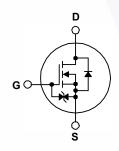


FDD1600N10ALZ N-Channel PowerTrench[®] MOSFET 100 V, 6.8 A, 160 mΩ

Features

- $R_{DS(on)}$ = 124 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 3.4 A
- R_{DS(on)} = 175 mΩ (Typ.) @ V_{GS} = 5 V, I_D = 2.1 A
- Low Gate Charge (Typ.2.78 nC)
- Low C_{rss} (Typ. 2.04 pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

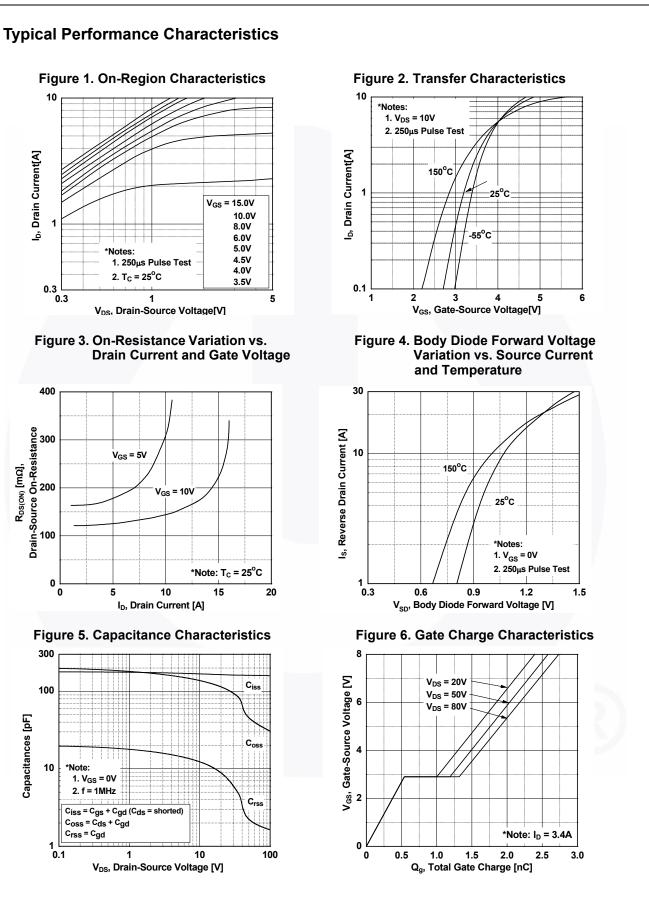

Description

This N-Channel MOSFET is produced using Fairchld Semiconductor's advanced PowerTrench[®] process that has been tailored to minimize the on-state resistance and maintain superior switching performance.

Application

- Consumer Appliances
- LED TV and Monitor
- Synchronous Rectification
- Uninterruptible Power Supply
- Micro Solar Inverter

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.


Symbol	Parameter			FDD1600N10ALZ	Unit	
V _{DSS}	Drain to Source Voltage	100	V			
V _{GSS}	Gate to Source Voltage			±20	V	
ID	Drain Current	- Continuous (T _C = 25 ^o C)		6.8	A	
	Drain Current	- Continuous (T _C = 100 ^o C)		4.3		
I _{DM}	Drain Current	- Pulsed	(Note 1)	13.6	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		5.08	mJ		
dv/dt	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	6.0	V/ns	
P _D	Dower Dissinction	$(T_{C} = 25^{\circ}C)$		14.9	W	
	Power Dissipation	- Derate Above 25°C		0.12	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperatu	ure for Soldering, 1/8" from Case for 5	Seconds	300	°C	

Thermal Characteristics

Symbol	Parameter	FDD1600N10ALZ	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	8.4	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	87	0/00

