6 Bit Digital Step Attenuator

General Description

This document describes the specification for the IDT F1912 Digital Step Attenuator. The F1912 is part of a family of Glitch-Free ${ }^{\text {TM }}$ DSAs optimized for the demanding requirements of Base Station (BTS) radio cards and numerous other non-BTS applications.
These devices are offered in a compact $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 20 pin QFN package with 50Ω impedances for ease of integration.

COMPETITIVE ADVANTAGE

Digital step attenuators are used in Receivers and Transmitters to provide gain control. The F1912 is a 6 -bit step attenuator optimized for these demanding applications. The silicon design has very low insertion loss and low distortion (> +60 dBm IIP3.) The device has pinpoint accuracy. Most importantly, the F1912 includes IDT's Glitch-Free ${ }^{T M}$ technology which results in low overshoot \& ringing during MSB transitions.
\checkmark Glitch-Free ${ }^{T M}$ Technology so PA or ADC will not be damaged during when transitions.
\checkmark Extremely accurate with low distortion.
\checkmark Lowest insertion loss for best SNR

APPLICATIONS

- Base Station 2G, 3G, 4G, TDD radio cards
- Repeaters and E911 systems
- Digital Pre-Distortion
- Point to Point Infrastructure
- Public Safety Infrastructure
- WIMAX Receivers and Transmitters
- Military Systems, JTRS radios
- RFID handheld and portable readers
- Cable Infrastructure

Ordering Information

1 MHz to 4000 MHz

Features

- Serial \& 6 bit Parallel Interface
- 31.5 dB Control Range
- 0.5 dB step
- Glitch-Free ${ }^{T M}$, low transient overshoot
- 3.0 V to 5.25 V supply
- 1.8 V or 3.3 V control logic
- Attenuation Error $<0.22 \mathrm{~dB}$ @ 2 GHz
- Low Insertion Loss $<1.6 \mathrm{~dB}$ @ 2 GHz
- Ultra linear IIP3 >+59.5 dBm
- IIP2 $=+110 \mathrm{dBm}$ typical
- Stable Integral Non-Linearity over temperature
- Low Current Consumption $550 \mu \mathrm{~A}$ typical
- $-40{ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Thin QFN 20 pin package

FUNCTIONAL BLOCK DIAGRAM

Part\# Details

Part\#	Freq Range (MHz)	Resolution / Range (dB)	Control	IL (dB)	Pinout
F1950	$150-4000$	$0.25 / 31.75$	 Serial	1.3	PE43702 PE43701
F1951	$100-4000$	$0.50 / 31.5$	Serial Only	1.2	HMC305
F1952	$100-4000$	$0.50 / 15.5$	Serial Only	0.9	HMC305
F1953	$400-4000$	$0.50 / 31.5$	 Serial	1.3	PE4302 DAT-31R5
F1956	$1-4000$	$0.25 / 31.75$	 Serial	1.4	PE43705, RFSA3715
F1912	$\mathbf{1 - 4 0 0 0}$	$\mathbf{0 . 5 0 / 3 1 . 5}$	 Serial	$\mathbf{1 . 4}$	PE4312 PE4302

6 Bit Digital Step Attenuator

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
V_{DD} to GND	VDD	-0.3	+5.5	V
DATA, LE, CLK, D[5:0]	V Logic	-0.3	$\begin{gathered} \operatorname{Min}\left(V_{\mathrm{DD}}-0.3,\right. \\ 3.6) \end{gathered}$	V
RF1, RF2	$\mathrm{V}_{\text {RF }}$	-0.3	+0.3	V
Maximum Input Power applied to RF1 or RF2 (>100 MHz)	Prf		+34	dBm
Operating Case Temperature			+105	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\text {max }}$		+140	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\text {jmax }}$		140	${ }^{\circ} \mathrm{C}$
Continuous Power Dissipation			1.5	W
Storage Temperature Range	$\mathrm{T}_{\text {st }}$	-65	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge - HBM (JEDEC/ESDA JS-001-2012)	VESDHBM		$\begin{gathered} 2000 \\ \text { (Class 2) } \end{gathered}$	Volts
ESD Voltage - CDM (Per JESD22-C101F)	Vesdcdm		$\begin{gathered} 500 \\ \text { (Class C2) } \\ \hline \end{gathered}$	Volts

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD Caution

This product features proprietary protection circuitry. However, it may be damaged if subjected to high energy ESD. Please use proper ESD precautions when handling to avoid damage or loss of performance.

Package Thermal and Moisture Characteristics

θ_{JA} (Junction - Ambient)
θ_{cc} (Junction - Case) [The Case is defined as the exposed paddle]
Moisture Sensitivity Rating (Per J-STD-020)
$50^{\circ} \mathrm{C} / \mathrm{W}$
$3^{\circ} \mathrm{C} / \mathrm{W}$
MSL1

6 Bit Digital Step Attenuator

F1912 Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Supply Voltage(s)	V_{DD}		3		5.25	V
Frequency Range	F_{RF}		1		4000	MHz
Operating Temperature Range	TCASE	Exposed Paddle	-40		105	${ }^{\circ} \mathrm{C}$
RF CW Input Power	PCW	RF1 or RF2			See Figure 1	dBm
Source Impedance	Z Source	Single Ended		50		Ω
Load Impedance	ZLoad	Single Ended		50		Ω

Figure 1 Maximum Continuous Operating RF input power versus Input Frequency

6 Bit Digital Step Attenuator
 F1912 Specification

1 MHz to 4000 MHz

Specifications apply at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$, $\mathrm{T}_{\text {CASE }}=+25^{\circ} \mathrm{C}$, $\mathrm{F}_{\mathrm{RF}}=2000 \mathrm{MHz}$, $\mathrm{P}_{\text {in }}=0 \mathrm{dBm}$, Serial Mode $\left(\mathrm{V}_{\text {mode }}>\mathrm{V}_{\mathrm{IH}}\right)$, $Z_{\text {source }}=Z_{\text {Load }}=50 \Omega$ unless otherwise noted. EvKit losses are de-embedded.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Logic Input High	V_{IH}	All Control Pins				
		$\mathrm{V}_{\mathrm{DD}}>3.9 \mathrm{~V}$	1.17		3.6	V
		$3.0 \leq \mathrm{V}_{\mathrm{DD}} \leq 3.9 \mathrm{~V}$	1.17		$\mathrm{V}_{\mathrm{DD}} 0.3$	V
Logic Input Low	VIL	All Control Pins			0.63	V
Logic Current	IIf, IIL	All Control Pins	-35		+35	$\mu \mathrm{A}$
Supply Current	IDD	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		550	$830{ }^{1}$	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		620	900	
RF1 Return Loss	S_{11}			18		dB
RF2 Return Loss	S_{22}			18		dB
Attenuation Step	LSB	Least Significant Bit		0.5		dB
Insertion Loss (Minimum Attenuation)	Amin	D[5:0]=[000000] (IL State)		1.4	2.0	dB
Insertion Loss (Maximum Attenuation)	Amax	$\mathrm{D}[5: 0]=[111111]=31.5 \mathrm{~dB}$	32^{2}	33.0		dB
Step Error	DNL			0.10		dB
Absolute Error	INL	$\mathrm{D}[5: 0]=[100111]=19.5 \mathrm{~dB}$	-0.7		+0.5	dB
Insertion Phase Delta	Φ_{Δ}	At 2 GHz		27		degrees
		At 4 GHz		55		
Input IP3	IIP3	PIN $=+10 \mathrm{dBm} /$ tone, Tone Spacing $=50 \mathrm{MHz}$				
		Attn $=0.0 \mathrm{~dB}, \mathrm{RF}$ in $=$ RF1	60	64.0		dBm
		Attn $=0.0 \mathrm{~dB}, \mathrm{RF}$ in $=$ RF2	56	60.5		
		Attn $=15.5 \mathrm{~dB}, \mathrm{RF}$ in $=$ RF1	56	61.0		
		Attn $=15.5 \mathrm{~dB}, \mathrm{RF}$ in $=\mathrm{RF} 2$	57	61.5		
		Attn $=0.00 \mathrm{~dB}, R F_{\text {in }}=R F 1$ PIN $=+22 \mathrm{dBm}$ per tone 1 MHz Tone Separation				
		$\mathrm{F}_{\mathrm{RF}}=0.7 \mathrm{GHz}$	60	62.5		
		$\mathrm{F}_{\mathrm{RF}}=1.8 \mathrm{GHz}$	58	61.5		
		$\mathrm{F}_{\mathrm{RF}}=2.2 \mathrm{GHz}$	58	61.0		
		$\mathrm{F}_{\mathrm{RF}}=2.6 \mathrm{GHz}$	57	60.5		
Input IP2	IIP2	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{IN}}=+12 \mathrm{dBm} / \text { tone, } \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~F} 1=945 \mathrm{MHz}, \mathrm{F2} 2=949 \mathrm{MHz} \\ & \mathrm{~F}_{1}+\mathrm{F2} 2=1894 \mathrm{MHz} \\ & \text { RFIN }^{\mathrm{IN}}=\mathrm{RF} 1 \end{aligned}$		110		dBm
0.1 dB Compression ${ }^{3}$	P0.1	$\mathrm{D}[5: 0]=[000000]=0 \mathrm{~dB}$		31		dBm

Note 1: Items in min/max columns in bold italics are Guaranteed by Test.
Note 2: Items in $\mathrm{min} / \mathrm{max}$ columns that are not bold/italics are Guaranteed by Design Characterization.
Note 3: The input 0.1 dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratings section for the maximum RF input power.
Note 4: Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2 MHz .
Note 5: Speeds are measured after SPI programming is completed (data latched with LE = HIGH).

6 Bit Digital Step Attenuator

F1912 SPECIFICATION (CONTINUED)

Specifications apply at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$, $\mathrm{T}_{\text {CASE }}=+25^{\circ} \mathrm{C}$, $\mathrm{F}_{\mathrm{RF}}=2000 \mathrm{MHz}$, P in $=0 \mathrm{dBm}$, Serial Mode $\left(\mathrm{V}_{\text {mode }}>\mathrm{V}_{\mathrm{IH}}\right)$, $Z_{\text {source }}=Z_{\text {Load }}=50 \Omega$ unless otherwise noted. EvKit losses are de-embedded.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
MSB Step Time	TLsb	Start LE rising edge > V_{IH} End $\pm 0.10 \mathrm{~dB}$ Pout settling for 15.5 dB to 16.0 dB transition		500		ns
Maximum spurious level on any RF port ${ }^{4}$	Spurmax			-140		dBm
Maximum Switching Frequency	SW Freq			25		kHz
DSA Settling time	τ ¢et	Max to Min Attenuation to settle to within 0.5 dB of final value		0.9		$\mu \mathrm{S}$
		Min to Max Attenuation to settle to within 0.5 dB of final value		1.8		
Control Interface	SPI вit $^{\text {d }}$			6		bit
Serial Clock Speed	SPİık				25	MHz

Note 1: Items in min/max columns in bold italics are Guaranteed by Test.
Note 2: Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
Note 3: The input 0.1 dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratings section for the maximum RF input power.
Note 4: Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2 MHz .
Note 5: Speeds are measured after SPI programming is completed (data latched with LE = HIGH).

6 Bit Digital Step Attenuator

Programming Options

F1912 can be programmed using either the parallel or serial interface which is selectable via Vmode (pin 13). Serial mode is selected by floating $\mathrm{V}_{\text {MODE }}$ or pulling it to a voltage logic high (greater than $\mathrm{V}_{\text {IH }}$) and parallel mode is selected by setting $\mathrm{V}_{\text {mode }}$ to logic low (less than $\mathrm{V}_{\text {IL }}$).

Serial Control Mode

F1912 Serial mode is selected by floating $\mathrm{V}_{\text {mode }}$ (pin 13) or pulling it to a voltage $>\mathrm{V}_{\text {IH }}$. The serial interface is a 6 bit shift register to shift in the data MSB (D5) first. When serial programming is used, all the parallel control input pins ($1,15,16,17,19,20$) must be grounded.

Table 1-6 Bit SPI Word Sequence

D5	Attenuation 16 dB Control Bit
D4	Attenuator 8 dB Control Bit
D3	Attenuator 4 dB Control Bit
D2	Attenuator 2 dB Control Bit
D1	Attenuator 1 dB Control Bit
D0	Attenuator 0.5 dB Control Bit

Table 2 - Truth Table for Serial Control Word

D5 (MSB)	D4	D3	D2	D1	D0 (LSB)	Attenuation $\mathbf{(d B)}$
0	0	0	0	0	0	0
0	0	0	0	0	1	0.5
0	0	0	0	1	0	1
0	0	0	1	0	0	2
0	0	1	0	0	0	4
0	1	0	0	0	0	8
1	0	0	0	0	0	16
1	1	1	1	1	1	31.5

Serial Mode Register Timing Diagram: (Note the Timing Spec Intervals in Blue)

With serial control, the F1912 can be programmed via the serial port on the rising edge of Latch Enable (LE) which loads the last 6 DATA line bits [formatted MSB (D5) first] resident in the SHIFT register followed by the next 5 bits.

Figure 2 - Serial Register Timing Diagram

Note - When Latch enable is high, the shift register is disabled and DATA is NOT continuously clocked into the shift register which minimizes noise. It is recommended that Latch enable be left high when the device is not being programmed.

Table 3 - Serial Mode Timing Table

Interval Symbol	Description	Min Spec	Max Spec	Units
t_{mc}	Parallel to Serial Setup Time - From rising edge of V	$\mathbf{1 0 0}$		ns
t_{ds}	Clock high pulse width	$\mathbf{1 0}$		ns
$\mathrm{t}_{\mathrm{cls}}$	LE Setup Time - From the rising edge of CLK pulse for D0 to LE rising edge minus half the clock period.	$\mathbf{1 0}$		ns
$\mathrm{t}_{\text {lew }}$	LE pulse width	$\mathbf{3 0}$		ns
$\mathrm{t}_{\text {dsc }}$	Data Setup Time - From the starting edge of Data bit to rising edge of CLK	$\mathbf{1 0}$		ns
$\mathrm{T}_{\text {dht }}$	Data Hold Time - From rising edge of CLK to falling edge of the Data bit.	$\mathbf{1 0}$		ns

6 Bit Digital Step Attenuator

Serial Mode Default Startup Condition:

When the device is first powered up it will default to the Maximum Attenuation of 31.5 dB independent of the VMODE and parallel pin [D5:D0] conditions.

Table 4 - Default Control Word for the Serial Mode

D5 (MSB)	D4	D3	D2	D1	D0 (LSB)	Attenuation (dB)
1	1	1	1	1	1	31.5

Parallel Control Mode

For the F1912 the user has the option of running in one of two parallel modes. Direct Parallel Mode or Latched Parallel Mode.

Direct Parallel Mode:

Direct Parallel Mode is selected when $\mathrm{V}_{\text {mode }}$ (pin 13) is less than $\mathrm{V}_{\text {IL }}$ and LE (pin 5) is greater than $\mathrm{V}_{\text {IH }}$. In this mode the device will immediately react to any voltage changes to the parallel control pins [pins $1,15,16,17$, 19, 20]. Use direct parallel mode for the fastest settling time.

Latched Parallel Mode:

Latched Parallel Mode is selected when $\mathrm{V}_{\text {MODE }}$ is less than $\mathrm{V}_{\text {IL }}$ and LE (pin 5) is toggled from less than $\mathrm{V}_{\text {IL }}$ to greater than $\mathrm{V}_{\text {IH }}$. To utilize Latched Parallel Mode:

- Set LE < VIL
- Adjust pins [pins $1,15,16,17,19,20$] to the desired attenuation setting. (Note the device will not react to these pins while LE < VIL.)
- Pull $\mathrm{LE}>\mathrm{V}_{\mathrm{IH}}$. The device will then transition to the attenuation settings reflected by pins D 5 - D0. Latched Parallel Mode implies a default state for when the device is first powered up with VMODE < VII and LE < VIL. In this case the default setting is MAXIMUM Attenuation.

