HDMI 2.0, DisplayPort 1.2 Video Switch

Features

\rightarrow 4-lane, 1:2 mux/demux that will support RBR, HBR1, or HBR2
\rightarrow Data rate: 3.4 Gbps to 6.0 Gbps for high data channels
\rightarrow Supports DDC with HPD channel mux/demux @ HDMI
\rightarrow Supports 720 Mbps high-speed DP AUX @ DP
$\rightarrow-1.7 \mathrm{~dB}$ Insertion Loss for Dx channels @ 3.0 GHz
$\rightarrow-3 \mathrm{~dB}$ Bandwidth for Dx channels: 4.8 GHz
\rightarrow Return loss for Dx channels @ $3.0 \mathrm{GHz}:-16 \mathrm{~dB}$
\rightarrow Low Crosstalk for high speed channels: -25 dB@6.0 Gbps
\rightarrow Low Off Isolation for high speed channels: -22dB@6.0 Gbps
\rightarrow Low channel-to-channel skew, 35ps max
\rightarrow Low Bit-to-Bit Skew, 5ps typ (between '+' and '-' bits)
\rightarrow VDD Operating Range: $3.3 \mathrm{~V}+/-10 \%$
\rightarrow ESD Tolerance: 2 kV HBM
\rightarrow Packaging (Pb-free \& Green): 42 TQFN (ZHE)

Description

Pericom Semiconductor's PI3WVR12412 is a multi-standard video switch with wide voltage range capability. It supports HDMI 2.0, DisplayPort 1.2, and emerging and proprietary standard.

PI3WVR12412 can pass high-speed signals up to 1.2 V peak-topeak differential with a common-mode voltage from 0 to 3.4 V for TMDS signal.
The wide voltage range allow DC-coupled multi-standard operation. Eliminating AC coupling capacitors saves board space and improves signal integrity for dense PCB design. The high speed channels can also pass $0 \mathrm{~V}-3.3 \mathrm{~V}$ CMOS signals up to 1 MHz .

In addition to four high-speed lanes, PI3WVR12412 also switches the DDC and HPD signals or AUX and HPD signals using the DDC/ AUX and HPD channel mux/demux.

Application

\rightarrow Routing of HDMI 2.0 video signals with low signal attenuation between source and sink for 4 K 2 K ultra high definition video display and broadcast video equipment.
\rightarrow Routing of DisplayPort video signals with low signal attenuation between source and sink for PC and monitor.

Block Diagram

Pin Assignment (TQFN-42, ZHE)

Truth Table

Control		Switch Function			
OE	GPU_SEL	DDC/ AUX_HPD_SEL	D0-D3	DDC/ AUX	HPD
High	Low	Low	A	DDC A/ AUX A	HPD A
High	Low	High	A	DDC B/ AUX B	HPD B
High	High	Low	B	DDC A/AUX A	HPD A
High	High	High	B	DDC B/ AUX B	HPD B
Low	x	x	Hi-Z	Hi-Z	Hi-Z

