source
SP-03-IR1-CDFN SP-03-IR1-IDFN

## Features

- Date rate 155 Mbps

- 1310nm FP laser and PIN photodetector for 15km transmission
- Digital diagnostic monitor interface compliant with SFF-8472
- SFP MSA package with duplex LC connector
- $\quad+3.3 \mathrm{~V}$ single power supply
- Power consumption less than 1 W
- Operating case temperature

Standard temp:-5~+70 ${ }^{\circ} \mathrm{C}$
Industrial temp:-40~+85 ${ }^{\circ} \mathrm{C}$

- RoHS compliant


## Regulatory Compliance

Table 1 - Regulatory Compliance

| Feature | Standard | Performance |
| :--- | :--- | :--- |
| Electrostatic Discharge <br> (ESD) to the Electrical Pins | MIL-STD-883E <br> Method 3015.7 | Class 1 |
| Electrostatic Discharge (ESD) to the <br> Duplex LC Receptacle | IEC 61000-4-2 | Compliant with standard |
| Electromagnetic <br> Interference (EMI) | FCC Part 15 Class B | Compliant with standard |
|  | FDA 21CFR 1040.10 and <br> 1040.11 <br> EN (IEC) 60825-1,2 |  |
| Laser Eye Safety | $2011 / 65 /$ EU | Compliant with Class I laser product. |
| RoHS |  | Compliant with RoHS |

## Absolute Maximum Ratings

Table 2 - Absolute Maximum Ratings

| Parameter | Symbol | Min. | Typical | Max. | Unit | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 | - | +3.6 | V |  |
| Operating Relative Humidity | RH | +5 | - | +95 | $\%$ |  |

## Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

| Parameter |  | Symbol | Min. | Typical | Max. | Unit | Notes |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Case <br> Temperature | Standard | Industrial | $\mathrm{T}_{\mathrm{C}}$ | -5 | - | +70 | ${ }^{\circ} \mathrm{C}$ |

## Optical Characteristics

Table 4 - Optical Characteristics (1310nm FP and PIN, 15km, Monitoring function)

| Transmitter |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min. | Typical | Max. | Unit | Notes |
| Centre Wavelength | $\lambda_{C}$ | 1261 |  | 1360 | nm |  |
| Average Output Power | $\mathrm{P}_{\text {OUT }}$ | -15 |  | -8 | dBm | 1 |
| Spectral Width (RMS) | $\Delta \lambda$ |  |  | 7.7 | nm |  |
| Extinction Ratio | EX | 8.2 |  |  | dB |  |
| Jitter Generation (RMS) |  |  |  | 0.01 | UI |  |
| Jitter Generation (pk-pk) |  |  |  | 0.1 | UI |  |
| Optical Eye Mask | Compliant with Telcordia GR-253-CORE and ITU-T G. 957 |  |  |  |  | 2 |
| Receiver |  |  |  |  |  |  |
| Centre Wavelength | $\lambda_{C}$ | 1260 |  | 1580 | nm |  |
| Receiver Sensitivity | $\mathrm{P}_{\text {IN }}$ |  |  | -28 | dBm | 3 |
| Receiver Overload | $\mathrm{P}_{\text {IN }}$ | -8 |  |  | dBm | 3 |
| Optical Path Penalty |  |  |  | 1 | dB | 4 |
| LOS Assert | $\mathrm{LOS}_{\text {A }}$ | -45 |  |  | dBm |  |
| LOS Deassert | $\mathrm{LOS}_{\text {D }}$ |  |  | -31 | dBm |  |
| LOS Hysteresis |  | 0.5 |  | 4 | dB |  |

Notes:

1. The optical power is launched into SMF.
2. Measured with a PRBS $2^{23}-1$ test pattern @155Mbps.
3. Measured with a PRBS $2^{23}-1$ test pattern @155Mbps, BER $\leqslant 1 \times 10^{-10}$.
4. Measured with a PRBS $2^{23}-1$ test pattern @155Mbps, over 15 km G. 652 SMF, BER $\leqslant 1 \times 10^{-10}$.