January 2014

Part Nur	Part Number Top Mark Pa		Packag	ge Packing	Method	Reel Size	Тар	e Width	Qua	ntity
		DPAK	Tape ar	nd Reel	330 mm	1	6 mm	2500 units		
Electrica	l Chara	cteristics T _c =2	25ºC unless	otherwise note	ed.					
Symbol		Parameter		Tes	t Conditio	ons	Min.	Тур.	Max.	Unit
Off Charac	teristics	i								
BV _{DSS}	Drain to Source Breakdown Voltage		Itage	I _D = 250 μA, V _{GS} = 0 V			100	-	-	V
∆BV _{DSS}	Breakdown Voltage Temperature		re	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C			-	0.1	-	V/ºC
/ΔIJ	/ ΔT_J Coefficient			$V_{\rm DS} = 80 \text{ V}, \text{ V}_{\rm GS} = 0 \text{ V}$				_	1	
I _{DSS}	Zero Gat	Zero Gate Voltage Drain Current		$V_{\rm DS} = 80 \text{ V}, V_{\rm GS} = 0 \text{ V}$ $V_{\rm DS} = 80 \text{ V}, V_{\rm GS} = 0 \text{ V}, T_{\rm C} = 125^{\circ}\text{C}$			-	-	500	μA
I _{GSS}	Gate to S	Source Leakage Curre	nt	V _{GS} = ±20 V			-	-	±10	μA
On Charac	teristics									
V _{GS(th)}	-	eshold Voltage		V _{GS} = V _{DS} , I	= 250 μA	\	1.4	-	2.8	V
			otonco	V _{GS} = 10 V,			-	124	160	
R _{DS(on)} Static Drain to Sou		ain to Source On Resi	ource On Resistance		$V_{GS} = 5 V, I_D = 2.1 A$			175	375	75 mΩ
9 _{FS}	Forward	Transconductance		V _{DS} = 10 V, I	_D = 6.8 A		-	19.6	-	S
Dynamic C	Character	ristics								
C _{iss}		Input Capacitance					-	169	225	pF
C _{oss}		apacitance		$-V_{DS} = 50 V, V_{GS} = 0 V,$		-	43	55	pF	
C _{rss}	Reverse	Transfer Capacitance		f = 1 MHz		-		2.04	-	pF
C _{oss(er)}	Energy R	Related Output Capacit	ated Output Capacitance $V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$				85	-	pF	
Q _{g(tot)}	Total Gat	e Charge at 10V		V _{GS} = 10 V	Vpp	, = 50 V,	-	2.78	3.61	nC
Q _{g(tot)}	Total Gat	e Charge at 5V		V_{GS} = 5 V	$V_{GS} = 5 V$ $I_D = 6.8 A$			1.5	1.95	nC
Q _{gs}	Gate to S	Source Gate Charge					-	0.72	-	nC
Q _{gd}	Gate to D	Drain "Miller" Charge		(Note 4) V _{DS} = 0 V, I _D = 3.4 A V _{DS} = 50 V, V _{GS} = 0 V		-	0.56	-	nC	
V _{plateau}		teau Volatge				-	4.02	-	V	
Q _{sync}		e Charge Sync.				-	2.5	-	nC	
Q _{oss}	Output C	-				-	5.2	-	nC	
ESR	Equivaler	nt Series Resistance (G-S)	f = 1 MHz			-	2.1	-	Ω
Switching	Characte	eristics								
t _{d(on)}	Turn-On Delay Time Turn-On Rise Time			$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 6.8 \text{ A},$			-	7	24	ns
t _r							-	2	14	ns
t _{d(off)}	Turn-Off	Delay Time		$V_{\rm GS}$ = 10 V, R _G = 4.7 Ω		2	-	13	36	ns
t _f	Turn-Off	Fall Time				(Note 4)	-	2	14	ns
Drain-Sou	rce Diod	e Characteristics	;							
I _S	Maximum Continuous Drain to Source Dio		Source Diod	de Forward Current			-	-	6.8	Α
I _{SM}	Maximum Pulsed Drain to Source Diode I		ce Diode Fo	Forward Current			- /	-	13.6	А
V _{SD}		Drain to Source Diode Forward Voltage		V _{GS} = 0 V, I _{SD} = 6.8 A			-	-	1.3	V
t _{rr}		Recovery Time		V_{GS} = 0 V, I_{SD} = 6.8 A, V_{DS} = 50 V,		-	37	-	ns	
Q _{rr}	Reverse	Recovery Charge		$dI_F/dt = 100$	₩µS		-	42	-	nC

FDD1600N10ALZ — N-Channel PowerTrench[®] MOSFET

10

I_b, Drain Current[A]

1

0.3 L 0.3

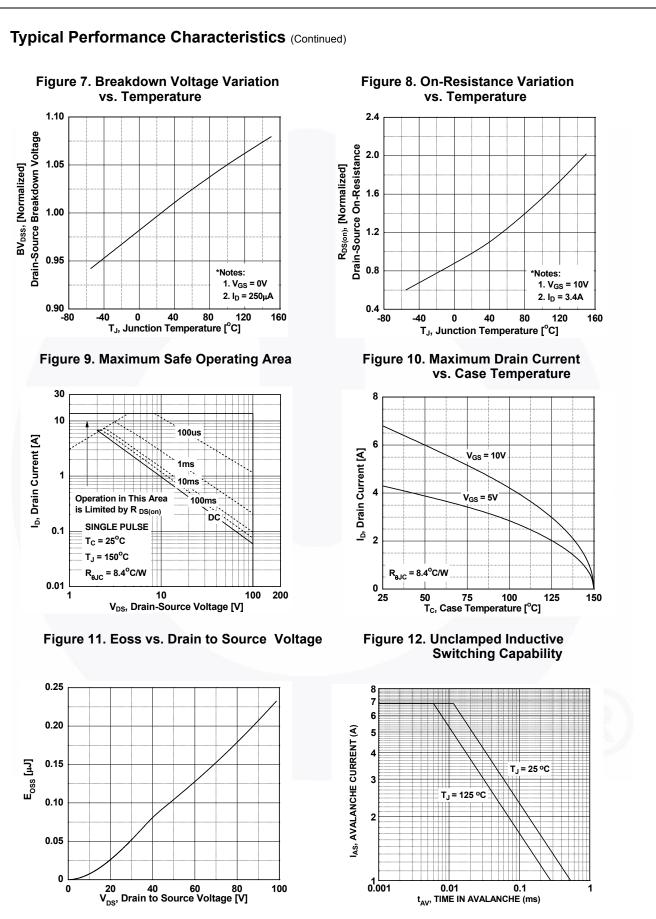
400

Drain-Source On-Resistance

0

300

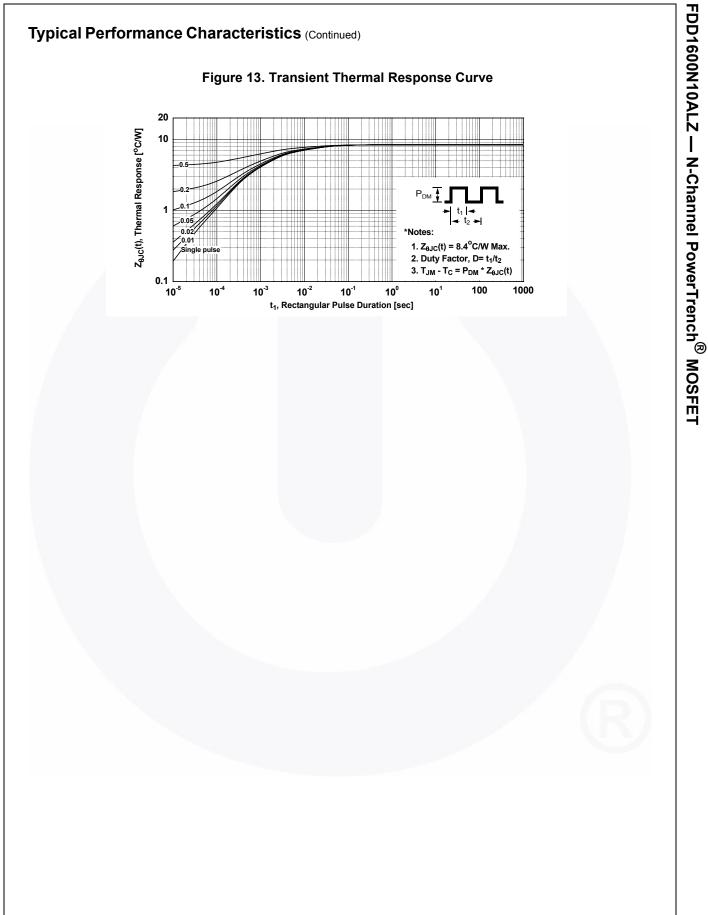