Pin Description

pin\#	pin Name	Signal Type	Description
1	GND	Ground	Ground
2	GPU_SEL	I	switch logic control
3	D0-	I/O	negative differential signal 0 for COM port
4	D0+	I/O	positive differential signal 0 for COM port
5	DDC/ AUX_HPD_SEL	I	Switch logic control for DDC/ AUX and HPD
6	D1-	I/O	negative differential signal 1 for COM port
7	D1+	I/O	positive differential signal 1 for COM port
8	D2-	I/O	negative differential signal 2 for COM port
9	D2+	I/O	positive differential signal 2 for COM port
10	D3-	I/O	negative differential signal 3 for COM port
11	D3+	I/O	positive differential signal 3 for COM port
12	VDD	Power	$3.3 \mathrm{~V}+/-10 \%$ power supply
13	SDA/ AUX-	I/O	SDA signal for DDC COM port, or negative differential signal for AUX COM port
14	SCL/ AUX+	I/O	SCLl signal for DDC COM port, or positive differential signal for AUX COM port
15	HPD_B	I/O	HPD for port B
16	HPD_A	I/O	HPD for port A
17	GND	Ground	Ground
18	HPD	I/O	HPD for COM port
19	SDA_B/ AUX-_B	I/O	SDA signal for DDC, port B , or negative differential signal for AUX COM port
20	SCL_B/ AUX+_B	I/O	SCL signal for DDC, port B, or positive differential signal for AUX COM port
21	VDD	Power	$3.3 \mathrm{~V}+/-10 \%$ power supply
22	GND	Ground	Ground
23	SCL_A/ AUX+_A	I/O	SCL signal for DDC, port A, or positive differential signal for AUX COM port
24	SDA_A/ AUX-_A	I/O	SDA signal for DDC, port A, or negative differential signal for AUX COM port
25	OE	I	output enable. if OE is high, IC is enabled. if OE is low, IC is power down and all I/Os are Hi-Z
26	D3+B	I/O	positive differential signal 3 for portB
27	D3-B	I/O	negative differential signal 3 for portB
28	D2+B	I/O	positive differential signal 2 for portB
29	D2-B	I/O	negative differential signal 2 for portB
30	D1+B	I/O	positive differential signal 1 for portB
31	D1-B	I/O	negative differential signal 1 for portB

pin\#	pin Name	Signal Type	Description
32	D0+B	I/O	positive differential signal 0 for portB
33	D0-B	I/O	negative differential signal 0 for portB
34	VDD	Power	$3.3 \mathrm{~V}+/-10 \%$ power supply
35	D3+A	I/O	positive differential signal 3 for port A
36	D3-A	I/O	negative differential signal 3 for port A
37	D2+A	I/O	positive differential signal 2 for port A
38	D2-A	I/O	negative differential signal 2 for port A
39	D1+A	I/O	positive differential signal 1 for port A
40	D1-A	I/O	negative differential signal 1 for port A
41	D0+A	I/O	positive differential signal 0 for port A
42	D0-A	Ground	Ground
43	Center pad		

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to
Supply Voltage to Ground Potential -0.5 V to +4.2 V	the device. This is a stress rating only and functional
DC Input Voltage ... 0.5 V to V_{DD}	operation of the device at these or any other conditions
DC Output Current ... 120 mA	above those indicated in the operational sections of this
Power Dissipation ... 0.5 W	specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range

Parameter	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (SEL \& OE)	Guaranteed HIGH level	1.5			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (SEL \& OE)	Guaranteed LOW level			0.75	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage (HS Channel)	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		$-1.6 \mathrm{~V}$	-1.8	
$V_{\text {IK }}$	Clamp Diode Voltage (DDC/ AUX, Cntrl)	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.5	
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$			± 5	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 5	
$\mathrm{I}_{\text {OFF_SB }}$	I/O leakage when part is off for sideband signals only (DDC/ AUX, HPD)	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\text {INPUT }}=0 \mathrm{~V}$ to 3.6 V			20	
$\mathrm{R}_{\text {ON_HS }}$	On resistance between input to output for high speed signals	$\begin{aligned} & \mathrm{V}_{\text {INPUT }, \mathrm{cm}}=0 \mathrm{~V} \text { to } 3.4 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INPUT,diff }}<1.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}, \text { diff }} \\ & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{INPUT}}=20 \mathrm{~mA} \end{aligned}$		11		Ohm
RON_DDC/ AUX	On resistance between input to output for side-band signals (DDC/ AUX)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \text {, Vinput }=0 \text { to } 3.3 \mathrm{~V}, \\ & \mathrm{I}_{\text {INPUT }}=20 \mathrm{~mA} \end{aligned}$		7		Ohm
$\mathrm{R}_{\text {ON_HPD }}$	On resistance between input to output for HPD channel	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Vinput }=0 \text { to } 3.0 \mathrm{~V}, \\ & \mathrm{I}_{\text {INPUT }}=20 \mathrm{~mA} \end{aligned}$		7		Ohm
V DDC/ AUX_Ss	Signal Swing Tolerance in DDC/ AUX path	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-0.5		3.6	V
V ${ }_{\text {HPD_I }}$	Input voltage on HPD path				5.5	V
VHPD_O	Output voltage tolerance on HPD path	HPD input from 3.3 V to 5.25 V		3.3	3.6	V