## SP-03-IR1-CDFN SP-03-IR1-IDFN

## Electrical Characteristics

Table 5- Electrical Characteristics

| Transmitter |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Min. | Typical | Max. | Unit | Notes |
| Data Input Swing Differential | $\mathrm{V}_{\text {IN }}$ | 500 |  | 2400 | mV | 1 |
| Input Differential Impedance | $\mathrm{Z}_{\text {IN }}$ | 90 | 100 | 110 | $\Omega$ |  |
| Tx_DIS Disable | $V_{\text {D }}$ | 2.0 |  | $\mathrm{V}_{\mathrm{cc}}$ | V |  |
| Tx_DIS Enable | $V_{\text {EN }}$ | GND |  | GND+0.8 | V |  |
| TX_Fault (Fault) |  | 2.0 |  | $\mathrm{Vcc}+0.3$ | V |  |
| TX_ Fault (Normal) |  | 0 |  | 0.8 | V |  |
| Receiver |  |  |  |  |  |  |
| Data Output Swing Differential | $\mathrm{V}_{\text {OUT }}$ | 370 |  | 2000 | mV | 1 |
| Rx_LOS Fault | $V_{\text {Los-Fault }}$ | 2.0 |  | Vcc+0.3 | V |  |
| Rx_LOS Normal | $\mathrm{V}_{\text {Los-Normal }}$ | GND |  | GND+0.8 | V |  |
| Notes: |  |  |  |  |  |  |
| 1. Internally AC coupled |  |  |  |  |  |  |

## Recommended Host Board Power Supply Circuit



Figure 1, Recommended Host Board Power Supply Circuit

## SP-03-IR1-CDFN SP-03-IR1-IDFN

## Recommended Interface Circuit



Figure 2, Recommended Interface Circuit

## Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 6 with some accompanying notes.


Figure 3, Pin View
Table 6 - Pin Function Definitions

| Pin No. | Name | Function | Plug Seq. | Notes |
| :---: | :---: | :--- | :---: | :---: |
| 1 | VeeT | Transmitter Ground | 1 |  |
| 2 | TX Fault | Transmitter Fault Indication | 3 | Note 1 |

## SP-03-IR1-CDFN SP-03-IR1-IDFN

| 3 | TX Disable | Transmitter Disable | 3 | Note 2 |
| :---: | :---: | :--- | :--- | :--- |
| 4 | MOD-DEF2 | Module Definition 2 | 3 | Note 3 |
| 5 | MOD-DEF1 | Module Definition 1 | 3 | Note 3 |
| 6 | MOD-DEF0 | Module Definition 0 | 3 | Note 3 |
| 7 | Rate Select | Not Connected | 3 |  |
| 8 | LOS | Loss of Signal | 3 | Note 4 |
| 9 | VeeR | Receiver Ground | 1 |  |
| 10 | VeeR | Receiver Ground | 1 |  |
| 11 | VeeR | Receiver Ground | 1 |  |
| 12 | RD- | Inv. Received Data Out | 3 | Note 5 |
| 13 | RD+ | Received Data Out | 3 | Note 5 |
| 14 | VeeR | Receiver Ground | 1 |  |
| 15 | VccR | Receiver Power | 2 |  |
| 16 | VccT | Transmitter Power | 1 |  |
| 17 | VeeT | Transmitter Ground | 3 | Note 6 |
| 18 | TD+ | Transmit Data In | 3 | Note 6 |
| 19 | TD- | Inv. Transmit Data In | 1 |  |
| 20 | VeeT | Transmitter Ground |  |  |

## Notes:

1. TX Fault is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board to a voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8 V .
2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor. Its states are:

Low (0~0.8V):
( $>0.8 \mathrm{~V},<2.0 \mathrm{~V}$ ):
High (2.0~3.465V):
Open:

Transmitter on
Undefined
Transmitter Disabled
Transmitter Disabled
3. MOD-DEF $0,1,2$ are the module definition pins. They should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
MOD-DEF 0 is grounded by the module to indicate that the module is present
MOD-DEF 1 is the clock line of two wires serial interface for serial ID
MOD-DEF 2 is the data line of two wires serial interface for serial ID
4. LOS is an open collector output, which should be pulled up with a $4.7 \mathrm{k} \sim 10 \mathrm{k} \Omega$ resistor on the host board to a voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8 V .
5. These are the differential receiver output. They are internally AC-coupled $100 \Omega$ differential lines which should be terminated with $100 \Omega$ (differential) at the user SERDES.
6. These are the differential transmitter inputs. They are AC-coupled, differential lines with $100 \Omega$ differential termination inside the module.

## SP-03-IR1-CDFN SP-03-IR1-IDFN

## EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 7.

Table 7 - EEPROM Serial ID Memory Contents (AOh)

| Addr. | Field Size (Bytes) | Name of Field | Hex | Description |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | Identifier | 03 | SFP |
| 1 | 1 | Ext. Identifier | 04 | MOD4 |
| 2 | 1 | Connector | 07 | LC |
| 3-10 | 8 | Transceiver | 0010020000000000 | OC 3, Single mode inter. reach |
| 11 | 1 | Encoding | 03 | NRZ |
| 12 | 1 | BR, nominal | 02 | 155Mbps |
| 13 | 1 | Reserved | 00 |  |
| 14 | 1 | Length (9um)-km | OF | 15km |
| 15 | 1 | Length (9um) | 96 | 15 km |
| 16 | 1 | Length (50um) | 00 |  |
| 17 | 1 | Length (62.5um) | 00 |  |
| 18 | 1 | Length (copper) | 00 |  |
| 19 | 1 | Reserved | 00 |  |
| 20-35 | 16 | Vendor name | $\begin{aligned} & 53 \text { 4F } 555243455048 \\ & 4 F 54 \text { 4F 4E } 49435320 \end{aligned}$ | "SOURCEPHOTONICS"(ASC II ) |
| 36 | 1 | Reserved | 00 |  |
| 37-39 | 3 | Vendor OUI | 001 F 22 |  |
| 40-55 | 16 | Vendor PN | $53 \quad 503033495231$ $43(49) 44464 E 202020$ 2020 | "SP03IR1xDFN" (ASC II ) |
| 56-59 | 4 | Vendor rev | 31302020 | ASC II ( "31 3020 20" means 1.0 revision) |
| 60-61 | 2 | Wavelength | 051 E | 1310 nm |
| 62 | 1 | Reserved | 00 |  |
| 63 | 1 | CC BASE | xX | Check sum of bytes 0-62 |
| 64-65 | 2 | Options | 001 A | LOS, TX_FAULT and TX_DISABLE |
| 66 | 1 | BR, max | 00 |  |
| 67 | 1 | BR, min | 00 |  |
| 68-83 | 16 | Vendor SN | $\mathrm{xx} x \mathrm{xxxxxxxxxxxx}$ xx xx xxxxxxxxxxx | ASC II. |
| 84-91 | 8 | Vendor date | xx xx xx xx xx xx 2020 | Year (2 bytes), Month (2 bytes), Day (2 |

## SP-03-IR1-CDFN SP-03-IR1-IDFN

|  |  | code |  | bytes) |
| :---: | :---: | :---: | :---: | :---: |
| 92 | 1 | Diagnostic type 58 | Diagnostics(Ext.Cal) |  |
| 93 | 1 | Enhanced <br> option | B0 | Diagnostics (Optional Alarm/warning flags, <br> Soft TX_FAULT and Soft TX_LOS <br> monitoring) |
| 94 | 1 | SFF-8472 | 02 | Diagnostics(SFF-8472 Rev 9.4) |
| 95 | 1 | CC EXT | xx | Check sum of bytes 64-94 |
| $96-255$ | 160 | Vendor specific |  |  |

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.5.

## Monitoring Specification

The digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X (A2h). Please see Figure 4. For detail EEPROM information, please refer to the related document of SFF-8472 Rev 9.5. The monitoring specification of this product is described in Table 8.


Figure 4, EEPROM Memory Map Specific Data Field Descriptions

Table 8- Monitoring Specification

| Parameter |  | Range | Accuracy | Calibration |
| :---: | :---: | :---: | :---: | :---: |
| Temperature | Standard | -10 to $80^{\circ} \mathrm{C}$ | $\pm 3^{\circ} \mathrm{C}$ | External |
|  | Industrial | -40 to $95^{\circ} \mathrm{C}$ | $\pm 3^{\circ} \mathrm{C}$ | External |
| Voltage |  | 3.0 to 3.6 V | $\pm 3 \%$ | External |
| Bias Current |  | 0 to 80 mA | $\pm 10 \%$ | External |
| TX Power |  | -16 to -7 dBm | $\pm 3 \mathrm{~dB}$ | External |
| RX Power |  | -30 to -7 dBm | $\pm 3 \mathrm{~dB}$ | External |

## Mechanical Diagram



Figure 5, Mechanical Design Diagram of the SFP

## Order Information

Table 9- Order Information

| Part No. | Application | Temperature | Data Rate | Laser Source | Fiber Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SP-03-IR1-CDFN | SDH STM-1, S-1.1 <br> SONET OC-3 IR1 | $-5 \sim+70^{\circ} \mathrm{C}$ | 155 Mbps | 1310 nm FP | SMF |
| SP-03-IR1-IDFN | SDH STM-1, S-1.1 <br> SONET OC-3 IR1 | $-40 \sim+85^{\circ} \mathrm{C}$ | 155 Mbps | 1310 nm FP | SMF |

## Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.
Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

## Legal Notice

## IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics's sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary"

## SP-03-IR1-CDFN SP-03-IR1-IDFN

are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fi tness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

## Contact

U.S.A. Headquarters

20550 Nordhoff Street
Chatsworth, CA 91311
USA
Tel: +1-818-773-9044
Fax: +1-818-773-0261

## China

Building \#2\&5, West Export Processing Zone No. 8 Kexin Road, Hi-Tech Zone Chengdu, 611731, China
Tel: +86-28-8795-8788
Fax: +86-28-8795-8789

## Taiwan

9F, No 81, Shui Lee Rd.
Hsinchu, Taiwan, R.O.C.
Tel: +886-3-5169222
Fax: +886-3-5169213
© Copyright Source Photonics, Inc. 2007~2013
All rights reserved

