36	D3-A	I/O	negative differential signal 3 for port A
37	D2+A	I/O	positive differential signal 2 for port A
38	D2-A	I/O	negative differential signal 2 for port A
39	D1+A	I/O	positive differential signal 1 for port A
40	D1-A	I/O	negative differential signal 1 for port A
41	D0+A	I/O	positive differential signal 0 for port A
42	D0-A	I/O	negative differential signal 0 for port A
43	Center pad	Ground	Ground

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +4.2V
DC Input Voltage	0.5V to V_{DD}
DC Output Current	120mA
Power Dissipation	0.5W

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range

Parameter	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	
V _{IH}	Input HIGH Voltage (SEL & OE)	Guaranteed HIGH level	1.5				
VIL	Input LOW Voltage (SEL & OE)	Guaranteed LOW level			0.75		
V _{IK}	Clamp Diode Voltage (HS Channel)	$V_{DD} = Max., I_{IN} = -18mA$		-1.6V	-1.8	V	
V _{IK}	Clamp Diode Voltage (DDC/ AUX, Cntrl)	V_{DD} = Max., I_{IN} = -18mA		-0.7	-1.5		
IIH	Input HIGH Current	V_{DD} = Max., V_{IN} = V_{DD}			±5		
IIL	Input LOW Current	V _{DD} = Max., V _{IN} = GND			±5	μΑ	
I _{OFF_SB}	I/O leakage when part is off for side- band signals only (DDC/ AUX, HPD)	$V_{DD} = 0V$, $V_{INPUT} = 0V$ to 3.6V			20	_ µ11	
R _{ON_HS}	On resistance between input to out- put for high speed signals	$\begin{split} V_{\rm INPUT,cm} &= 0 V \text{ to } 3.4 V, \\ V_{\rm INPUT,diff} &< 1.2 V_{\text{p-p,diff}}, \\ V_{\rm DD} &= 3.0 V, I_{\rm INPUT} = 20 \text{mA} \end{split}$		11		Ohm	
R _{ON_DDC} / AUX	On resistance between input to output for side-band signals (DDC/ AUX)	V_{DD} = 3.0V, Vinput = 0 to 3.3V, I_{INPUT} = 20mA		7		Ohm	
R _{ON_HPD}	On resistance between input to output for HPD channel	V_{DD} = 3.0V, Vinput = 0 to 3.0V, I_{INPUT} = 20mA		7		Ohm	
VDDC/AUX_SS Signal Swing Tolerance in DDC/ AUX path		$V_{DD} = 3.0 V$	-0.5		3.6	V	
V _{HPD_I}	Input voltage on HPD path				5.5	V	
V _{HPD_O}	Output voltage tolerance on HPD path	HPD input from 3.3V to 5.25V		3.3	3.6	V	

 $(T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C, V_{DD} = 3.3V \pm 10\%)$

Power Supply Characteristics

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

Parameter	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units
I _{DD}	Power Supply Current	V_{DD} = 3.3V, V_{IN} = GND or V_{DD}		1	3	mA
I _{DD,Off}	Power Supply Current, Disabled	$\label{eq:VDD} \begin{split} V_{DD} &= 3.3 \text{V}, \text{V}_{IN} = \text{GND or } \text{V}_{DD}, \\ V_{OE} &< \text{V}_{IL} \end{split}$		1	50	μΑ

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{\rm DD}$ = 3.3V, $T_{\rm A}$ = 25°C ambient and maximum loading.

Dynamic Electrical Characteristics over Operating Range

Parameter	Description	Test Conditions ¹		Min	Typ ²	MAX	Units
			f= 3.0 GHz		-25	-22	
V	Crosstalk on High Speed	See Fig. 1 for Measure-	f= 2.7 GHz		-28	-25	-
X _{TALK}	Channels	ment Setup	f = 1.7 GHz		-31	-28	
			f = 1.35 GHz		-32	-28	аĻ
		See Fig. 2 for Measure-	f= 3.0 GHz		-22	-20	dB
0	OFF Isolation on High Speed Channels	ment Setup	f= 2.7 GHz		-22	-20	
O _{IRR}			f = 1.7 GHz		-29	-26	
			f = 1.35 GHz		-30	-27	
T	Differential Insertion Loss on	@3.0 GHz (see figure 3)		-2.0	-1.7		dB
I _{LOSS}	High Speed Channels	@5.4 Gbps (see figure 3)		-2.0	-1.7		
D	Differential Return Loss on	@ 3.0 GHz (6.0Gbps)			-16.0	-14	10
R _{loss}	high speed channels	@ 2.7 GHz (5.4Gbps)			-14.0	-12.5	dB
BW_Dx±	Bandwidth -3dB for Main high speed path (Dx±)	See figure 3		3.7	4.8		GHz
BW_DDC/ AUX/ HPD	-3dB BW for DDC/ AUX and HPD signals	See figure 3		1.35	1.5		GHz

(T_A = -40° to +105°C, V_{DD} = 3.3V ±10%)

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{\rm DD}$ = 3.3V, $T_{\rm A}$ = 25°C ambient and maximum loading.

Switching Characteristics

 $(T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}, V_{DD} = 3.3\text{V}\pm10\%)$

Parameter	Description	Min.	Тур.	Max.	Units
T _{pd}	Propagation delay (input pin to output pin) on all channels		80		ps
t _{b-b}	Bit-to-bit skew within the same differential pair of Dx± channels		5	7	ps
t _{ch-ch}	Channel-to-channel skew of Dx± channels			35	ps
Tsw a-b	time it takes to switch from port A to port B			0.1	us
Tsw b-a	a time it takes to switch from port B to port A			0.1	us
Tstartup	V _{DD} valid to channel enable			10	us
Twakeup	Enabling output by changing OE from low to High			10	us

Fig 1. Crosstalk Setup

Fig 2. Off-isolation setup

Fig 3. Differential Insertion Loss

Test Circuit for Dynamic Electrical Characteristics

Fig 4. Crosstalk

PERICOM[®]

Fig 5. Off Isolation

Fig 6. Insertion Loss

Fig 7. Return Loss

Fig 8. TDR Channel D0, VDD=3.0V, 25C

Test Circuit for Electrical Characteristics(1-4)

Notes:

- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_{T} = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. All input impulses are supplied by generators having the following characteristics: PRR \leq MHz, Z_O = 50 Ω , t_R \leq 2.5ns, t_F \leq 2.5ns.
- 4. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms for Select Timing

Test Condition

Output 1 Test Condition	Output 2 Test Condition		
PA = Low	PA = High		
PB = High	PB = Low		

Packaging Mechanical: 42ZH

12-0529 Note:

For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3WVR12412ZHE	ZH	42-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging