

IRF7807VTRPbF-1

HEXFET® Power MOSFET

V _{DS}	30	V
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	25	$\mathbf{m}\Omega$
Q _{g (typical)}	9.5	nC
I _D (@T _A = 25°C)	8.3	A

Features

Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits

Dononic
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Page Part Number	Dookogo Typo	Standard Pac	Orderable Part Number	
Base Part Number Package Type Form		Quantity	Orderable Part Number	
IRF7807VPbF-1	SO-8	Tape and Reel	4000	IRF7807VTRPbF-1

Absolute Maximum Ratings

Absolute Maximum Hatings						
Parameter		Symbol	IRF7807V	Units		
Drain-Source Voltage		V_{DS}	30	V		
Gate-Source Voltage		V _{GS}	±20	V		
Continuous Drain or Source	$T_A = 25^{\circ}C$		8.3			
$(V_{GS} \ge 4.5V)$	T _A = 70°C	I _D	6.6	Α		
Pulsed Drain Current ①		I _{DM}	66			
Power Dissipation 3	$T_A = 25^{\circ}C$	P_{D}	2.5	w		
T _A = 70°C		ı D	1.6	VV		
Junction & Storage Temperature Range		T_J , T_STG	-55 to 150	°C		
Continuous Source Current (Body Diode)		I _S	2.5	Δ.		
Pulsed Source Current ①		I _{SM}	66	Α		

Thermal Resistance

Parameter	Symbol	Тур	Max	Units
Maximum Junction-to-Ambient 3 ©	$R_{\theta JA}$		50	°C/W
Maximum Junction-to-Lead ©	$R_{\theta JL}$		20	-C/VV

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Drain-Source Breakdown Voltage	BV _{DSS}	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
Static Drain-Source On-Resistance	R _{DS(on)}		17	25	mΩ	V _{GS} = 4.5V, I _D = 7.0A ②
Gate Threshold Voltage	$V_{GS(th)}$	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
				100		$V_{DS} = 30V, V_{GS} = 0$
Drain-Source Leakage Current	I _{DSS}			20	μΑ	$V_{DS} = 24V, V_{GS} = 0$
				100		$V_{DS} = 24V, V_{GS} = 0, T_{J} = 100^{\circ}C$
Gate-Source Leakage Current*	I _{GSS}			±100	nA	$V_{GS} = \pm 20V$
Total Gate Charge*	Q_{G}		9.5	14		$V_{GS} = 5V, I_D = 7.0A$
Pre-Vth Gate-Source Charge	Q _{GS1}		2.3			V _{DS} = 16V
Post-Vth Gate-Source Charge	Q _{GS2}		1.0		nC	
Gate-to-Drain Charge	Q_{GD}		2.4		IIC	
Switch Charge (Q _{gs2} + Q _{gd})	Q _{SW}		3.4	5.2		
Output Charge*	Q _{oss}		12	16.8		$V_{DS} = 16V, V_{GS} = 0$
Gate Resistance	R_{G}	0.9		2.8	Ω	
Turn-On Delay Time	t _{d(on)}		6.3			$V_{DD} = 16V$
Rise Time	t _r		1.2			$I_D = 7A$
Turn-Off Delay Time	t _{d(off)}		11		ns	$V_{GS} = 5V, R_G = 2\Omega$
Fall Time	t _f		2.2			Resistive Load

Source-Drain Ratings and Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Diode Forward Voltage*	V _{SD}			1.2	٧	$I_{S} = 7.0A ② , V_{GS} = 0V$
Reverse Recovery Charge @	Q_{rr}		64			$di/dt = 700A/\mu s$ $V_{DS} = 16V, V_{GS} = 0V, I_{S} = 7.0A$
Reverse Recovery Charge (with Parallel Schottsky) 4	$Q_{rr(s)}$		41			$di/dt = 700A/\mu s$, (with 10BQ040) $V_{DS} = 16V$, $V_{GS} = 0V$, $I_{S} = 7.0A$

- - Device are 100% tested to these parameters.

