Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

General Description

The MAX14585/MAX14585A high-ESD-protected double-pole/double-throw (DPDT) switches multiplex Hi-Speed (480Mbps) USB and analog signals such as AC-coupled audio or video. These devices combine the low oncapacitance ($\mathrm{CON}_{\mathrm{O}}$) and low on-resistance ($\mathrm{RON}_{\mathrm{N}}$) necessary for high-performance switching applications in portable electronics and include an internal negative supply to pass audio signals that swing below ground down to -1.8 V . The devices also handle USB low-ffull-speed signaling and operate from a 2.7 V to 5.5 V supply.
The devices feature a V_{B}. detection input $\left(\mathrm{V}_{\mathrm{B}}\right)$ that can handle voltage up to 28 V to automatically switch to the USB signal path upon detection of a valid $V_{B U S}$ signal (V_{B} $>V_{\text {VBDET }}$). In a dead battery situation, the voltage on V_{B} can supply power to the part if V_{B} is greater than 4.5 V . The MAX14585 features internal shunt resistors on the audio path to reduce clicks and pops heard at the output.
The MAX14585/MAX14585A are available in a spacesaving, 10 -pin, $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ UTQFN package and operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Cell Phones
PDAs and Handheld Devices
Tablet PCs

Benefits and Features

\author{

- Low Power Consumption
 \diamond Low Supply Current 7 $\mu \mathrm{A}$ (typ)
 \diamond Single 2.7V to 5.5V Supply Operation, VCC
 - Flexible Design
 \diamond Dual Power-Supply Architecture, V_{B} and V_{CC}
 \diamond ANO_Channel Override Control Input
 - High Level of Integration for Performance
 $\diamond 28 \mathrm{~V}$-Capable V_{B} Input with Automatic UNC_ Selection by VBUS Detection
 ২ Low-Capacitance Hi-Speed USB for Both Channels (UNC_ and ANO_)
 \diamond Distortion-Free Negative Signal Throughput Down to -1.8V on ANO_ Channel
 $\diamond 3 \Omega$ (typ) On-Resistance
 $\diamond 960 \mathrm{MHz}$ Bandwidth
 $\diamond 0.04 \%$ THD+N Audio Channel
 $\diamond \pm 15 k V$ Human Body Model (HBM) ESD on COM1, COM2
 - Saves Board Space
 \diamond Internal Shunt Resistor Reduces Clicks and Pops (MAX14585)
 $\diamond 10-P i n, 1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ UTQFN Package
 Ordering Information appears at end of data sheet.
 For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX14585.related
}

Typical Operating Circuit

MAXIAM
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

V_{B}...-0.3V to +30 V
UNC_, ANO_, COM_ ($\left.\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}\right) \ldots-1.9 \mathrm{~V}$ to $\min \left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}, 3.7 \mathrm{~V}\right)$
UNC_, COM_ $\left(V_{B} \geq 4.5 \mathrm{~V}, \mathrm{~V}_{C C}<2.7 \mathrm{~V}\right) \ldots \ldots0 .3 \mathrm{~V}$ to +3.7 V
UNC_, ANO_, COM_ (VCC $<2.7 \mathrm{~V}$)... -0.3 V to $\min \left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}, 3.7 \mathrm{~V}\right)$
$U N C_{-}, A N O_{-}, C O M-\left(V_{C C}=0 V, V_{B}=0 \mathrm{~V}\right) \ldots \ldots-0.3 \mathrm{~V}$ to +6 V Continuous Current into Any Pin $\pm 100 \mathrm{~mA}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ UTQFN (derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..	559mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range.	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
UTQFN (derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature Range........................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