Table 5 - Truth Table for the Parallel Control Word

D5	D4	D3	D2	D1	D0	Attenuation $\mathbf{(d B)}$
0	0	0	0	0	0	0
0	0	0	0	0	1	0.5
0	0	0	0	1	0	1
0	0	0	1	0	0	2
0	0	1	0	0	0	4
0	1	0	0	0	0	8
1	0	0	0	0	0	16
1	1	1	1	1	1	31.5

Figure 3 - Latched Parallel Mode Timing Diagram

Table 6 - Latched Parallel Mode Timing

Interval Symbol	Description	Min Spec	Max Spec	Units
$\mathrm{t}_{\mathrm{tps}}$	Serial to Parallel Mode Setup Time	100		ns
$\mathrm{t}_{\mathrm{pdh}}$	Parallel Data Hold Time	10		ns
$\mathrm{t}_{\mathrm{pds}}$	LE minimum pulse width	10		ns
t_{le}	Parallel Data Setup Time	10		ns

6 Bit Digital Step Attenuator

Typical Operating Conditions (TOC)

Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.

- $V_{D D}=+3.30 \mathrm{~V}$
- $\mathrm{T}_{\text {case }}=+25^{\circ} \mathrm{C}$
- $\mathrm{F}_{\mathrm{RF}}=\mathbf{2} \mathbf{~ G H z}$
- $P_{\text {In }}=0 \mathbf{d B m}$ for single tone measurements
- $P_{\text {in }}=\boldsymbol{+ 1 0} \mathbf{d B m} /$ tone for multi-tone measurements
- Tone Spacing $=\mathbf{5 0} \mathbf{~ M H z}$
- EVKit connector and board losses are de-embedded

Typical Operating Conditions (- 1 -)

Insertion Loss vs Frequency

RF1 (Input) Return Loss vs Frequency [All States]

RF2 (Output) Return Loss vs Frequency [All States]

Insertion Loss vs Attenuation State

RF1 (Input) Return Loss vs Attenuation State

RF2 (Output) Return Loss vs Attenuation State

Typical Operating Conditions (- 2 -)

Relative Insertion Phase vs Frequency

Worst Case Absolute Accuracy vs Frequency

Worst Case Step Accuracy vs Frequency

Relative Insertion Phase vs Attenuation

Absolute Accuracy vs Attenuation

Step Accuracy vs Attenuation

6 Bit Digital Step Attenuator

Typical Operating Conditions (- 3 -)

Compression at 0 dB and 2 GHz

Compression at $\mathbf{1 5 . 5} \mathbf{~ d B}$ and $2 \mathbf{~ G H z}$

Compression at $\mathbf{3 1 . 5} \mathbf{~ d B}$ and $2 \mathbf{~ G H z}$

Input IP3 - 0 dB, +22 dBm, 1 MHz Tone Delta, RF1

Input IP3 (Low Side) vs attenuation at $\mathbf{2 G H z}$

Input IP3 (High Side) vs attenuation at 2GHz

IDTF1912NCGI Datasheet

Package Drawing

(4 mm x 4 mm 20-pin TQFN), NCG20

Land Pattern Dimension

TOP View
(looking through the top of the package)