Power MOSFET Selection for DC/DC Converters

Control FET

Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{\rm ds(on)}$ of the MOSFET, but these conduction losses are only about one half of the total losses.

Power losses in the control switch Q1 are given by;

$$P_{loss} = P_{conduction} + P_{switching} + P_{drive} + P_{output}$$

This can be expanded and approximated by;

$$\begin{split} P_{loss} &= \left(I_{rms}^{2} \times R_{ds(on)}\right) \\ &+ \left(I \times \frac{Q_{gd}}{i_{g}} \times V_{in} \times f\right) + \left(I \times \frac{Q_{gs2}}{i_{g}} \times V_{in} \times f\right) \\ &+ \left(Q_{g} \times V_{g} \times f\right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) \end{split}$$

This simplified loss equation includes the terms Q_{gs2} and Q_{oss} which are new to Power MOSFET data sheets. Q_{gs2} is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q_{os1} and Q_{os2} , can be seen from

Fig 1. Q_{gs2} indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached (t1) and the time the drain current rises to I_{dmax} (t2) at which time the drain voltage begins to change. Minimizing Q_{gs2} is a critical factor in reducing switching losses in Q1.

 $Q_{_{oss}}$ is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure 2 shows how $Q_{_{oss}}$ is formed by the parallel combination of the voltage dependant (nonlinear) capacitance's $C_{_{ds}}$ and $C_{_{dg}}$ when multiplied by the power supply input buss voltage.

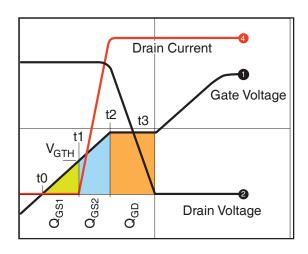


Figure 1: Typical MOSFET switching waveform

Synchronous FET

The power loss equation for Q2 is approximated by;

$$\begin{split} P_{loss} &= P_{conduction} + P_{drive} + P_{output}^* \\ P_{loss} &= \left(I_{rms}^2 \times R_{ds(on)}\right) \\ &+ \left(Q_g \times V_g \times f\right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) + \left(Q_{rr} \times V_{in} \times f\right) \end{split}$$

*dissipated primarily in Q1.

For the synchronous MOSFET Q2, $R_{\text{ds(on)}}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q_{oss} and reverse recovery charge Q_{rr} both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on.

The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and $V_{\rm in}$. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn

the MOSFET on, resulting in shoot-through current . The ratio of $Q_{\rm gd}/Q_{\rm gs1}$ must be minimized to reduce the potential for Cdv/dt turn on.

Spice model for IRF7807V can be downloaded in machine readable format at www.irf.com.

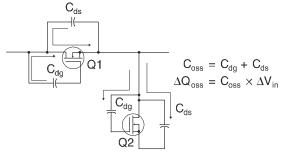
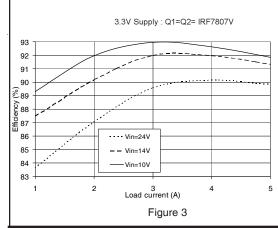
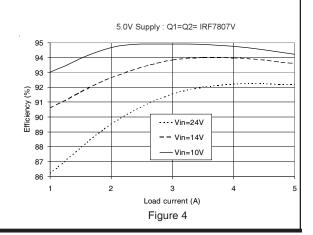
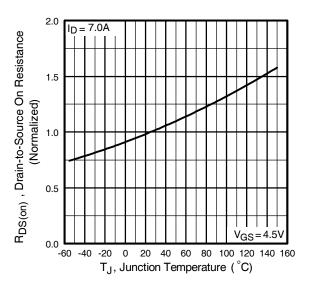




Figure 2: Q_{oss} Characteristic


Typical Mobile PC Application

The performance of these new devices has been tested in circuit and correlates well with performance predictions generated by the system models. An advantage of this new technology platform is that the MOSFETs it produces are suitable for both control FET and synchronous FET applications. This has been demonstrated with the 3.3V and 5V converters. (Fig 3 and Fig 4). In these applications the same MOSFET IRF7807V was used for both the control FET (Q1) and the synchronous FET (Q2). This provides a highly effective cost/performance solution.