Power Supply Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(\mathbf{2})}$	Max	Units
I_{DD}	Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ GND or V_{DD}		1	3	mA
$\mathrm{I}_{\mathrm{DD}, \mathrm{Off}}$	Power Supply Current, Disabled	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ GND or V_{DD}, $\mathrm{V}_{\mathrm{OE}}<\mathrm{V}_{\mathrm{IL}}$		1	50	$\mu \mathrm{~A}$

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Dynamic Electrical Characteristics over Operating Range

($T_{A}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{D D}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions ${ }^{1}$		Min	Typ ${ }^{2}$	MAX	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk on High Speed Channels	See Fig. 1 for Measurement Setup	$\mathrm{f}=3.0 \mathrm{GHz}$		-25	-22	dB
			$\mathrm{f}=2.7 \mathrm{GHz}$		-28	-25	
			$\mathrm{f}=1.7 \mathrm{GHz}$		-31	-28	
			$\mathrm{f}=1.35 \mathrm{GHz}$		-32	-28	
OIRR	OFF Isolation on High Speed Channels	See Fig. 2 for Measurement Setup	$\mathrm{f}=3.0 \mathrm{GHz}$		-22	-20	
			$\mathrm{f}=2.7 \mathrm{GHz}$		-22	-20	
			$\mathrm{f}=1.7 \mathrm{GHz}$		-29	-26	
			$\mathrm{f}=1.35 \mathrm{GHz}$		-30	-27	
$\mathrm{I}_{\text {LOSS }}$	Differential Insertion Loss on High Speed Channels	$@ 3.0 \mathrm{GHz}$ (see figure 3)		-2.0	-1.7		dB
		@5.4 Gbps (see figure 3)		-2.0	-1.7		
$\mathrm{R}_{\text {loss }}$	Differential Return Loss on high speed channels	@ 3.0 GHz (6.0Gbps)			-16.0	-14	dB
		@ 2.7 GHz (5.4 Gbps)			-14.0	-12.5	
BW_Dx \pm	Bandwidth -3dB for Main high speed path ($\mathrm{Dx} \pm$)	See figure 3		3.7	4.8		GHz
BW_DDC/ AUX/ HPD	-3dB BW for DDC/ AUX and HPD signals	See figure 3		1.35	1.5		GHz

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics

Parameter	Description	Min.	Typ.	Max.	Units
T_{pd}	Propagation delay (input pin to output pin) on all channels		80		ps
tb-b	Bit-to-bit skew within the same differential pair of $\mathrm{Dx} \pm$ channels		5	7	ps
$\mathrm{t}_{\text {ch-ch }}$	Channel-to-channel skew of $\mathrm{Dx} \pm$ channels			35	ps
Tsw a-b	time it takes to switch from port A to port B			0.1	us
Tsw b-a	time it takes to switch from port B to port A			0.1	us
Tstartup	$\mathrm{V}_{\text {DD }}$ valid to channel enable			10	us
Twakeup	Enabling output by changing OE from low to High			10	us

BALANCED PORT1

BALANCED PORT2

Fig 1. Crosstalk Setup

DUT

Fig 2. Off-isolation setup

Fig 3. Differential Insertion Loss

Test Circuit for Dynamic Electrical Characteristics

Fig 4. Crosstalk

Fig 5. Off Isolation

Fig 6. Insertion Loss

Fig 7. Return Loss

Fig 8. TDR Channel D0, VDD=3.0V, 25C

Test Circuit for Electrical Characteristics(1-4)

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
4. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms for Select Timing

Test Condition

Output 1 Test Condition	Output 2 Test Condition
PA $=$ Low	PA $=$ High
PB $=$ High	PB = Low

Packaging Mechanical: 42ZH

12-0529
Note:
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3WVR12412ZHE	ZH	42-contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