UTQFN
Junction-to-Ambient Thermal Resistance (θ_{JA}) $143.2^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $20.1^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{C}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Power-Supply Range	V_{CC}		2.7		5.5	V
Supply Current	ISUPPLY	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{AOR}}<0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AOR}} \geq 1.4 \mathrm{~V} \end{aligned}$		7	14	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CC}}=3.0 \pm 0.3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{COM}}=50 \Omega \end{aligned}$		100		dB
V_{B} Detect Threshold	$V_{\text {VBDET }}$	$V_{\text {BUS }}$ rising, $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$	3	3.3	3.6	V
V_{B} Detect Hysteresis	$V_{\text {VBDET_H }}$	$V_{B U S}$ falling, $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$		0.2		V
V_{B} Detect Leakage Current		$\mathrm{V}_{\mathrm{B}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
ANALOG SWITCH						
Analog-Signal Range	VUNC_	$V_{C C} \geq 2.7 \mathrm{~V}$ for UNC_	0		$\begin{gathered} \min (3.6 \mathrm{~V}, \\ \left.V_{C C}\right) \end{gathered}$	V
	$\mathrm{V}_{\text {ANO }}$, $\mathrm{V}_{\mathrm{COM}}$	$\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$ for ANO_{-}, COM_	-1.8		$\begin{gathered} \min (3.6 \mathrm{~V}, \\ \left.\mathrm{V}_{\mathrm{CC}}\right) \end{gathered}$	
ANO_ On-Resistance	$\mathrm{R}_{\mathrm{ON}(\mathrm{NO})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {ANO_ }}=-1.5 \mathrm{~V},+1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \end{aligned}$		3	6	Ω
UNC_ On-Resistance	$\mathrm{R}_{\mathrm{ON}(\mathrm{NC})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{UNC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \end{aligned}$		3	6	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{B}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{UNC}_{-}}=0 \mathrm{~V} \\ & \text { to } 2.5 \mathrm{~V}, \mathrm{~V}_{\text {AOR }}=0 \mathrm{~V} \text {, } \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}^{-} \\ & \hline \end{aligned}$		3	6	
ANO_ On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\mathrm{ON}(\mathrm{NO})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANO}_{-}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$		0.2		Ω

Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
UNC_ On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\mathrm{ON}(\mathrm{NC})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {UNC_ }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$		0.2			Ω
ANO_ On-Resistance Flatness	RFLAT(NO)	$\left\lvert\, \begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}^{-} \\ & \text {to }+1.5 \mathrm{~V}(\text { Note } 4) \end{aligned}=10 \mathrm{~mA}\right., \mathrm{~V}_{\text {ANO_ }=-1.5 \mathrm{~V}}$			0.04	0.2	Ω
UNC_ On-Resistance Flatness	RFLAT(NC)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{UNC}_{-}}=0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}}(\text { Note 4) } \end{aligned}$			0.04	0.2	Ω
Shunt Switch Resistance	$\mathrm{R}_{\text {SH }}$	$\mathrm{I}_{\mathrm{ANO}_{-}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$			700	1300	Ω
AOR Pulldown Resistor	$\mathrm{R}_{\text {AOR }}$			250		1200	k Ω
UNC_ Off-Leakage Current	lUNC_(OFF)	$\begin{array}{\|l\|} \hline \text { Switch open, } \mathrm{V}_{U N C}=2.5 \mathrm{~V}, 0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=-1.5 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V} \\ \hline \end{array}$		-100		+100	nA
ANO_ Off-Leakage Current	$\mathrm{I}_{\text {ANO_(OFF) }}$	MAX14585A, switch open, $\mathrm{V}_{\text {ANO_ }}=2.5 \mathrm{~V}$, $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$		-100		+100	nA
COM_ Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {UNC_ }}=\mathrm{V}_{\text {ANO_ }}=\text { unconnected } \end{aligned}$		-10		+800	$\mu \mathrm{A}$
COM_ On-Leakage Current	ICOM_(ON)	USB mode	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANO}_{-}}=0 \mathrm{~V},$ 2.5 V , unconnected, $\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, 2.5 \mathrm{~V}$	-200		+200	nA
		Audio mode	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{UNC}}=0 \mathrm{~V} \text {, }$ 2.5 V , unconnected, $\mathrm{V}_{\mathrm{COM}}^{-}=-1.5 \mathrm{~V}, 2.5 \mathrm{~V}$	-200		+200	nA
Turn-On Time	${ }^{\text {ton }}$	ANO_ to COM_, Figure 1	$\begin{aligned} & V_{C C}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANO}}=1.5 \mathrm{~V}, \\ & R_{\mathrm{L}}=50 \Omega ; \mathrm{V}_{\mathrm{AOR}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{B}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AOR}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		45	120	$\mu \mathrm{s}$
		UNC_ to COM_, Figure 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{UNC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{V}_{\mathrm{AOR}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$		45	120	$\mu \mathrm{s}$
Turn-Off Time	toff	ANO_from COM_, Figure 1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANO}_{-}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{V}_{\mathrm{AOR}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$		8	40	$\mu \mathrm{s}$
		UNC_from COM_, Figure 1	$\begin{aligned} & V_{C C}=3 \mathrm{~V}, V_{U N C}=1.5 \mathrm{~V}, \\ & R_{L}=50 \Omega ; V_{A O R}=0 \mathrm{~V}, \\ & V_{B}=0 \mathrm{~V} \text { to } 5 \mathrm{~V} \text { or } V_{B}=5 \mathrm{~V}, \\ & V_{\text {AOR }}=0 \mathrm{~V} \text { to } V_{C C} \end{aligned}$		8	40	$\mu \mathrm{s}$
Break-Before-Make Time Delay	t_{D}	$R_{L}=50 \Omega$, time delay between one side of the switch open and the other side closed			28		$\mu \mathrm{s}$
Output Skew (Same Switch)	tSK(P)	Figure 2			40		ps
Output Skew Between Switches	${ }_{\text {t }}^{\text {SK(}}$ ($)$	Figure 2			40		ps
ANO_ Off-Capacitance	$\mathrm{C}_{\text {NO_(OFF) }}$	$\mathrm{V}_{\text {ANO_ }}=0.5 \mathrm{~V}_{\text {P-P }}$, DC bias $=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			2.5		pF
UNC_ Off-Capacitance	$\mathrm{C}_{\text {NC_(OFF) }}$	$V_{\text {UNC_ }}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{DC}$ bias $=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			2.5		pF

MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

ELECTRICAL CHARACTERISTICS (continued)

$\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
On-Capacitance	$\mathrm{C}_{\text {COM_(ON) }}$	$\begin{aligned} & V_{C O M}=0.5 V_{P-P}, D C \text { bias }=0 \mathrm{~V}, \\ & f=240 \mathrm{MHz}, R_{L}=50 \Omega \end{aligned}$		6.7		pF
AC PERFORMANCE						
ANO_-3dB Bandwidth	$\mathrm{BW}_{\text {NO }}$	$R_{S}=R_{L}=50 \Omega, V_{\text {ANO_}}=0 \mathrm{dBm}$, Figure 3		960		MHz
UNC_-3dB Bandwidth	$B^{\text {N }}$ N	$R_{S}=R_{L}=50 \Omega, V_{U N C_{-}}=0 \mathrm{dBm}$, Figure 3		960		MHz
Off-Isolation		$f=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, }$ Figure 3		-84		dB
Crosstalk		$\begin{aligned} & f=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{RMS}}, R_{\mathrm{L}}=50 \Omega, \\ & \text { Figure } 3 \text { (Note 5) } \end{aligned}$		-86		dB
Total Harmonic Distortion Plus Noise	THD + N	ANO_ to COM_, $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , $\mathrm{V}_{\mathrm{COM}}^{-}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{DC}$ bias $=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$		0.042		\%
LOGIC INPUT						
AOR Input Logic-High	V_{IH}	$\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$	1.4			V
AOR Input Logic-Low	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$			0.4	V
AOR Input Leakage Current	IIN	$\mathrm{V}_{\text {AOR }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$	-22		+22	$\mu \mathrm{A}$
ESD PROTECTION						
COM1, COM2		Human Body Model		± 15		kV
		IEC 61000-4-2 Air Gap Discharge		± 8		
		IEC 61000-4-2 Contact Discharge		± 8		
All Other Pins		Human Body Model		± 2		kV

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design; not production tested.
Note 3: $\Delta \mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}=\mathrm{ABS}\left(\mathrm{R}_{\mathrm{ON}(\mathrm{CH} 1)}-\mathrm{R}_{\mathrm{ON}(\mathrm{CH} 2)}\right)$.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog-signal ranges.
Note 5: Between two switches.

Figure 1. Switching Time

MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

Figure 2. Output Skew

OFF-ISOLATION $=20100 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
$O N-L O S S=20100 \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" ANO_ OR UNC_ TERMINAL ON EACH SWITCH.
*FOR CROSSTALK THIS PIN IS ANO2.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" ANO_ OR UNC_ TERMINAL ON EACH SWITCH. CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.

Figure 3. On-Loss, Off-Isolation, and Crosstalk
\qquad

MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Hi-Speed USB and Audio Switches with Negative Signal

 Capability and High-Voltage-Tolerable VBus DetectionTypical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

TOTAL HARMONIC DISTORTION PLUS NOISE
vs. FREQUENCY

\qquad

MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable VBus Detection

Pin Description

PIN	NAME	FUNCTION
1	UNC1	USB Input 1. Normally closed terminal for switch 1.
2	ANO2	Audio Input 2. Normally open terminal for switch 2.
3	ANO1	Audio Input 1. Normally open terminal for switch 1.
4	GND	Ground
5	V_{CC}	Positive Supply-Voltage Input. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
6	COM1	Common Terminal for Switch 1
7	COM2	Common Terminal for Switch 2
8	AOR	Audio Override Input. Drive AOR low to have V_{B} control the switch. Drive AOR high to connect COM_{-} to ANO_. AOR has an internal pulldown resistor to GND.
9	V_{B}	$\mathrm{V}_{\text {BUS }}$ Detection Input. If $\mathrm{V}_{\mathrm{B}} \geq \mathrm{V}_{\mathrm{VBDET}}$, COM _ connects to UNC_. Otherwise, COM_ connects to ANO_.
10	UNC2	USB Input 2. Normally closed terminal for switch 2.

MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable Vbus Detection

Functional Diagrams/Truth Table

MAX14585/MAX14585A				MAX14585
V $_{\mathbf{B}}$	AOR	UNC_ $_{-}$	ANO_ $^{\prime}$	ANO_SHUNT
$>$ VVBDET	0	ON	OFF	ON
$<$ VVBDET 2	0	OFF	ON	OFF
X	1	OFF	ON	OFF

X DON'T CARE

Detailed Description

The MAX14585/MAX14585A are high-ESD-protected single DPDT switches that operate from a 2.7 V to 5.5 V supply and are designed to multiplex Hi-Speed USB signals and AC-coupled analog signals. These switches combine the low on-capacitance (CON) and low on-resistance (RON) necessary for high-performance switching applications. These devices meet the requirements for USB low-speed and full-speed signaling. The negative signal capability of the analog channel allows signals below ground to pass through without distortion.

Analog-Signal Levels

 The devices are bidirectional, allowing ANO_, UNC_, and COM_ to be configured as either inputs or outputs. Note that UNC_ and ANO_ are only protected against ESD up to $\pm 2 \mathrm{kV}$ (HBM) and could require additional ESD protection if used as outputs. These devices feature a charge pump that generates a negative supply to allow analog signals as low as -1.8 V to pass through ANO_{-}when V_{CC} supply is greater than 2.7 V . This allows AC-coupled signals that drop below ground to pass when operating from a single power supply.
MAX14585/MAX14585A
 Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable VBus Detection

When $V_{C C}$ is below 2.7 V and V_{B} is less than 4.5 V , the switches accept signals from 0 to 3.6 V but do not switch according to the Functional Diagrams/Truth Table.

$V_{B U S}$ Detection Input

The devices feature a $V_{B U S}$ detection input $\left(V_{B}\right)$ that connects COM_ to UNC_ when V_{B} exceeds the $V_{B U S}$ detection threshold ($\mathrm{V}_{\mathrm{VBDET}}$). For applications where $\mathrm{V}_{\text {BUS }}$ is always present, drive the audio override input (AOR) high to connect ANO_{-}to COM_ (see the Functional Diagrams/Truth Table). Drive AOR low to have V_{B} control the switch position. Drive AOR rail-to-rail to minimize power consumption.
The V_{B} input is capable of handling voltage up to 28 V for higher $V_{B U S}$ application. In the case where the main power V_{CC} is lost due to an event such as a dead battery, V_{B} becomes the power supply if V_{B} is greater than 4.5 V .

Click-and-Pop Suppression (MAX14585) The switched 700Ω (typ) shunt resistors on the MAX14585 automatically discharge any capacitance at the ANO_ terminals when they are unconnected from COM_. This reduces audio click-and-pop sounds that can occur when switching between USB and audio sources.

Figure 4. Human Body ESD Test Model

Applications Information

Extended ESD Protection

 ESD protection structures are incorporated on all pins to protect against electrostatic discharges up to $\pm 2 \mathrm{kV}$ (HBM) encountered during handling and assembly. COM1 and COM2 are further protected against ESD up to $\pm 15 \mathrm{kV}$ (HBM) without damage. The ESD structures withstand high ESD in both normal operation and when the devices are powered down. After an ESD event, the devices continue to function without latchup.ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 4 shows the HBM. Figure 5 shows the current waveform it generates when discharged into a lowimpedance state. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 5. Human Body Current Waveform

MAX14585/MAX14585A Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable VBus Detection

Figure 6. IEC 61000-4-2 ESD Test Model

Figure 7. IEC 61000-4-2 ESD Generator Current Waveform

Chip Information
PROCESS: BiCMOS

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the HBM and IEC 61000-4-2 is higher peak current in IEC 61000-4-2, because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the HBM. Figure 6 shows the IEC 61000-4-2 model and Figure 7 shows the current waveform for the $\pm 8 \mathrm{kV}$, IEC 61000-4-2, Level 4, ESD Contact-Discharge Method.

Layout

Hi-Speed USB requires careful PCB layout with 45Ω single-ended/90 differential controlled-impedance matched traces of equal lengths. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Ordering Information/
Selector Guide

PART	TOP MARK	SHUNT RESISTOR	PIN- PACKAGE
MAX14585EVB+T	AAY	Yes	10 UTQFN
MAX14585AEVB+T	AAZ	No	10 UTQFN

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 UTQFN	V101A1CN +1	$\underline{\mathbf{2 1 - 0 0 2 8}}$	$\underline{90-0287}$

MAX14585/MAX14585A Hi-Speed USB and Audio Switches with Negative Signal Capability and High-Voltage-Tolerable VBus Detection

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$5 / 11$	Initial release	-