* Device is RF Bi-Directional

Pin Description

PIN	NAME	FUNCTION
1	D5	16 dB Attenuation Control Bit. Pull high for 16 dB ATTN.
2	RF1	Device RF input or output (bi-directional). Internally DC blocked.
3	DATA	Serial interface Data Input.
4	CLK	Serial interface Clock Input.
5	LE	Serial interface Latch Enable Input. Internal pullup (100K ohm).
6	VDD	Power supply pin.
7	NC	Internally unconnected.
8	NC	Internally unconnected.
9	NC	Internally unconnected.
10	GND	Connect to Ground. This pin is internally connected to the exposed paddle.
11	GND	Connect to Ground. This pin is internally connected to the exposed paddle.
12	GND	Connect to Ground. This pin is internally unconnected.
13	VMODE	Pull high for serial control mode. Ground for parallel control mode.
14	RF2	Device RF input or output (bi-directional). Internally DC blocked.
15	D4	8 dB Attenuation Control Bit. Pull high for 8 dB ATTN.
16	D3	4 dB Attenuation Control Bit. Pull high for 4 dB ATTN.
17	D2	2 dB Attenuation Control Bit. Pull high for 2 dB ATTN.
18	GND	Connect to Ground. This pin is internally unconnected.
19	D1	1 dB Attenuation Control Bit. Pull high for 1 dB ATTN.
20	D0	0.5 dB Attenuation Control Bit. Pull high for 0.5 dB ATTN.
EP	Exposed Paddle	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the specified RF performance.

IDTF1912NCGI
Datasheet

6 Bit Digital Step Attenuator
1 MHz to 4000 MHz

EvKit Picture

EVkit / Applications Circuit

Item \#	Part Reference	QTY	DESCRIPTION	Mfr. Part \#	Mfr.
1	C1, C11	2	$100 \mathrm{nF} \pm 10 \%, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$ Ceramic Capacitor (0402)	GRM155R71H104K	MURATA
2	C2, C12	2	$10 \mathrm{nF} \pm 5 \%, 50 \mathrm{~V}$, C0G Ceramic Capacitor (0402)	GRM155R71H103J	MURATA
3	R12, C13, C14	3	0Ω Resistors (0402)	ERJ-2GEOR00X	PANASONIC
4	R1-R7	7	$100 \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1000X	PANASONIC
5	R9, R10, R11	3	$3 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF3001X	PANASONIC
6	R8, R15, R16, R17	4	10k $\Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1002X	PANASONIC
7	R13	1	$100 \mathrm{~K} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1003X	PANASONIC
8	R14	1	267K $2 \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF2673X	PANASONIC
9	J5, J7	2	CONN HEADER VERT SGL 2×1 POS GOLD	961102-6404-AR	3M
10	J8	1	CONN HEADER VERT SGL 4×1 POS GOLD	961104-6404-AR	3M
11	J6	1	CONN HEADER VERT SGL 8×1 POS GOLD	961108-6404-AR	3M
12	J2, J3, 34	3	Edge Launch SMA (0.250 inch pitch ground, round)	142-0711-821	Emerson Johnson
13	U1	1	SWITCH 8 POSITION DIP SWITCH	KAT1108E	E-Switch
14	U2	1	DSA	F1912Z	IDT
15		1	Printed Circuit Board (Rev 01)	F1953S Evkit Rev 01	IDT
16			Bill Of Material (Rev 01)		

Top Markings

Applications Information

F1912 Digital Pin Voltage \& Resistance Values (pins not connected)
The following table lists the resistance between various pins and ground when no DC power is applied. When the device is powered up with +5 Volts DC these same pins to should have the measured voltage to ground.

Pin	Name	DC voltage (volts)	Resistance (ohms)
13	$V_{\text {MODE }}$	2.5 V	$100 \mathrm{k} \Omega$ pullup resistor to internally regulated 2.5 V
$3,4,5$	DATA, CLK, LE	2.5 V	$10 \mathrm{k} \Omega$ pullup resistor to internally regulated 2.5 V

Revision History

Revision	Revision Date	Description of Change	
1	$2017-M a y-26$	Corrected pin label on Page 16.	
O	2015-June-06	Initial release of the datasheet	

	Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 www.IDT.com	$\begin{aligned} & \text { Sales } \\ & \text { 1-800-345-7015 or 408-284-8200 } \\ & \text { Fax: 408-284-2775 } \\ & \text { www.IDT.com/go/sales } \end{aligned}$	Tech Support www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of a ny kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.