100

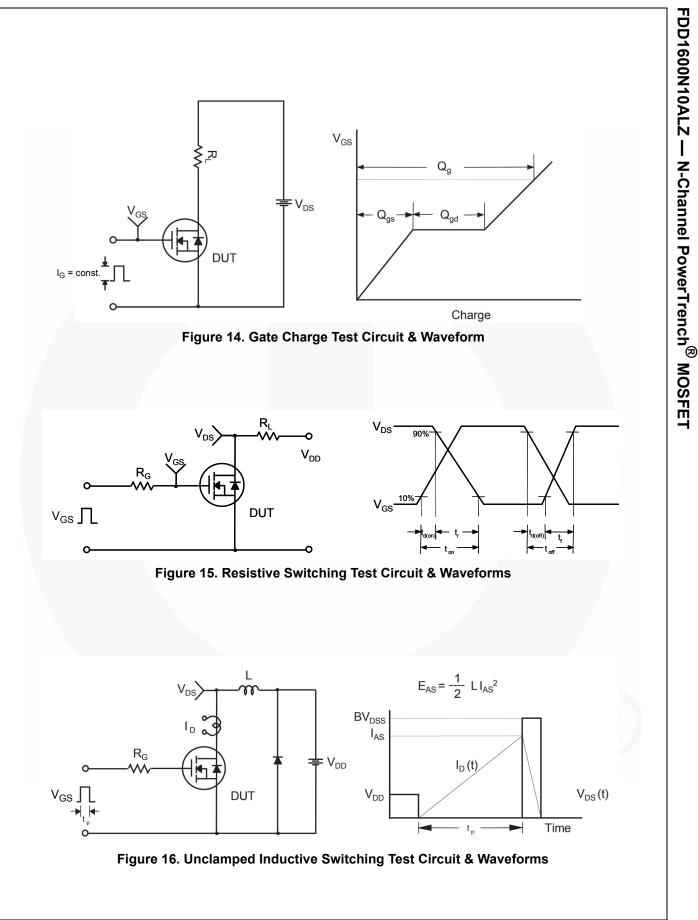

10

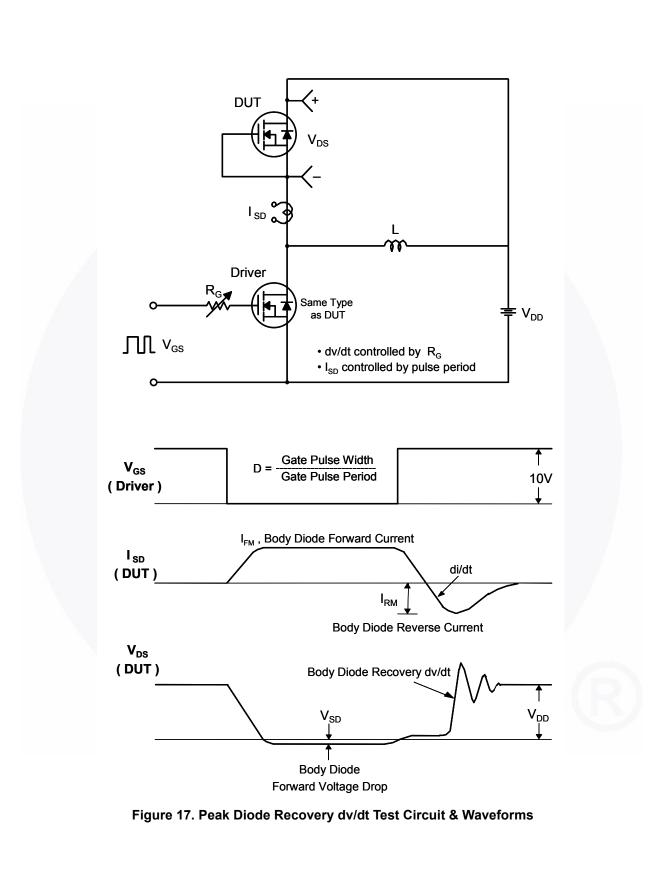
1 0.1

Capacitances [pF]