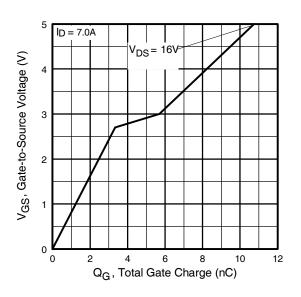


Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

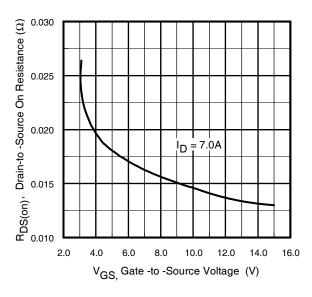
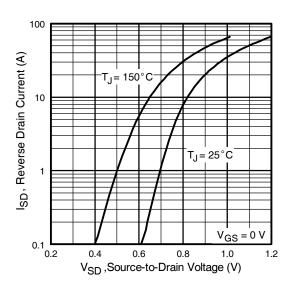



Fig 7. On-Resistance Vs. Gate Voltage

Fig 8. Typical Source-Drain Diode Forward Voltage

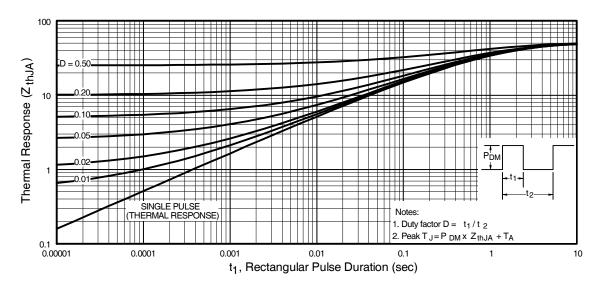
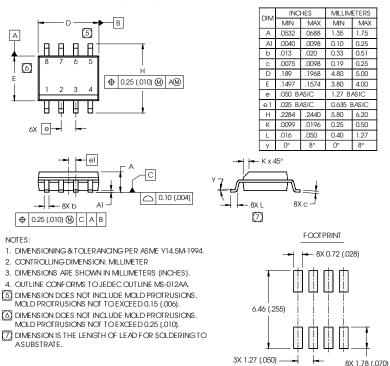
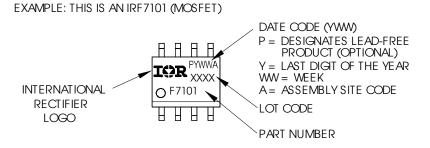
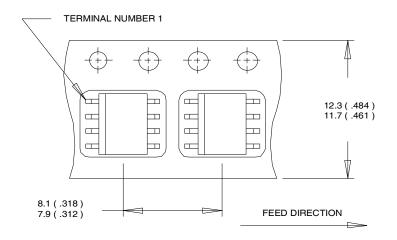



Figure 9. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

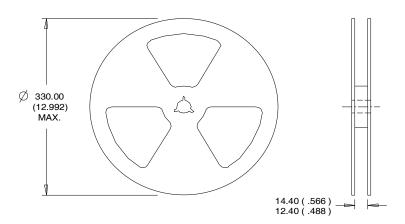


SO-8 Package Outline

Dimensions are shown in milimeters (inches)


SO-8 Part Marking Information (Lead-Free)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/



SO-8 Tape and Reel (Dimensions are shown in milimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information

	4.101.					
Qualification level	Inclustrial (per JEDEC JESD47F ^{††} guidelines)					
Moisture Sensitivity Level	SO-8 MSL1 (per JEDEC J-STD-020D ^{††})					
RoHS compliant	Yes					

[†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability

Revision History

Date	Comments
10/16/2014	Corrected part number from" IRF7807VPbF-1" to "IRF7807VTRPbF-1" -all pages
	• Removed the "IRF7807VPbF-1" bulk part number from ordering information on page1

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

^{††} Applicable version of JEDEC standard at the time of product release