DC/DC CONVERTER 2W, Reinforced Insulation, Medical Safety

FEATURES

- ► Ultra-compact DIP-16 Package
- ► Reinforced Insulation rated for 300VAC Working Voltage
- ► I/O-isolation 4000VACrms
- ► Industrial & Medical Safety Approval
- ► Operating Temp. Range –25°C to +80°C
- ► Low Leakage Current
- ► 3 Years Product Warranty

PRODUCT OVERVIEW

The MDHU100 series is a new range of 2W DC/DC-converter modules providing a very high I/O-isolation voltage of 4000 VAC. The product comes in a small SMD-package. There are 15 models available with 5V, 12V or 24VDC input and single-or dual-output voltages.

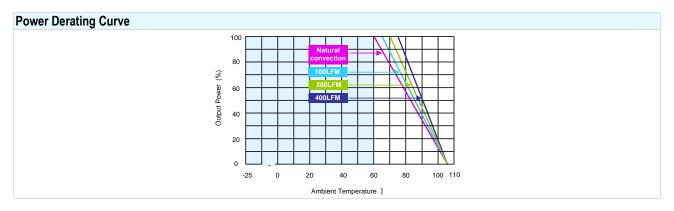
The MDHU100 DC/DC converters offer an economical solution for many applications in instrumentation, industrial controls, medical equipment and everywhere where a certified supplementary- or reinforced insulation system is required to comply with requested safety standards.

Model Selec	tion Guide								
Model Number	Input Voltage	· ·		Current	Input Current		Load Regulation	Max. Capacitive	Efficiency (typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	_		@Max. Load
	VDC	VDC	Ma	Ma	Ma(typ.)	Ma(typ.)	% (max.)	Uf	%
MDHU102		5	400	8	606		12	330	66
MDHU104	_	12	165	3	600		10		66
MDHU105	5	15	133	2.5	605	60	10		66
MDHU108	(4.5 ~ 5.5)	±12	±83	±1.5	553		10	100#	72
MDHU109		±15	±66	±1	542		10		73
MDHU112		5	400	8	253		12		66
MDHU114		12	165	3	250		10	330	66
MDHU115	12 (10.8 ~ 13.2)	15	133	2.5	252	30	10		66
MDHU118	(10.0 ~ 13.2)	±12	±83	±1.5	224		10	400#	74
MDHU119		±15	±66	±1	220		10	100#	75
MDHU122		5	400	8	126		12	330	66
MDHU124	24	12	165	3	125	1	10		66
MDHU125		15	133	2.5	126	15	10		66
MDHU128	(21.6 ~ 26.4)	±12	±83	±1.5	112		10	400#	74
MDHU129	1	±15	±66	±1	110		10	100#	75

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	4.5	5	5.5	
Input Voltage Range	12V Input Models	10.8	12	13.2	
	24V Input Models	21.6	24	26.4	VDC
	5V Input Models	-0.7		9	
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models	-0.7		30	
Reverse Polarity Input Current				0.3	Α
Input Filter	All Models	Internal Capacitor			
Internal Power Dissipation				650	Mw

Total Power International, Inc. MDHU100 SERIES DC/DC CONVERTER 2W, Reinforced Insulation, Medical Safety

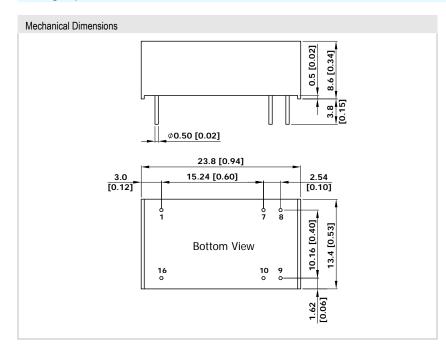

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy			±2.0	±4.0	%
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%
Line Regulation	Vin=Min. to Max.		±1.2	±1.5	%
Load Regulation	lo=20% to 100%	See Model Selection Guide			
Ripple & Noise (20MHz)			100	150	Mv _{P-P}
Ripple & Noise (20MHz)	Over Line, Load & Temp.			200	Mv _{P-P}
Ripple & Noise (20MHz)				15	Mv rms
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection 0.5 Second Max.					

Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage (rated)	60 Seconds	4000			VACrms	
I/O Isolation Test Voltage	Flash tested for 1 Second	6000			V_{PK}	
Leakage Current	240VAC, 60Hz			2	Ua	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100KHz, 1V		15	20	Pf	
	Cul/UL60950-1, CSA C22.2 No. 60950-1-03					
Safety Standards	UL60601-1,CSA C22.2 No.601-1					
	IEC/EN 60950-1, IEC/EN 60601-1					
Annania	IEC60950-1 CB report, Cul/UL 60950-1 certificate					
Approvals	UL60601-1 UL certificate					


General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency		50	80	100	KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000			Hours

Input Fuse					
5V Input Models	12V Input Models	24V Input Models			
1000Ma Slow-Blow Type	500Ma Slow-Blow Type	200Ma Slow-Blow Type			

Environmental Specifications					
Parameter	Conditions	Min.	Max.	Unit	
Operating Temperature Range (with Derating)	Ambient	-25	+80	°C	
Case Temperature			+90	°C	
Storage Temperature Range		-50	+125	°C	
Humidity (non condensing)			95	% rel. H	
Cooling	Free-Air convection				
Lead Temperature (1.5mm from case for 10Sec.)			260	°C	



Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Ripple & Noise measurement bandwidth is 0-20MHz.
- These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 All DC/DC converters should be externally fused at the front end for protection.
- 5 Other input and output voltage may be available, please contact factory.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 Specifications subject to change without notice.

Package Specifications

Pin Connections			
Pin	Single Output	Dual Output	
1	-Vin	-Vin	
7	NC	NC	
8	NC	Common	
9	+Vout	+Vout	
10	-Vout	-Vout	
16	+Vin	+Vin	

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

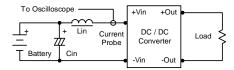
▶ Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

Physical Characteristics

Case Size 23.8x13.4x8.6mm (0.94x0.53x0.34 Inches)

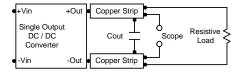
Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

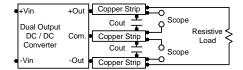
Weight 5.1g



Test Configurations

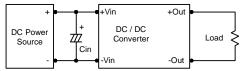
Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance.


Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

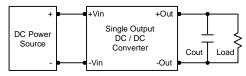
Peak-to-Peak Output Noise Measurement Test

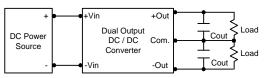
Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Design & Feature Considerations

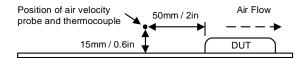
Maximum Capacitive Load

The MDHU100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 100uF maximum capacitive load for dual outputs and 330uF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 2.2uF for the 5V input devices, a 1.0uF for the 12V input devices and a 0.47uF for the 24V input devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup