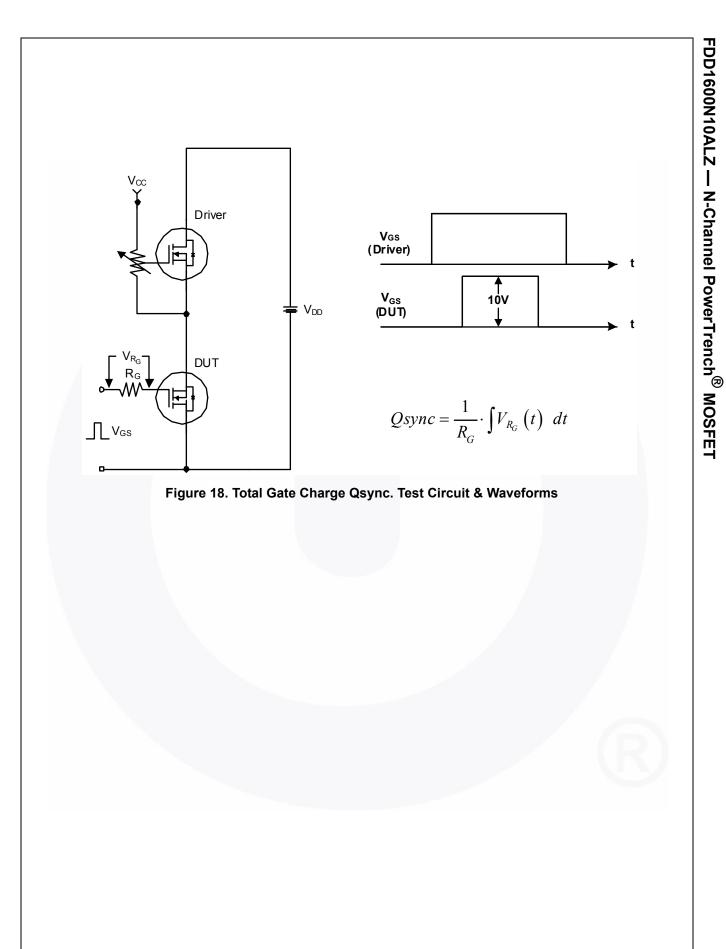
0

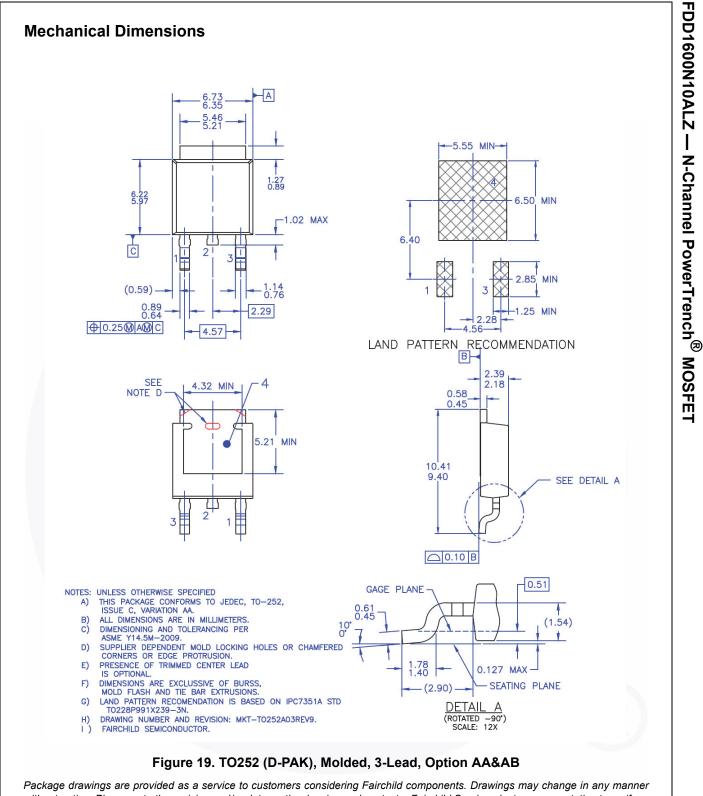

R_{DS(ON)} [mΩ],




©2012 Fairchild Semiconductor Corporation FDD1600N10ALZ Rev. C3

www.fairchildsemi.com


FDD1600N10ALZ — N-Channel PowerTrench[®] MOSFET



FDD1600N10ALZ — N-Channel PowerTrench[®] MOSFET

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™
AX-CAP [®] *	FRFET®
BitSiC™	Global Po
Build it Now™	GreenBri
CorePLUS™	Green FF
CorePOWER™	Green FF
CROSSVOLT™	Gmax™
CTL™	GTO™
Current Transfer Logic™	IntelliMA)
DEUXPEED®	ISOPLAN
Dual Cool™_	Marking S
EcoSPARK [®]	and Bette
EfficentMax™	MegaBuc
ESBC™	MICROC
R	MicroFET
F	MicroPak
	MioroDok

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

Power ResourceSM Bridge™ FPS™ FPS™ e-Series™ AX™ ANAR™ g Small Speakers Sound Louder tter™ uck™ COUPLER™ ET™ ak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

 $(1)_{\mathbb{R}}$ PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure[™] Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SYSTEM^{®*} GENERAL TinyBoost[®] TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™ UHC® Ultra FRFET™ UniFFT™

Sync-Lock™

FDD1600N10ALZ — N-Channel PowerTrench[®] MOSFE1

VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SvncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			